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The theory of non-Hermitian systems and the theory of quantum deformations have attracted a great deal of
attention in the past decades. In general, non-Hermitian Hamiltonians are constructed by an ad hoc manner. Here,
we study the (2+1) Dirac oscillator and show that in the context of the κ-deformed Poincaré-Hopf algebra its
Hamiltonian is non-Hermitian but has real eigenvalues. The non-Hermiticity stems from the κ-deformed algebra.
From the mapping in Bermudez et al., Phys. Rev. A 76, 041801(R) (2007), we propose the κ-Jaynes-Cummings
and κ-anti-Jaynes-Cummings models, which describe an interaction between a two-level system with a quantized
mode of an optical cavity in the κ-deformed context. We find that the κ deformation modifies the Zitterbewegung
frequencies and the collapses and revivals of quantum oscillations. In particular, the total angular momentum in
the z direction is not conserved anymore, as a direct consequence of the deformation.
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I. INTRODUCTION

The interest in non-Hermitian Hamiltonians with real spec-
trum started with the seminal work of Bender and Boettcher
[1]. In the past two decades, these systems have been dis-
cussed in connection with invariance under spatiotemporal
reflection. A PT -symmetric Hamiltonian is invariant under
spatial reflection (P) and time-reversal (T ) symmetries [2,3].
Many applications of PT -symmetric Hamiltonians are found
in the study of gain and loss systems [4] which may be
found in different physical contexts [5]. In standard quan-
tum mechanics, the Hermiticity, or being more precise, the
self-adjointness of physical observables, especially of Hamil-
tonians, guarantees that the quantum evolution is unitary and
the spectrum is real. If the eigenstates of the Hamiltonian and
the PT operator are the same, it is said to have an unbroken
PT symmetry, and the PT -symmetric Hamiltonian is also
quasi-Hermitian [6,7]. From the theory of quasi-Hermitian
operators, we know that it has real eigenvalues but the time
evolution is not unitary. However, for time-independent non-
Hermitian Hamiltonians [8], it is possible to have a unitary
evolution if we employ a similarity transformation [9] which
leads to its Hermitian counterpart.

In parallel and separately, in the past decades the theory of
quantum deformations based on the κ-Poincaré-Hopf algebra
has also attracted a great deal of attention and has been an
alternative framework for studying relativistic and nonrela-
tivistic quantum systems and represents an interesting theory
due to its phenomenological applications. The κ-deformed
Poincaré-Hopf algebra, established in Refs. [10–13], is based
on the following commutation relations:

[Pν, Pμ] = 0, (1a)

[Mi, Pμ] = (1 − δ0μ)iεi jkPk, (1b)
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[Li, Pμ] = i[Pi]
δ0μ[δi jε

−1 sinh (εP0)]1−δ0μ , (1c)

[Mi, Mj] = iεi jkMk, [Mi, Lj] = iεi jkLk, (1d)

[Li, Lj] = −iεi jk

[
Mk cosh (εP0) − ε2

4
PkPlMl

]
, (1e)

where ε is defined by

ε = 1

κ
= lim

R→∞
(R ln q), (2)

with R being the de Sitter curvature and q a real deformation
parameter, Pμ = (P0, P) are the κ-deformed generators for
energy and momenta, and Mi and Li represent the spatial
rotations and deformed boost generators, respectively. The
parameter κ has the dimension of mass and claimed from
the very beginning that it must have something to do with
quantum gravity, and therefore it is usually interpreted as
being the Planck mass MP [14]. We also comment that, in
Ref. [15], it was discussed that if the parameter κ does not
correspond to an observable, then its value should be inferred
through some indirect measurements. For a short introduc-
tion to the κ-deformation framework, see Ref. [16]. In the
context of κ-deformed theory, the physical properties of rel-
ativistic quantum mechanics can be addressed by solving the
κ-deformed Dirac equation [17–20]. For instance, it has impli-
cations in the divergenceless of the vacuum energy in quantum
field theory [21] and in the spin-1/2 Aharonov-Bohm problem
[22] leading to additional bound states [23], as well as in the
Landau levels [24,25] and in the two-dimensional (2D) and
three-dimensional (3D) Dirac oscillators [26,27].

As stated above, although some quantum systems could be
effectively described by non-Hermitian Hamiltonians as con-
sidered, for instance, in Refs. [28–30], non-Hermitian systems
are usually constructed by exactly balancing loss and gain [31]
and this is usually achieved in an ad hoc manner. In the present
work, we revisit the 2D Dirac oscillator, the relativistic version
of the simple harmonic oscillator (see below), and show that,
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in the context of the κ-deformed algebra, this system has
a non-Hermitian Hamiltonian. Then, here we show that we
obtain a non-Hermitian Hamiltonian from first principles by
employing the κ-deformed algebra. Moreover, from mapping
this system onto the Jaynes-Cummings (JC) and anti-Jaynes-
Cummings (AJC) models, this allows us to propose the κ-JC
and κ-AJC models, respectively. Our derivations are general
and can be applied to other similar cases.

The remainder of this paper is organized as follows. In
Sec. II we revise the solution of the (2+1) Dirac oscillator and
the mapping of this system onto the JC and AJC systems. In
Sec. III we propose the κ-JC and κ-AJC models. In Sec. IV we
study the symmetries of the κ-(A)JC Hamiltonian. In Sec. V
the dynamics of the κ-JC model is presented. Finally, our
conclusions are presented in Sec. VI.

II. DIRAC OSCILLATOR AND THE MAPPING
ONTO THE JC AND AJC SYSTEMS

In this section, we briefly review the Dirac oscillator and
the exact mapping onto the JC and AJC systems. The Dirac
oscillator, first proposed by Itô et al. [32] and then further de-
veloped by Moshinsky et al. [33], has been a usual model for
studying physical properties of systems in various branches
of physics. In the nonrelativistic limit, the Dirac oscillator
reduces to the simple harmonic oscillator with strong spin-
orbit coupling. It was shown that the Dirac oscillator can be
regarded as describing a neutral particle interaction with a
static linear electric field [34]. Recently, the one-dimensional
Dirac oscillator has had its first experimental realization [35],
and it also was proposed as a tabletop experiment for direct
observation of the corresponding analog of virtual pair cre-
ation on quantum measurement backaction [36]. These results
have made the system more attractive from the point of view
of applications. For a detailed approach to the Dirac oscillator
see Refs. [37,38].

The Dirac oscillator is obtained by means of the nonmini-
mal coupling [33]

p → p ± imωβr, (3)

in the Dirac equation, with p the momentum operator, m the
mass, ω the oscillator frequency, r the position vector, and β a
Dirac matrix. The double signal introduced in Eq. (3) leads us
to similar results [39] and serves to map the Dirac oscillator
onto the JC (AJC) model for + (−) in a transparent manner.
The Dirac oscillator in (2+1) dimensions, when the third
spatial coordinate is absent, was studied in Refs. [40–43]. This
system is achieved by writing the Dirac equation in (2+1)
dimensions including the nonminimal interaction in Eq. (3),

H±|ψ〉 = (cα · π± + βmc2)|ψ〉 = E |ψ〉, (4)

where |ψ〉 is a two-component spinor, α = βγ , π± = p ±
imωβr, and the 2 × 2 Dirac matrices are defined in terms of
the Pauli matrices [44]

β = γ0 = σz, βγ1 = σx, βγ2 = sσy. (5)

The parameter s is twice the spin value and here serves to
characterize the two possible chiralities of the system, with
s = −1 (s = +1) corresponding to the left (right) chirality.

The approach employed here based on the matrix set (5)
differs from the usual one which chooses one specific value
of the chirality s and has the advantage of making the results
dependent on the chirality in a transparent manner. Thus, con-
sidering the two-component spinor as |ψ〉 = (|ψ1〉, |ψ2〉)T ,
from Eq. (4) we arrive at the following set of coupled
equations:

(E − mc2)|ψ1〉 = c(π∓
x − isπ∓

y )|ψ2〉,
(E + mc2)|ψ2〉 = c(π±

x + isπ±
y )|ψ1〉, (6)

where π±
i = pi ± imωri and i = x, y. Introducing the chiral

creation and annihilation operators [42]

a±
s = 1√

2
(a±

x ∓ isa±
y ), (7)

where a+
i (a−

i ) is the usual creation (annihilation) operators of
the usual harmonic oscillator,

a±
i = 1√

2

(
1



ri ∓ i




h̄
pi

)
, (8)

and 
 = √
h̄/mω is the ground-state oscillator width, Eqs. (6)

can be written as

(E − mc2)|ψ1〉 = 2imc2
√

ξa∓
s |ψ2〉,

(E + mc2)|ψ2〉 = − 2imc2
√

ξa±
s |ψ1〉, (9)

with ξ = h̄ω/mc2 representing the relativistic parameter
which leads to the nonrelativistic limit when ξ → 0. By squar-
ing (9), we find

(E2 − m2c4)|ψ1〉 = 4m2c4ξa∓
s a±

s |ψ1〉,
(E2 − m2c4)|ψ2〉 = 4m2c4ξa±

s a∓
s |ψ2〉. (10)

Introducing the chiral quanta basis

|n±
s 〉 = 1√

n±
s !

(a+
s )n±

s |0〉, (11)

with n+
s = 0, 1, 2, . . . and n−

s = 1, 2, 3 . . . representing the
eigenvalues of the number operator, Ns = a+

s a−
s , it is possible

to diagonalize both equations simultaneously. In this manner,
with |ψ1〉 = |n±

s 〉, |ψ2〉 = |ñ±
s 〉 and due to the fact these states

represent the components of the same state vector with energy
E±, we conclude that ñ±

s = n±
s ± 1, and the energy eigenval-

ues are given by

E± = ±E±
n±

s
= ±mc2

√
1 + 4ξ [n±

s + �(±)], (12)

where we have made use of the Heaviside step function
�(±) = (1 ± 1)/2. We observe that the particle and antipar-
ticle spectrum are symmetric and, as we shall show shortly,
the deformation breaks this symmetry. These energy eigenval-
ues should be compared with those obtained by the directed
solution of the second-order differential equation in polar
coordinates that arises from the position representation of the
Dirac equation. The result seems to be [40]

E± = ±E±
n = ±mc2

√
1 + 4ξ [n + (|l| − sl )/2 + �(±)],

(13)
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where n = 0, 1, 2, . . . is the radial quantum number and l =
0,±1,±2, . . . is the angular momentum quantum number. So,
the comparison leads to n±

s = n + (|l| − sl )/2, showing the
dependency on s and the high degeneracy of the (2+1) Dirac
oscillator spectra [27].

The Hamiltonian H± for the (2+1) Dirac oscillator can be
rewritten as

H± =
(

mc2 ∓2imc2√ξa∓
±s

±2imc2√ξa±
±s −mc2

)
. (14)

As shown in [42], using the notation σz = |e〉〈e| − |g〉〈g|,
σ+ = |e〉〈g|, and σ− = |g〉〈e|, in which σ± are the standard
fermionic two-level transition operators that obey the commu-
tation relation [σ+, σ−] = σz and |g〉 and |e〉 are, respectively,
the ground and excited states of a two level quantum system,
the Hamiltonian H+ can be mapped onto the JC model of
quantum optics,

H+ = 2imc2
√

ξ (a−
s |e〉〈g| − a+

s |g〉〈e|) + mc2σz

= h̄(ga+
s σ− + g∗a−

s σ+) + δσz

= Hs
JC, (15)

where g = 2imc2√ξ/h̄ is the coupling constant and δ = mc2

is the detuning parameter proportional to the rest mass. In an
analogous manner, the AJC model can be obtained from H−,

H− = h̄(ga+
−sσ

+ + g∗a−
−sσ

−) + δσz

= H−s
AJC. (16)

Thus the mapping onto the JC or AJC systems may be ac-
complished by a suitable choice of the nonminimal coupling
signal in Eq. (3), which amounts to the substitution ω → −ω.
Besides that, the substitution of the oscillator frequency turns
the JC system into the AJC system with opposite chirality,
which is evident when comparing (15) with (16). The results
presented here are generalizations of results present in the
literature. Thus using the double signal in the nonminimal
coupling together with the s parameter, the mapping of the
Dirac oscillator onto the JC and AJC models is now more
transparent.

III. κ-JC AND THE κ-AJC MODELS

In this section, we present the κ-deformed Dirac oscillator
and, using the mapping of the previous section, we propose
the κ-deformed JC and AJC models. The deformation studied
here differs from previous models proposed in the literature in
the sense that it arises naturally from the κ-deformed algebra.
It is interesting to comment that there are other proposals
in the literature for deformed (A)JC models, namely the q-
deformed [45] and the f -deformed [46] models. Both models
are based on the deformation of the commutation relations for
the creation and annihilation operators and lead to Hermitian
Hamiltonians. In the scenario presented here, the deformation
stems from the κ-deformed algebra and does not affect the
creation and annihilation operators and leads naturally to a
non-Hermitian Hamiltonian.

The κ-deformed Dirac equation in (2+1) dimensions can
be written as [23]{

γ0P0 − cγiPi + ε

mc2

[
γ0

(
P2

0 − PiPi
) − mc2P0

]}|ψ〉
= mc2|ψ〉, (17)

where ε = mc2ε/2 is the dimensionless deformation parame-
ter. To obtain the κ-Dirac oscillator equation, we can proceed
by gauging Eq. (17) introducing the nonminimal coupling of
the previous section. Thus gauging the above equation with
the nonminimal coupling prescription in Eq. (3),

P0 → P0 = H = E , (18)

Pi → π±
i = pi ± imωβri, (19)

we can write Eq. (17) as

H |ψ〉 = [(cγ0γiπ
±
i + γ0mc2)

− ε

mc2
(H2 − π±

i π±
i − γ0mc2H )]|ψ〉. (20)

In general, noncommutative Hamiltonians should be ad-
dressed by employing the Seiberg-Witten transformation, as
discussed in [47]. However, the gauge in Eq. (18) leads to
a commutative Hamiltonian and, consequently, we do not
need to deal with the Seiberg-Witten transformation here.
Nevertheless, the above equation is quite complicated to
solve without using some sort of approximation. A common
approach [18] to solve it is to recognize the first term in
parentheses as the undeformed Hamiltonian [see Eq. (4)], and
iterate it only keeping terms up to O(ε), leading to

H±
ε |ψ〉 = E |ψ〉, (21)

with

H±
ε = H± − ε

mc2
[(H±)2 − π±

i π±
i − γ0mc2H±]. (22)

Equation (21) defines the (2+1) κ-Dirac oscillator [27].
We now proceed by employing the same reasoning used

in the previous section. Thus using the representation of the
γ matrices as in Eq. (5), considering a two-component spinor
and also introducing the chiral creation and annihilation oper-
ators, the deformed Hamiltonian H±

ε can be written as

H±
ε = h̄(gâ+

±sσ
∓μ∓

ε + g∗â−
±sσ

±μ±
ε ) + δ±

ε σz

− 2mc2εξ (2N̂±s + 1)1, (23)

with δ±
ε = (1 ∓ 2εξ )δ, μ±

ε = 1 ± ε, and 1 the identity ma-
trix. Notice that for ε = 0 we get back the Hamiltonians in
Eqs. (15) and (16), i.e., the JC or AJC models, respectively.
In this manner, by the mapping of the previous section, we
propose the Hamiltonian in Eq. (23) as representing the κ-JC
and κ-AJC models:

Hs
κ-JC = H+

ε , H−s
κ-AJC = H−

ε . (24)

It is important to note that, due to the presence of μ±
ε in

H±
ε , which comes from the term εγ0mc2H± in the deformed

Hamiltonian in Eq. (22), it fails to be Hermitian, i.e., H±
ε 	=

H±
ε

†. As a consequence, H±
ε being non-Hermitian leads to a

nonunitary time evolution. Nevertheless, the spectrum of the
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FIG. 1. JC (solid lines) and the κ-JC (dashed lines) eigenenergies
E ε+

ns
as a function of the relativistic parameter ξ , in units such as h̄ =

m = c = 1, for n+
s = 0, . . . , 4. The value used for the dimensionless

deformation parameter is ε = 5 × 10−4.

allowed energy eigenvalues of H±
ε is real and is given by

E ε±
n±

s
= ±E±

n±
s

− 4mc2ξε[n±
s + �(±)], (25)

which coincides with the result obtained in [27] and im-
mediately reduces to the undeformed energy eigenvalues in
Eq. (12) for ε = 0. We observe that the deformation causes an
asymmetric energy shift in the energy eigenvalues when com-
pared with the standard (A)JC model, |
εE | = 4mc2ξε[n±

s +
�(±)], which increases with ξ and is larger for larger values
of n±

s . In the context of the κ-Dirac oscillator, this asymmetry
stems from the fact that the deformed Hamiltonian breaks the
charge conjugation symmetry [26,27]. The energy spectrum
of the κ-(A)JC has a positive energy branch which is bounded
from below by mc2√1 + 4ξ − 4mc2ξε and a negative branch
bounded from above by −mc2√1 + 4ξ − 4mc2ξε, as dis-
played in Fig. 1 for the JC and κ-JC. The graph for the AJC
and κ-AJC looks identical. Following Ref. [27], in which an
upper bound for the deformation parameter was obtained, we
used value ε = 5 × 10−4 as the value for the dimensionless
deformation parameter.

IV. SYMMETRIES AND THE NON-HERMITICITY
OF THE κ-JC AND κ-AJC MODELS

As we stated above, H±
ε is non-Hermitian and it leads to

a nonunitary evolution. In fact, the κ-deformed Hamiltonian
is not even PT symmetric, but it is quasi-Hermitian. We can
check this by first looking at the effects of parity and time-
reversal symmetry operations on a’s and σ ’s operators [48]:

Pa±
s P−1 = a±

−s, PσzP−1 = σz, Pσ±P−1 = σ±,

T a±
s T −1 = −a±

s , T σzT −1 = −σz, T σ±T −1 = σ∓.

Through this, one notes that the deformed Hamiltonian in
Eq. (23) is not PT symmetric since

PT H±
ε (PT )−1 = h̄(ga+

±sσ
∓μ∓

ε + g∗a−
±sσ

±μ±
ε ) − δ±

ε σz

− 2mc2εξ (2N±s + 1)1

	= H±
ε . (26)

However, the Hamiltonian is invariant under the transforma-
tion Pσz, so that

PσzH
±
ε (Pσz )−1 = H±

ε . (27)

This symmetry was also observed in a similar system in
Ref. [49]. Another interesting transformation is given by

T σxH±
ε (T σx )−1 = h̄(ga+

∓sσ
∓μ∓

ε + g∗a−
∓sσ

±μ±
ε ) + δ±

ε σz

− 2mc2εξ (2N∓s + 1)1, (28)

which leads to the original Hamiltonian but with the chiral-
ity changed, s → −s. Although the Hamiltonian is not PT
symmetric, it is quasi-Hermitian since its eigenvalues are real
[7]. Therefore, the Hamiltonian satisfies a quasi-Hermiticity
relation

H±
ε

† = η±H±
ε η−1

± , (29)

for some positive-defined operator η± [50], the so-called met-
ric operator, which defines the inner product

〈·, ·〉η± = 〈·, η±·〉, (30)

with respect to which the Hamiltonian is said to be Hermitian
since

〈φ, H±
ε ψ〉η± = 〈φ|η±H±

ε |ψ〉
= 〈φ|H±

ε

†
η±|ψ〉

= 〈H±
ε φ, ψ〉η± , (31)

for all φ and ψ in the domain of H±
ε . Thus, decomposing the

metric operator as η± = ρ±†ρ±, Eq. (29) allows us to define a
Hermitian counterpart associated with the non-Hermitian one,

h±
ε = ρ±H±

ε ρ±†, (32)

in such a way that h±
ε = h±

ε
†. The expected values in both

representations are the same

〈H±
ε 〉η±,� = 〈�|η±H±

ε |�〉
= 〈�|ρ±†h±

ε ρ±|�〉
= 〈�|h±

ε |�〉
= 〈h±

ε 〉�, (33)

with |�〉 = ρ±|�〉.
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V. SYSTEM DYNAMICS

Until now we have worked with both κ-JC and κ-AJC
systems simultaneously. For the sake of clarity, in what
follows we focus our discussion on the κ-JC Hamiltonian,
Hs

κ-JC = H+
ε . At the end we comment briefly on how to ob-

tain the results for the κ-AJC Hamiltonian, H−s
κ-AJC = H−

ε .
Thus, to simplify the notation, we drop the + signal in our
equations. To obtain the Hermitian operator associated with
Hs

κ-JC, a suitable similarity transformation is given by the
operator

ρ = eεa−
s a−

s −εa+
s a+

s +εa+
s a−

s , (34)

satisfying ρ†ρ = η. Note that this operator is a function
of creation and annihilation operators with same chirali-
ties and reduces to the identity operator for ε = 0. Thus
the Hermitian operator can be obtained from the similarity
transformation

hs
κ-JC = ρHs

κ-JCρ−1, (35)

with ρ†ρ = η. The result seems to be

hs
κ-JC = h̄(gσ−a+

s + g∗σ+a−
s ) + (1 − 2εξ )δσz

+ ε h̄(gσ−a−
s + g∗σ+a+

s )

− 2mc2εξ (2Ns + 1)1. (36)

The spectrum of the Hermitian operator hs
κ-JC is given by (25)

as it shares the spectrum with the non-Hermitian operator
Hs

κ-JC. To find the associated deformed energy eigenstates
for the positive and negative deformed energy eigenval-
ues of hs

κJC, we first solve the eigenvalue equation for the
non-Hermitian operator, Hs

κ-JC|E ε
ns
〉 = E ε

ns
|E ε

ns
〉, then apply the

transformation ρ. In this manner, using the Pauli spinors |↑〉 =
(1, 0)† and |↓〉 = (0, 1)†, the deformed energy eigenstates of
Hs

κ-JC can be written as

|±E ε
ns
〉 =

√
Ens ± mc2

2Ens

|ns〉|↑〉

± i

√
Ens ∓ mc2

2Ens

(1 − ε)|ns + 1〉|↓〉 (37)

and, by applying the transformation ρ, we obtain

|+Ē ε
ns
〉 = ρ|+E ε

ns
〉

= αns |ns〉|↑〉 + iβns |ns + 1〉|↓〉
+ εαns (cns |ns − 2〉|↑〉 − cns+2|ns + 2〉|↑〉)

+ iεβns (cns+1|ns − 1〉|↓〉 − cns+3|ns + 3〉|↓〉) (38)

and

|−Ē ε
ns
〉 = ρ|−E ε

ns
〉

= βns |ns〉|↑〉 − iαns |ns + 1〉|↓〉
+ εβns (cns |ns − 2〉|↑〉 − cns+2|ns + 2〉|↑〉)

− iεαns (cns |ns − 1〉|↓〉 − cns+3|ns + 3〉|↓〉), (39)

with

αns =
√

Ens + mc2

2Ens

, βns =
√

Ens − mc2

2Ens

, (40)

and cns = √
ns(ns − 1). Note that the eigenstates in (38) and

(39) are normalized up to first order in ε and, as observed
in [42], these eigenstates show that the spin and angular mo-
mentum are entangled. Moreover, the presence of deformation
gives rise to new entangled states. Equations (38) and (39)
allow us to write an initial state |�ns (0)〉 = |ns〉|↑〉 in terms of
the positive- and negative-energy eigenstates, namely

|�ns (0)〉 = αns |+Ē ε
ns
〉 + βns |−Ē ε

ns
〉

− εcns (αns−2|+Ē ε
ns−2〉 + βns−2|−Ē ε

ns−2〉)

+ εcns+2(αns+2|+Ē ε
ns+2〉 + βns+2|−Ē ε

ns+2〉). (41)

This superposition of the positive- and negative-energy eigen-
states is a signature of the Zitterbewegung, which here is
encoded in the spin degree of freedom, and can be associated
to Rabi oscillations due to the interference of these eigen-
states [42]. The Zitterbewegung is a relativistic quantum effect
generally understood as a trembling motion of relativistic
particles [51], difficult to be measured, but can be simulated
experimentally in one dimension [52]. We observe again that
the deformation introduces more eigenstates in the superposi-
tion and for ε = 0 our results immediately reduce to the ones
in Ref. [42].

Now that we have a Hermitian operator and its eigenstates,
we can proceed to study the system dynamics. Thus, starting
with (41), it leads to a state at time t given by

|�ns (t )〉 = αns |+Ē ε
ns
〉e−iωε+

ns t + βns |−Ē ε
ns
〉e−iωε−

ns t

− εcnsαns−2|+Ē ε
ns−2〉e−iωε+

ns−2t

− εcnsβns−2|−Ē ε
ns−2〉e−iωε−

ns−2t

+ εcns+2αns+2|+Ē ε
ns+2〉e−iωε+

ns+2t

+ εcns+2βns+2|−Ē ε
ns+2〉e−iωε−

ns+2t , (42)

where

ωε±
ns

= ±ωns − φε
ns

(43)

is the κ-deformed Zitterbewegung frequency, with ωns =
E+

ns
/h̄ and φε

ns
= 4m2c4εξ (ns + 1)/h̄. Now, writing the

evolved state in the language of Pauli spinors, we have

|�ns (t )〉 = eiφε
ns t [ fns (t )|ns〉|↑〉 + gns (t )|ns + 1〉|↓〉]

+ ε eiφε
ns t [cns fns (t )|ns − 2〉|↑〉

+ cns+1gns (t )|ns − 1〉|↓〉]
− ε eiφε

ns t [cns+2 fns (t )|ns + 2〉|↑〉
− cns+3gns (t )|ns + 3〉|↓〉]
− εcns e

iφε
ns−2t [ fns−2(t )|ns − 2〉|↑〉

+ gns−2(t )|ns − 1〉|↓〉]
+ εcns+2eiφε

ns+2t [ fns+2(t )|ns + 2〉|↑〉
+ gns+2(t )|ns + 3〉|↓〉], (44)
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where

fns (t ) = cos(ωnst ) − i sin(ωnst )√
1 + 4ξ (ns + 1)

(45)

and

gns (t ) = 2 sin(ωnst )αnsβns , (46)

with | fns (t )|2 + |gns (t )|2 = 1.
We can appreciate the modifications caused by the κ

deformation by evaluating the expectation values of the z
component of the spin, orbital, and total angular momentum
observables, which are defined by

Sz = h̄

2
σz, Lz = h̄(Ns − N−s), Jz = Lz + Sz, (47)

respectively. Surprisingly, even though the κ deformation
modifies the energy eigenvalues, gives rise to new entangled
states with different quantum numbers, and modifies the Zit-
terbewegung frequency, there is no first-order correction on the
expectation values of the κ-JC. This kind of result was already
observed in the κ-Dirac-Coulomb problem [18], where the
first-order correction on this system is identically zero.

On the other hand, we can observe first-order effects of the
κ deformation on the scenario of collapsed and revivals of the
atomic population in the κ-JC model by employing an initial
coherent state. Thus, considering the initial state as |�ns (0)〉 =
|α〉|↑〉, with

|α〉 = e− |α|2
2

∞∑
ns=0

αns

√
ns!

|ns〉, (48)

the κ-deformed expectation values are given by

〈Sε
z 〉 = h̄

2
− h̄

∞∑
ns=0

〈ns〉ns e−〈ns〉

ns!
Sns (t )

+ h̄ε

∞∑
ns=0

〈ns〉ns+1e−〈ns〉

n!
[Sns (t ) − Sns+2(t )], (49)

〈Lε
z 〉 = h̄〈ns〉 + h̄

∞∑
ns=0

〈ns〉ns e−〈ns〉

ns!
Sns (t )

− h̄ε

∞∑
ns=0

〈ns〉ns+1e−〈ns〉

n!
[Sns (t ) − Sns+2(t )]

+ h̄ε

∞∑
ns=0

〈ns〉ns+1e−〈ns〉

n!
Lε

ns
(t ), (50)

and

〈Jε
z 〉 = h̄

[
〈ns〉 + 1

2

]
+ h̄ε

∞∑
ns=0

〈ns〉ns+1e−〈ns〉

n!
Lε

ns
(t ), (51)

where 〈ns〉 = |α|2,

Sns (t ) = 4ξ (ns + 1)

[1 + 4ξ (ns + 1)]
sin2 (ωnst ), (52)

Lε
ns

(t ) = 4cns+2√
(ns + 2)!

− 2cns+2√
(ns + 2)!

wns (t ) cos(�εt )

− 2cns+2√
(ns + 2)!

sns (t ) sin(�εt )

− 2cns+3√
(ns + 2)!

pns (t ) cos(�εt ), (53)

with

�ε = φε
ns

− φε
ns+2 = −8m2c4ξε, (54)

wns (t ) = 2 cos(ωnst ) cos(ωns+2t )

+ 2 sin(ωnst ) sin(ωns+2t )√
[1 + 4ξ (ns + 1)][1 + 4ξ (ns + 3)]

, (55)

sns (t ) = 2 cos(ωns+2t ) sin(ωnst )√
1 + 4ξ (ns + 1)

− 2 cos(ωnst ) sin(ωns+2t )√
1 + 4ξ (ns + 3)

, (56)

and

pns (t ) = 2αnsαns+2 sin(ωnst ) sin(ωns+2t ). (57)

We can observe that the deformation modifies all the expecta-
tion values. To help us analyze the effects of the deformation
on the expectation values, let us define


〈O〉 = 〈Oε〉 − 〈O〉, (58)

as the difference between the κ-deformed expectation value
of the observable O and the usual (undeformed) one. Figure 2
shows the results for the expectation values as a function of
time t for a system with mean photon number 〈ns〉 = 25, using
units such as m = h̄ = ω = c = 1 and ε = 5 × 10−4 (blue
solid lines) and for ε = 0 (orange dotted lines). In Fig. 2(a)
we show 〈Sε

z 〉 and it shows the well-known initial collapse
followed by the revival of the spin inversion. The inset shows

〈Sz〉 and we observe that the expectation value is slightly
modified by the deformation. On the other hand, in Fig. 2(b)
we show the 〈Lε

z 〉 and we can also observe collapse and re-
vival, but now the orbital angular momentum is noticeably
more affected by the deformation than the spin angular mo-
mentum. As a result, we observe that 〈Jε

z 〉 is not constant of
motion anymore when the deformation is present, as we can
see in Fig. 2(c). So, the κ-deformed expectation value of the z
component of the total angular momentum is not a conserved
quantity. This result can be understood by noting that Jz fails
to commute with hs

κ-JC,[
hs

κ-JC, Jz
] = 4ε h̄g(σ−â−

s + σ+â+
s ), (59)

and this failure is a direct consequence of the deformation. We
can also observe that deformation displaces the expectation
value of the Jz [see the inset in Fig. 2(c)] and for large values of
t it converges to a fixed amount, 
〈Jz〉|t→∞ ∼ 5 × 10−2. It is
easy to see that, for ε = 0, Jz commutes with the Hamiltonian
and we recover all the results of the usual JC system, as it
should be.

Finally, we end up saying that, for the κ-AJC Hamiltonian,
we observe that a suitable similarity transformation is

ρ = eεa−
s a−

s −εa+
s a+

s −εa+
s a−

s , (60)

in which, in comparison with the map for the κ-JC in Eq. (34),
the last term has a sign reversal, and leads us to the following
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FIG. 2. Behavior of the expectation values (a) 〈Sε
z 〉, (b) 〈Lε

z 〉, and
(c) 〈Jε

z 〉 as a function of time for a system with mean photon num-
ber 〈ns〉 = 25 for ε = 5 × 10−4 (blue solid line) and ε = 0 (orange
dotted line) using units such as m = h̄ = ω = c = 1. In (a), the two
curves are superposed and the inset shows the difference between
them. In (c), the inset shows the asymptotic behavior of the 
〈Jε

z 〉.

Hermitian κ-AJC Hamiltonian:

h−s
κ-AJC = ρH−s

κ-AJCρ−1

= h̄(gσ+a+
−s + g∗σ−a−

−s) + (1 + 2εξ )δσz

+ ε h̄(gσ+a−
−s + g∗σ−a+

−s)

− 2mc2εξ (2N−s + 1)1. (61)

Thus it is straightforward to show that similar results can
be obtained for the κ-AJC system by using the Hermitian
Hamiltonian h−s

κ-AJC.

VI. CONCLUSION

In conclusion, we have revisited the Dirac oscillator in
(2+1) dimensions and its mapping onto the JC and AJC
models. The mapping is now transparent as we have made the
connection between the nonminimal coupling signal + (−)
of the Dirac oscillator Hamiltonian and the JC (AJC) model.
We have also introduced the parameter s = ±1 to characterize
the two possible chiralities, allowing one to discuss them
simultaneously. By considering the (2+1) Dirac oscillator in
the context of the κ-deformed algebra and using the above
mapping, we have proposed the κ-JC and the κ-AJC mod-
els. We have shown that the κ deformation leads naturally
to a non-Hermitian Hamiltonian, something that leads to a
nonunitary time evolution. Moreover, the κ-(A)JC Hamilto-
nian is not even PT symmetric, but is quasi-Hermitian as
it possesses a real spectrum and, by employing the theory
of quasi-Hermitian Hamiltonians, we have found its Hermi-
tian counterpart, allowing us to study the dynamics of the
κ-deformed system. Although the displacement was caused
by the deformation on the eigenenergies and, consequently,
on the Zitterbewegung frequencies, we have observed no first-
order effects on the expectation values of Sz, Lz, and Jz, when
considering an initial state such as |�ns (0)〉 = |ns〉|↑〉. On
the other hand, when considering a coherent initial state, we
have observed modifications on the well-known collapse and
revival behavior, as well as on the above expectation values.
Especially, we have observed that the expectation value of
the total angular momentum in the z direction, Jz, is not a
constant of motion anymore as a direct consequence of the
κ deformation.

We comment that the mapping between quantum optical
and relativistic quantum systems [53] led to a great break-
through in quantum simulation experiments of relativistic
quantum effects [52] since direct measurements of relativistic
quantum phenomena are not easy to do. Significant examples
of relativistic quantum effects simulated through optical se-
tups are the experimental simulation of the Zitterbewegung
effect in trapped ions [54] and others [55,56]. As shown in
[42], the dynamics of the 2D Dirac oscillator can be im-
plemented in a single trapped ion inside a Paul trap and,
given the fact these systems allow a vast coherent con-
trol of ionic internal and external degrees of freedom [57],
and the ability to tune experimental parameters that could
also introduce certain modifications that would entail novel
phenomena, our work suggests that some future experiment
might be able to detect the effects of the κ deformation
presented here.
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