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Coherent and incoherent laser pump on a five-level atom in a strongly coupled cavity-QED system
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We propose a cavity quantum electrodynamic system consisting of a five-level atom coupled to a single mode
of the cavity electromagnetic field. The study is focused on the regime of strong coupling between the cavity
and atom. Pump laser fields and cavity fields connect the split energy levels of the atom. Instead of the well-
known two-level Dicke model obtained by adiabatic elimination of the high-energy levels, we consider the
pump lasers’ detunings to the atomic transitions to be very small such that we can examine the influence of the
higher-energy states. We have studied the effect of an external coherent drive and incoherent pumping on these
higher-energy levels and observed the enhancement of intracavity photon numbers due to quantum coherence
effects. The amplification of intracavity photons is achieved even without a population inversion. However, the
effect of the coherent and incoherent drive is negligible for very large detunings when the higher-energy states
are adiabatically eliminated. At zero and small detunings, the system reaches the steady state at an earlier instant
of time for higher incoherent pumping. We find an almost agreeable steady-state behavior of the system’s exact
full quantum dynamics model and its semiclassical approximation. Our model tries to accurately simulate the
open system by considering the cavity decay, spontaneous decay, and dephasing of the system.
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I. INTRODUCTION

The interplay between the electromagnetic field and the
atom leads to an exchange of energy between them and the
theory of their interaction is explained in quantum electro-
dynamics (QED) [1–5]. Cavity QED addresses controlling
of this interaction at a quantum level by placing an atom
inside a resonator structure or cavity [6,7]. With the advance-
ment in research, high-Q cavities are developed in which
periodic exchange of photon between the atom and single-
cavity mode takes place multiple times before any dissipative
process occurs, which enhances the atom-cavity coupling
strength [8]. A strong-coupling regime is reached when the
coupling strength η exceeds the decay rates of the cavity
and the atom [9,10]. Many systems are investigated to realize
such a strong-coupling regime with the matter in the form of
two-dimensional (2D) electron gas [11], artificial atoms such
as quantum dot [12] or superconducting qubit [13], organic
materials [14], inorganic quantum wells [15], and many more.
Similarly, there exists a sizable body of work on different
resonators to achieve such coupling regimes, namely high-Q
factor Fabry-Perot resonator [16], monolithic microresonator
[17], and toroidal shape silica microresonator [18].

The importance of a multilevel atom coupled with a pair of
coherent lasers and cavity field is realized with the introduc-
tion of a four-level atom by Dimer et al. [19,20]. Considering
such an atom, one can control the system parameters by
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changing the pump laser frequency. As the counterrotating
terms are taken into account the rotating-wave approximation
is not applicable in this case. To facilitate the analysis, we
map two low-lying states of the four-level atom to an effective
two-level atom. We adiabatically eliminate the remaining two
excited states of the four-level atom. Based on this system, a
lot of work has been done to study the ground-state proper-
ties for over the years both experimentally and theoretically
[21,22]. For example, exploring critical phase transition be-
havior for single atom by adding a nonlinear coupling term
[23,24], adding additional dipole-dipole interaction terms to
the existing system [25], experimental realization for better
tunability of system parameters [26], and the list goes on.

However, none of these studies have explored the influence
of the excited states on the system parameters. On the con-
trary, some recent theoretical studies on nanoplasmonics [27]
demonstrate surface plasmon enhancement by applying co-
herent driving on the excited states. Therefore, in the present
study, we intend to explore the excited states’ effect in a
strongly coupled atom-cavity system, which can provide a
more complete and accurate picture of the system. We focus
on a five-level atom pumped with both coherent and inco-
herent laser field. We present a model that can demonstrate
a large enhancement of photon numbers by introducing the
incoherent and coherent field to the fifth level. We observe
a quantum coherence phenomenon that amplify photon num-
bers when we introduce the combination of incoherent and
coherent drive to the excited states. The control over the fields
may be important for obtaining ultrafast photonic applications
[19,27]. We also have a faster approach to steady state for such
a high magnitude of intracavity photons. This can be helpful
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to avoid extensive heating, which would otherwise eventually
decrease the lifetime of a device. Though the enhancement of
photon numbers decreases with the introduction of dephasing,
the system is still robust to high dephasing frequencies.

The detunings of the laser with the atomic transition
frequencies are assumed to be small in comparison to the
atom-cavity coupling, cavity decay, and spontaneous decay of
the system. Provided this condition, we cannot adiabatically
eliminate the excited states. We observe that in the steady-
state regime, the intracavity photon numbers are enhanced
due to the quantum coherence effect without undergoing
population inversion. The system retains this significant char-
acteristic even after introduction of dephasing. At small and
zero detuning, the system reaches the steady state at a much
earlier instant for large incoherent pumping. However, when
the detunings are very large the effects of the additional
coherent and incoherent drive are found to be negligible.
The proposed model has been primarily studied for N = 100
atoms. Keeping in mind the importance of small number of
atoms in quantum optics and quantum information processing
[17], we also explore this case and the observations are found
to be promising.

In this study, we consider the semiclassical approximations
for solving the master equation of the proposed model. To
verify the semiclassical model, we carry out a full quantum
dynamics simulation of the system. Both models provide an
almost agreeable steady-state solution for N = 2 atoms. How-
ever, the large Hilbert space requirement limits our quantum
dynamics simulations to a small number of atoms.

The paper is structured as follows. The proposed model
is formulated in Secs. II and III, providing the step by step
formation of the Hamiltonian and the density matrix of open
quantum system. In Sec. IV the system is analyzed numeri-
cally in the steady-state region to study the intracavity photon
numbers for small and large detunings. The model is tested for
small and large atoms, with and without dephasing. Section V
shows the transient analysis of the system when the laser field
is in resonance and off resonant with the atomic transition.
The system is also analyzed for small and large values of
incoherent pumping. In Sec. VI we provide a comparison of
full quantum dynamics system with the semiclassical model.
Section VII summarizes this work. The derivation of the Lind-
blad open quantum system is provided in Appendix A. The
derivation of the reduced Hamiltonian obtained after adia-
batic elimination of excited states is given in Appendix B.
Appendix C gives the outline for the setup of our five-level
system for quantum simulation required in PSIQUASP.

II. HAMILTONIAN FORMATION

We consider a system consisting of an ensemble of N
atoms coupled to a single-mode of the cavity field. The multi-
level atom presented in this paper is similar to the one studied
in Refs. [19,26] and is illustrated in Fig. 1. We briefly intro-
duce a possible cavity QED setup with the multilevel atom in
the strong-coupling regime. The atoms are enclosed in a high-
finesse optical cavity such as a silica microtoroid resonator
with a principal cavity diameter of 50 μm and at a wavelength
of ∼850 nm [18]. Such a resonator provide ultrahigh-Q factor
exceeding 108, low cavity losses, and small mode volume V .

FIG. 1. Schematic of a multilevel atom with hyperfine ground
levels |g1〉 and |g2〉, and excited states |r〉, |s〉 and |e〉 (not to scale).
|g1〉 is at zero energy and |g2〉 is at an energy level of h̄ωg. The solid
lines (red) represent the atom-cavity coupling, the dashed lines (red)
laser frequency terms, and dash-dot lines are the incoherent coupling
(green). The curvy dashed line is the external pump field applied
(orange). The dotted lines represent the spontaneous decay rates from
the excited states (blue).

The atoms and photons are assumed to be trapped close to the
surface of the microtoroid and the atoms couple strongly to
the evanescent fields of the whispering-gallery modes. Atoms
approximately equal to N = 100 (a few dozen atoms) advance
toward the evanescent field of resonator each time a small
cloud of atoms are dropped at the proximity [17,28]. A strong-
coupling rate of approximately η/2π = 50 MHz is achieved
upon preliminary calculations at a certain distance of 45 nm
from the microtoroid’s surface [17]. Strong interactions of
atom and field occurs if η exceeds the dissipation and decay
parameters of the system, i.e., η � κ, γ . Here, γ represents
the spontaneous dissipation of the atoms and κ is the cavity
decay of the system to the environment.

The atoms inside the cavity are driven with two co-
propagating lasers �1 and �2. The laser beams are applied
transverse to the cavity axis and are polarized linearly with
the electric field of the cavity axis [26,29]. Both �1 and �2 are
independently controllable beams. The atoms are considered
to be identically coupled to the cavity mode [30]. We assume
that interactions between the atoms are sufficiently weak so
that the direct-dipole interactions can be neglected [31]. A
magnetic field of ≈0.225mT is applied transverse to the laser
fields to have a Zeeman splitting of the magnetic sublevels m
of the atom [23,32]. The Stark and dispersive shifts between
different m states are considered to be negligibly small [26].

The hyperfine structure of the multilevel atom depends
on the values of orbital angular momentum L of the outer
electron, spin angular momentum S, total electron angular
momentum J , and nuclear angular momentum I [33]. The
fine structure develops out of L and S resulting in J = L + S.
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The hyperfine structure comes from coupling between J
and I , and the total atomic angular momentum is given by
F = J + I . Depending on different D line transition from
ground to the excited states, we will have different values
of F . The configuration in our paper employs the electric
dipole transitions on the D1 line of the atom, i.e., the tran-
sition from |52S1/2(F )〉 ←→ |52P1/2(F ′)〉, which is a part of
fine-structure doublet [33]. Here, F and F ′ are the hyperfine
levels in which the ground and excited states are present,
respectively. The magnetic field splits the sublevels of the F
ground state providing two ground states, one in the F = 1
level (|g1〉) and one in the F = 2 level (|g2〉). The excited
states in the F ′ level are split into F ′= 1 (|r〉) and F ′= 2 level
(|s〉 and |e〉) (Fig. 1). The |g1〉 and |g2〉 states are separated by
a frequency of ωg = 2π × 6.835 GHz and the hyperfine split-
ting frequency between F ′= 1 and F ′= 2 is 2π × 812 MHz
[23,29,33]. The ground states |g1〉 and |g2〉 are coupled with
the two pairs of laser fields (�1,�2) and the cavity fields
[19,33]. The energy levels {|g1〉, |e〉} are connected by laser
Rabi frequency �2 and {|g2〉, |r〉} by �1. The transition from
|g1〉 to |r〉 and |g2〉 to |e〉 is mediated by the cavity field
strength ηr and ηe, respectively. When the atom goes from
|g1〉 to |g2〉, i.e., raising to a higher-energy level, it provides
a photon to the cavity. While following the inverse route to
the lower state, it absorbs a photon from the cavity [20]. The
atom is subjected to an additional coherent field �c to couple
the excited states |r〉 and |s〉 [27]. The transition between |r〉
to |s〉 is not coupled to the cavity mode as the frequency
domain of the transitions |g1〉 to |r〉 and |r〉 to |s〉 are different
[27]. An incoherent pumping (�) populates the state |s〉 from
the ground state |g1〉 as direct transition between the states
is not possible [34,35]. Under more realistic conditions the
spontaneous decays of the excited states must be taken into
account [32]. The state |s〉 decays to the state |r〉 at rate γsr and
the relaxation rates γrg and γeg are from the states |r〉 → |g1〉
and |e〉 → |g2〉, respectively. In addition to that, a relaxation
from the state |s〉 to the state |g1〉 at rate γsg is also possible.

Our model is based on the semiclassical laser theory where
the laser fields are treated classically and cavity field is treated
quantum mechanically. The Hamiltonian Ĥ is built using four
parts, which are,

Ĥ = ĤC + ĤA + ĤCA + ĤLA. (1)

The term ĤC stands for the cavity Hamiltonian, ĤA for atomic
terms, ĤCA for cavity-atom, and ĤLA for atom-laser coupling
Hamiltonian. Expanding each of these terms in bra-ket nota-
tion [25]:

ĤC = h̄ωcâ†â, (2a)

ĤA =
N∑

j=1

[h̄(ωg|g2 j〉〈g2 j | + ωe|e j〉〈e j | + ωr|r j〉〈r j |

+ωs|s j〉〈s j |)], (2b)

with |g1 j〉 being at zero energy,

ĤCA =
N∑

j=1

[h̄(â†|g1 j〉〈r j |ηr + â†|g2 j〉〈e j |ηe ) + H.c.], (2c)

ĤLA =
N∑

j=1

[h̄(�1e−iωlrt |r j〉〈g2 j |eikx + �2e−iωlet

× |e j〉〈g1 j |eikx + �ce−iωlst |s j〉〈r j |eikx ) + H.c.], (2d)

We consider all the fields to be co-propagating along the
tangential direction of the toroid with wave number k, and x
is the position of the atom. The radiation wavelength is con-
sidered to be large enough so that the whole atom ensemble
is concentrated together and coupled identically to the single
mode of the field [36]. We assume that all atoms are positioned
such that x can be set to a constant value for all of them, i.e.,
the atoms are considered to be trapped and atomic motions are
negligible. In a realistic scenario, this assumption is consider-
ably hard to satisfy [37]. Here, h̄ is the Planck’s constant, H.c.
denotes Hermitian conjugate. â and â† are the annihilation
and creation operator of the cavity field, respectively. ωc is
the cavity frequency; ωg, ωr, ωs, and ωe are the atomic fre-
quencies of the different energy levels as shown in Fig. 1. The
frequencies of the driving lasers are ωlr , ωle and ωls. Atom-
cavity coupling strength are represented as ηr and ηe between
|g1〉 ↔ |r〉 and |g2〉 ↔ |e〉. In absence of the driving laser �c,
Eq. (1) simplifies to the Hamiltonian derived in Ref. [19].

The above Hamiltonian [Eq. (1)] is in the Schrödinger
picture and we are interested in the interaction picture. We
transform the system Hamiltonian to a rotating frame intro-
ducing the unitary transformation Û (t ) = exp(− i

h̄ Ĥ0t ) [20],
with

Ĥ0 =
N∑

j=1

[
1

2
(ωlr + ωle )â†â + 1

2
(ωle − ωlr )|g2 j〉〈g2 j |

+ ωle|e j〉〈e j | +
{
ωls + 1

2
(ωlr + ωle )

}
|s j〉〈s j |

+ 1

2
(ωlr + ωle )|r j〉〈r j |

]
. (3)

We consider that the frequency difference between ωle and ωlr

of the laser fields �2 and �1 is approximately equal to twice
the hyperfine splitting of the ground-state frequency ωg i.e.,
ωle − ωlr ≈ 2ωg [20,23]. Considering this the Hamiltonian in
the interaction picture after the evolution is given by,

Ĥin = h̄	cavâ†â +
N∑

j=1

[h̄	s|s j〉〈s j | + h̄	e|e j〉〈e j |

+ h̄	r|r j〉〈r j | + h̄	g|g2 j〉〈g2 j | + ĤLA(0) + ĤCA], (4)

and the detunings in the above equation are defined as,

	e = ωe − ωle, (5a)

	s = ωs − ωls, (5b)

	cav = ωc − ωlr + ωle

2
, (5c)

	r = ωr − ωlr + ωle

2
, (5d)

	g = ωg − ωle − ωlr

2
. (5e)
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III. OPEN QUANTUM SYSTEM

The previous section gives us details on setting up the
system Hamiltonian. In order to understand how the system
evolves with time t , in this section we study the time evolution
of the density matrix ρ̂s(t ), which describes the state of the
system [2,38]. Because we have an open quantum system, the
dynamics of this density matrix is described by the quantum
Lindblad master equation [39–41]. The versatility of this for-
mulation is that it can incorporate the spontaneous emission
and cavity decay of the system to the environment [42]. The
Lindblad master equation for the proposed system can be
written as [7],

˙̂ρs = − i

h̄
[Ĥin, ρ̂s] + Lc[ρ̂s] + γ⇓

2
LJ−[ρ̂s] + γ⇑

2
LJ+ [ρ̂s], (6)

where Lc[ρ̂s], LJ− [ρ̂s], and LJ+[ρ̂s] are the Lindblad super-
operators denoting cavity decay, spontaneous emission, and
incoherent pumping such that LÔ[ρ̂s] = (2Ôρ̂sÔ† − Ô†Ôρ̂s −
ρ̂sÔ†Ô) with Ô = {c, J−, J+}. The population decay rate coef-
ficient is γ⇓, which represents emissions, γ⇑ is the coefficient
of population gain, and κ is the cavity decay rate of the system
to the environment [36]. The derivation of Lindblad master
equation is summarized in Appendix A.

As the atoms are confined to a small region smaller than the
wavelength of light, the atoms will emit light superradiantly.
The spontaneous emission therefore will be represented by
collective spin operators given by: Ĵ− = ∑N

n σ̂−,n and Ĵ+ =∑N
n σ̂+,n [36]. Summarizing the Lindblad superoperator terms

as described in Appendix A, we have,

Lc[ρ̂s] = κ (2âρ̂â† − â†âρ̂ − ρ̂â†â),

γ⇓
2
LJ−[ρ̂s] =

N∑
j=1

[
γsr

2

(
2Ĵ j

rsρ̂Ĵ j
sr − Ĵ j

sr Ĵ
j

rsρ̂ − ρ̂Ĵ j
sr Ĵ

j
rs

)

+ γrg

2

(
2Ĵ j

g1rρ̂Ĵ j
rg1

− Ĵ j
rg1

Ĵ j
g1rρ̂ − ρ̂Ĵ j

rg1
Ĵ j

g1r

)

+ γeg

2

(
2Ĵ j

g2eρ̂Ĵ j
eg2

− Ĵ j
eg2

Ĵ j
g2eρ̂ − ρ̂Ĵ j

eg2
Ĵ j

g2e

)

+ γsg

2

(
2Ĵ j

g1sρ̂Ĵ j
sg1

− Ĵ j
sg1

Ĵ j
g1sρ̂ − ρ̂Ĵ j

sg1
Ĵ j

g1s

)]
,

γ⇑
2
LJ+[ρ̂s] =

N∑
j=1

�

2

(
2Ĵ j

sg1
ρ̂Ĵ j

g1s − Ĵ j
g1sĴ

j
sg1

ρ̂ − ρ̂Ĵ j
g1sĴ

j
sg1

)
. (7)

Now, after discussing the formation of the system Hamil-
tonian and Lindblad master equation, we move forward to
understand the dynamics involved in our model. In order to
interpret that, we study the semiclassical dynamics of our
open cavity system containing both large and small number
of atoms. This study helps us to gauge the general behavior of
the system and understand time-dependent open-cavity exper-
iments performed [22,43]. As mentioned earlier, our model is
built on the multilevel system proposed by Dimer et al., which
by its assumptions valid for a large number of atoms in the
strong-coupling regime [19]. In such a coupling regime, the
atom-cavity coupling parameter η is larger than the dissipation
rates γ , and the decay rates of the system κ . In that particular
study, along with the various theoretical and experimental
studies (nonequilibrium Bose-Einstein condensate) based on

it, they have considered the semiclassical approximation of
the steady states in the strong-coupling scenario for large
number of atoms [21,26,43]. The semiclassical approximation
is a good indicator of the general behavior of a system. The
factorization of the mean values of operators are performed
in this approximation and the quantum fluctuations effects
are neglected. For, e.g., the factorization of mean values of
operators 〈âσ̂i〉 is represented as 〈âσ̂i〉 = 〈â〉〈σ̂i〉 and 〈â†σ̂i〉
is given by 〈â†〉〈σ̂i〉 [20]. We have introduced the c-number
variable 〈â〉 = α where α is the complex field representing
classical quantities.

The elements of the density matrix ρ̂s are basically the
expectation values of the collective operators involved. As
we can see that in Eq. (4) and Eq. (7) there is a summation
over N term, we define collective spin operators to find the
equation of motion [44,45]. To be more explicit we define
Ĵsr = ∑N

j=1 |s j〉〈r j | and Ĵrs = ∑N
j=1 |r j〉〈s j | as done in the

Dicke model [19]. Therefore, the elements of the density
matrix for, e.g., ρsr = 〈Ĵsr〉. It goes similarly for the other
transitions. We can therefore determine the following complex
valued coupled partial differential equations given by Eq. (8)
from Eq. (6). This is achieved by using the definition that
〈Ô〉 = tr[ρ̂Ô] and then finding the equation of motion for the
operator 〈Ô〉 [25,46,47],

ρ̇rg1 = i	rρrg1 + i�cρsg1 + i�1ρg2g1 − i�2ρre

−iηrα
∗(ρrr − ρg1g1 ) − γphρrg1 − 1

2
(γrg1 + �)ρrg1 ,

(8a)

ρ̇sr = −i	rρsr +
[

i	s − 1

2
(γsr + γrg + γsg)

]
ρsr − γphρsr

−i�1ρsg2 − i�c(ρss − ρrr ) − iηrαρsg1 , (8b)

ρ̇eg2 = −iηeα
∗{ρee − ρg2g2} +

[
i	e − i	g − γeg2

2
− γph

]

× ρeg2 − i�1ρ
∗
re + i�2ρ

∗
g2g1

, (8c)

ρ̇g2g1 = i�1ρrg1 − i�2ρ
∗
eg2

− iα∗ηrρ
∗
rg2

+ iαηeρeg1

−1

2
(� + 2γph)ρg2g1 , (8d)

ρ̇se = −i�2ρsg1 + i�cρre − iαηeρsg2

−1

2
{(γsr + γeg + γsg) + 2i	e + 2γph}ρse, (8e)

ρ̇re = i	rρre + i�1ρg2e − i�2ρrg1 + i�cρse + iα∗ηrρg1e

−iαηeρrg2 − 1

2
{(γrg + γeg) + 2i	e + 2γph}ρre, (8f)

ρ̇rg2 = −i�1(ρrr − ρg2g2 ) + i�cρsg2 + iα∗ηrρg1g2

−iα∗ηeρre − 1

2
(γrg + 2γph)ρrg2 + i	rρrg2 , (8g)

ρ̇eg1 = −i�2(ρee − ρg1g1 ) − iα∗ηrρer + iα∗ηeρg2g1

+
[

i	e − 1

2
{γeg + �} − γph

]
ρeg1 , (8h)
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ρ̇sg1 =
[

i	s − 1

2
{(γsr + γsg) + � + 2γph}

]
ρsg1

−i�2ρse + i�cρrg1 − iηrα
∗ρsr, (8i)

ρ̇sg2 = −i�1ρsr + i�cρrg2 − iα∗ηeρse

−1

2
{(γsr + γsg) + 2γph}ρsg2 , (8j)

ρ̇g1g1 = i[�2ρeg1 − �2ρg1e] + iηr[αρrg1 − α∗ρg1r]

+γrgρrr + γsgρss − �ρg1g1 , (8k)

ρ̇g2g2 = i[�1ρrg2 − �1ρg2r] + γegρee + iηe[αρeg2 − α∗ρg2e],

(8l)

ρ̇ss = i[�cρrs − �cρsr] + �ρg1g1 − (γsr + γsg)ρss, (8m)

ρ̇ee = i[�2ρ
∗
eg1

− �2ρeg1 ] − γegρee + iηe[α∗ρ∗
eg2

− αρeg2 ],

(8n)

ρg1g1 + ρg2g2 + ρss + ρee + ρrr = 1, (8o)

α̇ = −(i	cav + κ )α − iN[ηrρg1r + ηeρg2e]. (8p)

The diagonal components {ρg1g1 , ρg2g2} represent the popula-
tions of the ground states, and {ρee, ρrr, ρss} the populations of
the excited states, respectively. By conservation of population,
which can only be transferred between the above-mentioned
states we have, ρg1g1 + ρg2g2 + ρss + ρee + ρrr = 1 [27]. We
also assume that the nondiagonal elements of the density
matrix has a phase relaxation (or dephasing) rate of γph.

In order to solve Eq. (8) the nondiagonal density matrix el-
ements are written in the form ρcd = Re(ρcd ) + iIm(ρcd ) and
complex variable α = Re(α) + iIm(α). A total of 27 nonlin-
ear, coupled differential equations are formed by equating the
real and imaginary parts of the equation. All other variables
are assumed to be real.

IV. STEADY-STATE ANALYSIS

The main purpose of the study is to see how the system
observables behave in the presence of driven laser field �c

and incoherent pumping �. To simplify our system we follow
the experimental realizations, which couple Bose-Einstein
condensate to optical cavity [22], and cavity-assisted Raman
transition in an open quantum system [21,26,29]. In these
studies the atom-cavity coupling strength is taken intrinsically
the same and therefore in our case we take ηe = ηr = η. We
consider both the resonant and off-resonant nature of the laser
fields with the atomic transitions. However, it is necessary that
the relation,

	e,	r,	s � κ, γ , ηr,e,�1,2,c, (9)

is true. When the laser fields are near resonance with the fre-
quencies of atomic transition, the dynamics of the transition
from |g1〉 → |e〉 and |g2〉 → |r〉 occur nearly with the same
time scale as |g1〉 → |g2〉 and |g2〉 → |g1〉. In such a case the
excited states |e〉 and |r〉 cannot be adiabatically eliminated
[20]. The cavity field is considered to be in resonance with the
laser pump frequencies, i.e., 	cav = 0 [17,34]. In Sec. IV A
we analyze the case with small detunings. This assumption
is defensible as there is always endeavor to achieve near or
perfectly resonant coupling [27,34].

In order to observe the full dynamics of the system
[Eq. (6)], it is necessary that the atom-cavity coupling is
stronger than the dissipation mechanisms [18,23]. As dis-
cussed in Sec. II we consider a cavity QED setup with a
toroidal microresonator. The values and physical parameters
of �1, �2, η, κ , and γ are taken from the experimental
studies and the theoretical models [17,18,23,24]. Specifically,
the values of the parameters are; spontaneous decay rates as
γ /2π = 2.6 MHz, cavity decay rate as κ/2π = 0.02 MHz,
and cavity-atom coupling strength η/2π = 50 MHz, laser
beams {�1/2π = −470, and �2/2π = −780} MHz. Also,
as κ < η, this system is considered as a good-cavity system
[44,45]. It is noted that all the values are taken in the ac-
ceptable numeric range when working in the strong-coupling
regime as there is high degree of flexibility in the values that
these parameters can take [31]. However, we do not compare
our study with the previous studies done as our sole purpose is
to study the effect of the coherent laser field �c and incoherent
laser field �. The value of �c is taken nearly equal to the
transition frequencies between the excited states F ′ = 1 and
F ′ = 2, i.e., −2π × 800 MHz as mentioned in Refs. [23,33]
and many other papers. The value of � is varied in the GHz
range owing to the transition between F = 1 and F ′= 2 level.

To study the intracavity photon numbers |α|2, three differ-
ent cases of �c are considered: �c = 0, �c < �1,�2, and
�c > �2. Primarily, we have considered the number of atoms
N = 100. We will also see later how the system performs for
very small number of atoms.

A. Intracavity photon numbers

We choose a small value for the detunings where adiabatic
elimination of the excited states are not possible. Partic-
ularly, we take 	s = 	g = 	e = 	r = −0.01 × 2π MHz,
which is less than the cavity decay rate κ = 0.02 × 2π MHz
and spontaneous emission rate γ = 2.6 × 2π MHz for the
above condition is satisfied. Small values of �c/2π =
{0,−50} MHz has a negligible effect on the photon num-
bers |α|2 [Fig. 2(a)] while they have a pronounced effect
for �c/2π = {−800,−900} MHz [Fig. 2(b)]. |α|2 enhances
manifold with the increase in coherent coupling �c and inco-
herent coupling � [Fig. 2(b)]. The amplification of the photon
numbers is due to the quantum coherence phenomenon. When
a strong coherent field is applied to the higher excited states,
it leads to the quantum coherence phenomenon where the
atoms are coupled. However, when �c is very small say
�c/2π = −50 MHz, the coherence phenomenon disappears.
The steplike behavior of the intracavity photon numbers when
�c/2π = {0,−50} MHz is due the absence of quantum co-
herence near � ≈ 0.08 GHz. In the absence of the coherence
phenomenon, the atoms act independently and are unrelated
to each other [48]. In such a situation, the collective photon
average goes to zero or a very small value. Another addi-
tional observation is that the lasing threshold for �c/2π =
{−800,−900} MHz is reduced and achieved around � ≈
0.06 GHz.

The population inversion between the states |g1〉 and
|r〉 for the same detuning values are shown in Fig. 2(c)
for �c/2π = {0,−50} MHz and in Fig. 2(d) for �c/2π =
{−500,−800,−900} MHz. We observe an increase in
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FIG. 2. Intracavity photon number |α|2 variation with incoherent
pumping � for different values of coherent pumping �̃c = �c/2π

and η/2π = 50 MHz. In this case, the detunings of laser pumping
with atomic transitions are considered as 	s = 	g = 	e = 	r =
−0.01 ∗ 2π MHz. In (a) we show the |α|2 variation with � for very
small values of �c/2π = {0,−50} MHz. In (b) we do the same vari-
ation but for large values of �c/2π = {−500, −800, −900} MHz.
As can be seen �c controls the generation of |α|2, which increases
manifold for very large values of �c. The population inversion be-
tween the states |g1〉 and |r〉 is studied for �c/2π = {0, −50} MHz
in (c) and �c/2π = {−500, −800, −900} MHz in (d). Quantum
coherence by the coherent drive �c leads to amplification of
number of intracavity photons with no population inversion for
�c/2π = {−800, −900} MHz. The other parameter values are taken
as �1/2π = −470 MHz, �2/2π = −780 MHz, the dephasing rate
is γph = 0, cavity decay κ/2π = 0.02 MHz and spontaneous decay
γ /2π = 2.6 MHz.

population inversion in Fig. 2(c) as � increases for small
values of �c though accompanied by a decrease in |α|2.
The reason |α|2 does not increase with increase in the pop-
ulation inversion is the absence of the quantum coherence
phenomenon. However, even for no population inversion with
an increase in � value for �c/2π = {−800,−900} MHz
[Fig. 2(d)], the photon number increases. Therefore, an en-
hancement in |α|2 is achieved due to the quantum coherence
phenomenon even without a population inversion by control-
ling �c.

B. Large detuning: Adiabatic elimination

We also intend to study the case when the detunings have
a very large value, i.e., the condition:

	r,	s,	e � κ, γ , ηr,e,�1,2,c, (10)

holds true. We choose such detuning value from Ref. [23],
where the adiabatic elimination is satisfied. In line with such
previous studies we understand that the influence of �c and
� should be minimum on the system as the excited states
are to be adiabatically eliminated for such a high detuning
value [19]. The elimination is justified only for very large
detunings of the pump lasers from the excited states [21,22].
We have explained the step-by-step procedure to obtain the

FIG. 3. The intracavity photon numbers |α|2 versus
incoherent pumping � for �c/2π = −800 MHz with small
(	r,s,e/2π = −0.01 MHz) and very large detuning values
(	r,s,e/2π = −10 MHz). The dephasing rate for this plot is
γph = 0, cavity decay κ/2π = 0.02 MHz, spontaneous decay
γ /2π = 2.6 MHz and atom-cavity coupling η/2π = 50 MHz.

reduced Hamiltonian where the excited states |e〉, |r〉, and
|s〉 are adiabatically eliminated in Appendix B. We use the
Schrödinger equation to find the evolution of the state and
then calculate equation of motion of the coefficients involved
with each state of the atom [20]. Considering Eq. (10) and

assuming �2
c

	r	s
� 1, we arrive at the two-level Hamiltonian,

[rewriting Eq. (B12)],

Ĥred = ω0Ĵz + ωcâ†â + G√
N

(â† + â)(Ĵ+ + Ĵ−), (11)

where Ĵz = ∑N
i σ̂z(i) , Ĵ+ = ∑N

i σ̂+(i) and Ĵ− = ∑N
i σ̂−(i) ,

ω0 = 	g − �2
1

	r
+ �2

2
	e

, ωc = 	cav − ( η2
e

	e
+ η2

r
	r

) and

G = −
√

Nηr�1

	r
= −

√
Nηe�2

	e
. The values taken for the

numerical simulation satisfy the conditions necessary to
obtain the Hamiltonian in Eq. (11). To exemplify we
consider 	r/2π = −10.0 GHz, 	s/2π = −10.0 GHz,
	e/2π = −10.0 GHz, �c/2π = −800 MHz and the other
parameters are same as in Sec. IV A. For these large detunings
values, |α|2 becomes zero though � value increases and
�c/2π = −800 MHz (Fig. 3). It indicates that �c and �

has no impact on the system with very large detuning as the
excited states are adiabatically eliminated.

C. Decoherence effect

Next, we explore the effect of dephasing γph in our model,
we show the variation of |α|2 with incoherent pumping
� taking γph/2π = {0, 390, 740} MHz. The detuning values
are 	s = 	g = 	e = 	r = −0.01 × 2π MHz. The coherent
pumping �c/2π = −800 MHz and the other parameters are
same in Sec. IV A. The average photon numbers reduces with
increase in dephasing albeit it is to be noted that �c still
has an impact on the system (Fig. 4). We can observe that
for very large dephasing value, |α|2 does not go to zero and
thus conclude that the system is robust against decoherence.
This type of effect has also been seen earlier in optics and
plasmonic studies [27,49].
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FIG. 4. The effect of different dephasing values γph/2π =
{0, 390, 740} MHz is studied on the intracavity photon numbers |α|2
versus incoherent coupling �. As γph increases |α|2 decreases, but
it is observed that the effect of coherent field �c/2π = −800 MHz
is still retained even for very large dephasing value. The cavity
decay is κ/2π = 0.02 MHz, spontaneous decay γ /2π = 2.6 MHz
and atom-cavity coupling η/2π = 50 MHz.

D. Variation with atoms

In this paper, we have discussed the effect of coherent
and incoherent pumping on the photon numbers for N = 100
atoms. In addition to the case N = 100, we also analysed a
scenario corresponding to a small number of atoms, i.e., N =
8 to check whether the model still prevails. The parameters
used are same as in Sec. IV A. The magnitude of intracavity
photon numbers |α|2 is less for N = 8 atoms in comparison
to N = 100 but the quantum coherence effect of �c is robust
[Fig. 5(a)]. The influence of �c/2π = −800 MHz is very pro-
nounced, but �1 < �c < �2, i.e., �c/2π = −500 MHz still
has an effect more than �c = 0. For large �c, i.e., �c/2π =
−800 MHz, the number of photons increases with increasing
atoms [Fig. 5(b)].

V. TRANSIENT ANALYSIS

Here we study the time evolution of the intracavity photon
number |α|2 for resonant detuning (	x = 0, x = e, s, g, r)
and off-resonant detuning (	x/2π = −0.01 MHz) cases. The

FIG. 5. Effect of the number of atoms on intracavity photon
numbers |α|2 is studied for different values of coherent coupling
�̃c = �c/2π and � = 0.4 GHz. (a) for number of atom N = 8. The
quantum coherence effect is robust for even such a small number
of atoms. (b) variation of |α|2 with N for different values of coher-
ent pumping �c/2π . Like previous case, here too cavity coupling
η/2π = 50 MHz, dephasing rate is γph = 0, cavity decay κ/2π =
0.02 MHz and spontaneous decay γ /2π = 2.6 MHz.

FIG. 6. Time evolution of photon numbers |α|2 is shown for
different values of incoherent pumping �, coherent pumping �̃c =
�c/2π , and detunings. (a) For both 	r,s,g,e = 0 and 	r,s,g,e/2π =
−0.01 MHz, and � = 0.01 GHz; �c/2π = {−500, −800} MHz al-
ways have a zero steady-state value while �c/2π = 0 reaches a
finite value of steady state. (b) For � = 0.4 GHz and 	r,s,g,e =
0, �c/2π = −800 MHz reaches finite steady state earlier. (c) For
� = 0.4 GHz and 	r,s,g,e/2π = −0.01 MHz, �c/2π = −800 MHz
reaches around 6.4 μs. (d) Time evolution of population inver-
sion ρrr − ρg1g1 is shown for �/2π = 0.4 GHz and 	r,s,g,e/2π =
−0.01 MHz. For all figures γph = 0, cavity decay κ/2π =
0.02 MHz, spontaneous decay γ /2π = 2.6 MHz, atom-cavity cou-
pling η/2π = 50 MHz, and N = 100 atoms.

effect of coherent laser field and incoherent pumping on
transient response of the system is also explored using
�c/2π = {0,−500,−800} MHz and � = {0.01, 0.4} GHz,
respectively. The cavity field is considered to be in resonance
with the laser pump frequencies, i.e., 	cav = 0 [17,34].

For � = 0.01 GHz, for both zero and small detuning val-
ues, |α|2 increases with time and reaches a finite steady-state
value at t ∼ 6.5 μs for �c = 0 [Fig. 6(a)]. The system is
at a zero steady state almost at similar time for �c/2π =
{−500,−800} MHz [Fig. 6(a)]. Considering the value � =
0.4 GHz, a finite steady state is reached at an earlier instant
t ∼ 0.15 μs for �c/2π = {−500,−800} MHz [Fig. 6(b)].

With a small detuning and � = 0.4 GHz, the magnitude
of |α|2 increases manifold as we increase the values of �c

[Fig. 6(c)] because of the quantum coherence effect as ex-
plained earlier. The steady state for �c/2π = −800 MHz,
which is actually a large value of |α|2 is attained earlier than
the case with small incoherent drive and �c/2π = 0 MHz
[Fig. 6(a)], but later than large incoherent drive and zero
detuning [Fig. 6(b)]. This concludes that we can achieve such
large steady-state value for large incoherent pumping and
coherent drive at not much expense of time.

We have also studied the transient response of population
inversion in the states |g1〉 → |r〉 [Fig. 6(d)]. For large coher-
ent pumping (�c/2π = −800 MHz), the population inversion
reaches the steady state earlier than |α|2. Therefore, it can be
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concluded that different parameters in this system may reach
the steady at different instant depending on the coherent drive.

VI. QUANTUM DYNAMICS

Till now, we have observed the semiclassical behavior of
the proposed system. The observations are valid if the under-
lying semiclassical approximation related to the factorization
of the mean values of the operators are satisfied, and quan-
tum fluctuations are ignored (Sec. III). In order to determine
whether this system actually portrays the profound effects,
here we have simulated the full quantum dynamics of the
proposed system.

The Liouville space dimension corresponding to N l-level
atom is l2N , leading to a computationally impossible scenario
for even small value of l and N [36,50]. In such cases, we can
use QUTIP, which is favorable for finding quantum dynamics
of large two-level system using quantum symmetry [36,51]
or PSIQUASP, which also provides a suitable platform for the
study of two-level as well as multilevel systems interacting
with bosonic fields and laser fields by the reducing the com-
putational expense using the permutation symmetry [50,52].

We have developed a five-level (l = 5) full quantum
model of the proposed system in the framework of PSIQUASP.
Appendix C provides details of the numerical implementa-
tion, which involves the incorporation of the permutation
symmetry in the master equation symmetry in the master
equation [Eqs. (C5) to (C9)] and visualization of the elements
of the master equation using graph theory (Figs. 8–11). These
sketches are then directly translated into code.

We limit our quantum simulation to two atoms (N = 2)
as the number of photon Fock state required for our system
is quite high, which increases the Hilbert space dimension.
Figure 7 presents the result of the transient analysis. The in-
tracavity photon numbers |α|2 increases with time and reaches
a steady state in about 5–7 μs. It is also observed that |α|2
increases with the photon Fock state (M) and finally converges
at M ≈ 900. However, the semiclassical solution of the system
(with N = 2 and keeping the same system parameters) shows

FIG. 7. Transient analysis of photon numbers |α|2 for both
semiclassical and quantum simulation are shown in this figure.
The coherent pumping values are �c/2π = −800 MHz, �1/2π =
−470 MHz, �2/2π = −780 MHz and incoherent pumping � =
0.4 GHz. The quantum simulation nearly converges when the photon
Fock state M ≈ 900.

that the steady state reaches around 25μs (Fig. 7). Albeit the
differences in the evolution of the system studied using full
quantum dynamics and its semiclassical approximation, they
provide an almost agreeable steady-state intracavity photon
number.

In this work, we have studied the proposed system in
the strong-coupling regime (η/2π = 50 MHz), where the
quantum dynamics simulation converges for large photon
Fock states M. However, in the weak-coupling regime (i.e.,
η � γ , κ) the full quantum model requires considerably
smaller M ≈ 10–20 and the result matches with the semi-
classical solution where |α|2 is negligible (not shown in the
figure). It is also observed from the semiclassical and the
full quantum simulation that the quantum coherence effect is
significant in the strong-coupling regime only.

VII. CONCLUSION

In this paper, we have proposed a multilevel open cavity
QED system considering coherent and incoherent pumping
effects. In the presence of small detunings, the intracavity
photon numbers increase multifold owing to quantum coher-
ence effects in the fifth energy level of the atom. Strikingly,
this enhancement with the coherent and incoherent pumping
comes with no population inversion. These characteristics
even hold for a small number of atoms as well. However,
when the detunings are very large, adiabatic elimination of
the excited states is possible, and consequently, even a high
level of coherent pumping has negligible influence on the
system. When adiabatic elimination is allowed, we have effec-
tively reduced the system to an equivalent two-level system.
A transient analysis shows that the system attains steady state
at an earlier instant when the incoherent coupling is larger.
It can also be seen that different system parameter reaches
steady state at different instant of time. An exact, full quantum
dynamics simulation of the system shows an almost agree-
able steady-state solution when compared to the semiclassical
analysis for N = 2 atoms. The proposed model can be applied
to other theoretical and experimental setups of cavity QED
system [24,26,53]. The application of additional coherent
field, as proposed in this study, can also be achieved in QED
chemistry [54,55], circuit QED [13], etc. Moreover, the obser-
vations made in this paper can be useful in enhancing the con-
trol drive of nanostructure systems [56–58] and synthesizing
different models for further controllable optical effects [59].
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APPENDIX A: DERIVATION OF MASTER EQUATION

The detailed derivation of the master equation is given in
Ref. [42]. Here, we provide an outline of this derivation in our
notation to enhance the readability of this paper. Let Hs be
the Hilbert space of the system S and HB the Hilbert space of
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the environment B. Interaction between them results a change
in the system as well as due to internal dynamics of S. The
resulting Hamiltonian H is of the form

H = Hs + HB + HI (t ), (A1)

where HI (t ) is the interaction Hamiltonian between S and B.
We are particularly interested in the dynamics of subsystem
S. To understand the dynamics let us begin with the von
Neumann equation in the interaction picture

˙̂ρ(t ) = −i[HI (t ), ρ̂(t )]. (A2)

The integral form of ρ̂(t ), which is the density matrix is given
by:

ρ̂(t ) = ρ̂(0) − i
∫ t

0
ds[HI (s), ρ̂(s)]. (A3)

Putting Eq. (A3) back into Eq. (A2) and tracing over B we get,

˙̂ρ(t ) = −
∫ t

0
ds trB [HI (t ), [HI (t ), ρ̂(s)]], (A4)

with the assumption that trB[HI (t ), ρ̂(0)] = 0. As the right-
hand side of Eq. (A4) still has ρ̂(s), we use the Born
approximation, which considers that the interaction has no
significant affect on ρ̂B (reservoir density matrix). Thus, we
use the following tensor product to represent the total system
at any given time t :

ρ̂(t ) ≈ ρ̂s(t ) ⊗ ρ̂B. (A5)

Substituting Eq. (A5) into Eq. (A4) we get a integrodifferen-
tial equation,

˙̂ρs(t ) = −
∫ t

0
ds trB [HI (t ), [HI (s), ρ̂s(s) ⊗ ρ̂B]]. (A6)

Considering the Markovian approximation one can obtain,

˙̂ρs(t ) = −
∫ ∞

0
ds trB [HI (t ), [HI (t − s), ρ̂s(t ) ⊗ ρ̂B]]. (A7)

Let us write HI in the Schrödinger picture as,

HI =
∑

α

Aα ⊗ Bα (A8)

with symmetric operators Aα and Bα . In the next step we de-
compose HI into eigenoperators of the system Hamiltonian
Hs as,

HI (t ) =
∑
α,ω

e−iωt Aα (ω) ⊗ Bα (t ),

Aα (ω) :=
∑

ω=λ−λ′
Q(λ)AαQ(λ′), (A9)

with eigenspace Q(λ) for energy eigenvalue λ; ω is the fixed
energy difference between the energy eigenvalues λ and λ′.
Also, Bα (t ) = eiHBt Bαe−iHBt .

Substituting Eq. (A9) into Eq. (A7) and we get,

˙̂ρs(t ) =
∑
ω,ω′

∑
α,β

ei(ω′−ω)t�αβ (ω)(Aβ (ω)ρ̂s(t )A†
α (ω′)

−A†
α (ω′)Aβ (ω)ρ̂s(t )) + H.c. (A10)

Here, �αβ (ω) = ∫ ∞
0 ds eiωs〈B†

α (t )Bβ (t − s)〉.

Considering the rotating-wave approximation (neglecting
the nonsecular terms for which ω′ �= ω) in Eq. (A10) we have,

˙̂ρ(t ) = −i[Hs, ρ̂(t )] +
∑ γ↓

2
LJ−,n [ρ̂s] +

∑ γ↑
2
LJ+,n [ρ̂s],

(A11)
with

LJ−,n [ρ̂s] = A(ω)ρ̂(t )A†(ω) − 1
2 {A†(ω)A(ω), ρ̂(t )},

LJ+,n [ρ̂s] = A†(ω)ρ̂(t )A(ω) − 1
2 {A(ω)A†(ω), ρ̂(t )}. (A12)

The coefficient of decay rates and coefficient of pumping
gains are given by γ⇓ and γ⇑, respectively. Eq. (A11) presents
the master equation considered in this work.

L[ρ̂] is the Liouvillian superoperator. It is defined by
Lc[ρ̂] = 2ĉρ̂ĉ† − ĉ†ĉρ̂ − ρ̂ĉ†ĉ for any operator ĉ and it in-
cludes the non-Hamiltonian dynamics into the system. The
Lindblad term for the collective spontaneous transition of the
atom decay rate γ⇓ [44],

Lspon[ρ̂s] = γ⇓
2

N∑
j=1

(2Ĵ j
−
ρ̂Ĵ j

+ − Ĵ j
+

Ĵ j
−
ρ̂ − ρ̂Ĵ j

+
Ĵ j

−
),

(A13)

The collective Ĵ operators are defined as Ĵ− = ∑N
n σ̂−

n and
Ĵ+ = ∑N

n σ̂+
n . Each σ operators are given by, σ̂

(−)
ik = |i〉〈k|

and σ̂
(+)
ik = |k〉〈i| with i, k ∈ {g1, g2, r, e, s} being the tran-

sition states of the atom. Now, for simplicity, we consider
spontaneous emission from these states |r〉 → |g1〉, |s〉 →
|g1〉, |s〉 → |r〉, and |e〉 → |g2〉. Expanding the Lindblad op-
erator for the spontaneous decay in our case,

γ⇓
2
Lspon[ρ̂s] =

N∑
j=1

[
γsr

2

(
2Ĵ j

rsρ̂Ĵ j
sr − Ĵ j

sr Ĵ
j

rsρ̂ − ρ̂Ĵ j
sr Ĵ

j
rs

)

+ γrg

2

(
2Ĵ j

g1rρ̂Ĵ j
rg1

− Ĵ j
rg1

Ĵ j
g1rρ̂ − ρ̂Ĵ j

rg1
Ĵ j

g1r

)

+ γeg

2

(
2Ĵ j

g2eρ̂Ĵ j
eg2

− Ĵ j
eg2

Ĵ j
g2eρ̂ − ρ̂Ĵ j

eg2
Ĵ j

g2e

)

+ γsg

2

(
2Ĵ j

g1sρ̂Ĵ j
sg1

− Ĵ j
sg1

Ĵ j
g1sρ̂ − ρ̂Ĵ j

sg1
Ĵ j

g1s

)]
.

(A14)

We do not consider the cross spontaneous decay, i.e., de-
cay from the excited state |r〉 (|e〉) to the ground state |g2〉
(|g1〉). The addition of the cross decay channels terms and
the dipole-forbidden relaxation rates has a negligible effect
in the parameter regime considered [48]. They result in a
very slight reduction in the amplitude of intracavity photons
[31,60]. Therefore, such terms can be neglected to simplify
the model.

The Lindblad term related to the pumping of the atom is
similar with Eq. (A13) but with the substitution of γ⇓ → γ⇑,
Ĵ j

+ → Ĵ j
−

and Ĵ j
− → Ĵ j

+
,

Lpump[ρ̂s] = γ⇑
2

N∑
j=1

(2Ĵ j
+
ρ̂Ĵ j

− − Ĵ j
−

Ĵ j
+
ρ̂ − ρ̂Ĵ j

−
Ĵ j

+
).

(A15)
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In our model, we consider the pumping from |g1〉 → |s〉,
therefore,

γ⇑
2
Lpump[ρ̂s] =

N∑
j=1

�

2

(
2Ĵ j

sg1
ρ̂Ĵ j

g1s − Ĵ j
g1sĴ

j
sg1

ρ̂ − ρ̂Ĵ j
g1sĴ

j
sg1

)
.

(A16)

Similarly, Lindblad term for cavity decay can be written as,

Lcav[ρ̂s] = −κ

2
(â†âρ̂ + ρ̂â†â − 2âρ̂â†). (A17)

APPENDIX B: REDUCED HAMILTONIAN
AFTER ADIABATIC ELIMINATION

To obtain the reduced Hamiltonian we introduce the state
vector |�(t )〉, which can be defined as [20,25]:

|�(t )〉 =
∞∑

m=0

[(
bm

r |r〉 + bm
e |e〉 + bm

s |s〉 + bm
g1

|g1〉

+ bm
g2

|g2〉
) ⊗ |m〉]. (B1)

Here, |m〉 is cavity-mode state and the coefficients
bm

r , bm
e , bm

s , bm
g1

, and bm
g1

are time dependent. Substituting
Eq. (B1) and Eq. (4) into the Schrödinger equation Eq. (B2),

i
d|�(t )〉

dt
= 1

h̄
Ĥin|�〉. (B2)

Next we get the equation of motion for bm
r , bm

e , bm
s , bm

g1
, and

bm
g1

,

iḃm
r = 	rb

m
r + (

�1bm
g2

+ ηrb
m+1
g1

√
m + 1

)
eikx + �cbm

s e−ikx,

(B3a)

iḃm
e = 	ebm

e + (
�2bm

g1
+ ηebm+1

g2

√
m + 1

)
eikx, (B3b)

iḃm
s = 	sb

m
s + �cbm

r eikx, (B3c)

iḃm
g2

= 	gbm
g2

+ (
�1bm

r + ηebm−1
e

√
m

)
e−ikx, (B3d)

iḃm
g1

= (
�2bm

e + ηrb
m−1
r

√
m

)
e−ikx, (B3e)

the term 	cavâ†â is neglected in Eq. (4) to arrive at the
above equations. This term will be added later on. Using
	s,	r,	e � {�1,2,c, ηr,e}, the excited states |r〉, |e〉, and |s〉
can be adiabatically eliminated. ḃm

r , ḃm
e , and ḃm

s goes to zero on
long timescale, therefore Eq. (B3a), Eq. (B3b), and Eq. (B3c)
can be written as:

bm
r = −eikx

	r

(
�1bm

g2
+ ηrb

m+1
g1

√
m + 1

) + e−ikx

	r
�cbm

s , (B4a)

bm
e = −eikx

	e

(
�2bm

g1
+ ηebm+1

g2

√
m + 1

)
, (B4b)

bm
s = −eikx

	s
�cbm

r . (B4c)

Putting Eq. (B4c) in Eq. (B4a), and using the condition

that �2
c

	r	s
� 1, the resulting expressions for bm

r and bm
e can be

substituted in Eq. (B3d) and Eq. (B3e) to get,

iḃm
g2

=
(

	g − �2
1

	r

)
bm

g2
− ηr�1

	r

√
m + 1bm+1

g1

− ηe�2

	e

√
mbm−1

g1
− η2

e

	e
bm

g2
m, (B5a)

iḃm
g1

= −�2
2

	e
bm

g1
− ηe�2

	e

√
m + 1bm+1

g2

− ηr�1

	r

√
mbm−1

g2
− η2

r

	r
bm

g1
m. (B5b)

The reduced Hamiltonian with only the ground states |g1〉
and |g2〉 can be therefore written as,

Ĥred =
(

	g − �2
1

	r

)
|g2〉〈g2| − ηr�1

	r
(σ̂+â + σ̂−â†)

− ηe�2

	e
(σ̂−â + σ̂+â†) − �2

2

	e
|g1〉〈g1|

− η2
e

	e
â†â|g2〉〈g2| − η2

r

	r
â†â|g1〉〈g1|, (B6)

where,

σ̂+ = |g2〉〈g1|, σ̂− = |g1〉〈g2|. (B7)

We can redefine |g2〉〈g2| and |g1〉〈g1| in Eq. (B6) with σ̂z and
1,

|g2〉〈g2| = 1 + σ̂z

2
, |g1〉〈g1| = 1 − σ̂z

2
. (B8)

To arrive at a neat and simple Hamiltonian we neglect the
constant terms in Eq. (B6),

Ĥred = ω0
σ̂z

2
+ ωcâ†â + gr (σ̂+â + σ̂−â†)

+ ge(σ̂−â + σ̂+â†) + �â†â
σ̂z

2
(B9)

where,

ω0 = 	g − �2
1

	r
+ �2

2

	e
, (B10a)

ωc = 	cav −
(

η2
e

	e
+ η2

r

	r

)
, (B10b)

gr = −ηr�1

	r
, (B10c)

ge = −ηe�2

	e
, (B10d)

� = η2
r

	r
− η2

e

	e
. (B10e)

Putting η2
r

	r
= η2

e
	e

, we get the two-level Hamiltonian,

Ĥred = ω0σ̂z/2 + ωcâ†â + gr (σ̂+â + σ̂−â†)

+ ge(σ̂−â + σ̂+â†). (B11)

Further considering gr = ge, we obtain the Dicke model with
the counterrotating term for N number of atoms,

Ĥred = ω0Ĵz + ωcâ†â + G√
N

(â† + â)(Ĵ+ + Ĵ−), (B12)

where G=−
√

Nηr�1

	r
=−

√
Nηe�2

	e
, Ĵz = ∑N

i σ̂z(i) , Ĵ+ = ∑N
i σ̂+(i)

and Ĵ− = ∑N
i σ̂−(i) .
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FIG. 8. Interaction of the cavity and atom: densities are ex-
changed between: n22 & n00 (red solid lines) as well as n33 and n31

(blue dashed lines) via the build up of quantum coherence. This graph
corresponds to the Lindblad equation given in Eq. (C5) and Eq. (C6).
Sketch of the actions of the different contributions of the Lindblad
equation. Arrows pointing from circle A to circle B correspond to a
build up of density matrix entries with higher number in B and lower
number in A.

APPENDIX C: SETUP FOR FIVE-LEVEL
SYSTEM IN PSIQUASP

In this Appendix we provide the details of constructing the
density matrix equation of our five-level system for PSIQUASP.
For our convenience we rename each state in Fig. 1 as
|g1〉 → |0〉, |g2〉 → |1〉, |r〉 → |2〉, |e〉 → |3〉, and |s〉 → |4〉.
For (d + 1) level systems where d = l − 1, the permutation-
ally symmetrized Liouvillian states are,

P̂[{ni j}] = s⊗d
i, j=0σ̂

⊗ni j

i j , (C1)

where {ni j} = {ndd , nd (d−1), . . .} is the set of all numbers ni j .

The product in Eq. (C1) consists of N individual spin matrices,
one for each multilevel system. S is the symmetrization oper-
ator. Looking at the time evolution of the respective density
matrix elements,

tr[P̂[{ni j}]ρ̂] = P[{ni j}], (C2)

we get the different contributions of the Hamiltonian. We start
by writing the equations of motion for the density matrix

FIG. 9. Contribution of optical pumping of the system �1; den-
sities are exchanged between n22 and n11 (red solid lines and blue
dashed lines) via the buildup of quantum coherence. This graph
corresponds to the Lindblad equation given in Eq. (C7). Action of the
Lindblad dissipators : incoherent pumping is given by purple (dotted)
arrows.

associated to Eq. (6),

˙̂ρint = i

h̄
[ρ̂s, HCA + HLA] + L[J02]ρ̂s + L[J04]ρ̂s

+ L[J13]ρ̂s + L[J34]ρ̂s + L[J40]ρ̂s. (C3)

The set of elements required to form the permutationally
symmetrized Liouvillian states as in Eq. (C1) are,

P[n44, n43, n42, n41, n40, n34, n33, n32, n31, n30,

n24, n23, n22, n21, n20, n14, n13, n12, n11, n10, n04,

n03, n02, n01; k, p], (C4)

which has all the polarization degrees of freedom necessary to
form the various physical processes to be discussed next.

The contribution of the Hamiltonian in Eq. (4), HCA is
divided into two parts. First, the contribution of HCA1 =
h̄η

∑
i(â

†σ̂ i
02 + âσ̂ i

20) is given by,

∂tP[n44, n43, n42, . . . n01; k, p]|HCA1 = iη[(n24 + 1)
√

kP[. . . n24 + 1 . . . n04 − 1 . . . ; k − 1, p]

+ (n23 + 1)
√

k P[. . . n23 + 1 . . . n03 − 1 . . . ; k − 1, p]

+ (n22 + 1)
√

k P[. . . n22 + 1 . . . n02 − 1 . . . ; k − 1, p]

+ (n21 + 1)
√

k P[. . . n21 + 1 . . . n01 − 1 . . . ; k − 1, p]

+ (n20 + 1)
√

k P[. . . n20 + 1; k − 1, p]

+ (n04 + 1)
√

k + 1 P[. . . n04 + 1 . . . n24 − 1; k + 1, p]

+ (n03 + 1)
√

k + 1 P[. . . n03 + 1 . . . n23 − 1; k + 1, p]

+ (n02 + 1)
√

k + 1 P[. . . n02 + 1 . . . n22 − 1; k + 1, p]
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+ (n01 + 1)
√

k + 1 P[. . . n01 + 1 . . . n21 − 1; k + 1, p]

+ (n01 + 1)
√

k + 1 P[. . . n01 + 1 . . . n21 − 1; k + 1, p]

+ (n01 + 1)
√

k + 1 P[. . . n01 + 1 . . . n21 − 1; k + 1, p]

+ (n00 + 1)
√

k + 1 P[. . . n20 − 1 . . . ; k + 1, p]

− (n40 + 1)
√

p P[. . . n40 + 1 . . . n42 − 1 . . . ; k, p − 1]

− (n30 + 1)
√

p P[. . . n30 + 1 . . . n32 − 1 . . . ; k, p − 1]

− (n20 + 1)
√

p P[. . . n20 + 1 . . . n22 − 1 . . . ; k, p − 1]

− (n10 + 1)
√

p P[. . . n10 + 1 . . . n12 − 1 . . . ; k, p − 1]

− (n00 + 1)
√

p P[. . . n02 − 1; k, p − 1]

− (n42 + 1)
√

p + 1 P[. . . n42 + 1 . . . n40 − 1 . . . ; k, p + 1]

− (n32 + 1)
√

p + 1 P[. . . n32 + 1 . . . n30 − 1 . . . ; k, p + 1]

− (n22 + 1)
√

p + 1 P[. . . n22 + 1 . . . n20 − 1 . . . ; k, p + 1]

− (n12 + 1)
√

p + 1 P[. . . n12 − 1 . . . n10 − 1 . . . ; k, p + 1]

− (n02 + 1)
√

p + 1 P[. . . n02 + 1; k, p + 1]], (C5)

and second, the contribution of the Hamiltonian HCA2 = h̄η
∑

i(â
†σ̂ i

13 + âσ̂ i
31) is given by

∂tP[n44, n43, n42, . . . n01; k, p]|HCA2 = iη[(n14 + 1)
√

kP[. . . n14 + 1 . . . n34 − 1 . . . ; k − 1, p]

+ (n13 + 1)
√

k P[. . . n13 + 1 . . . n33 − 1 . . . ; k − 1, p]

+ (n12 + 1)
√

k P[. . . n12 + 1 . . . n32 − 1 . . . ; k − 1, p]

+ (n11 + 1)
√

k P[. . . n11 + 1 . . . n31 − 1 . . . ; k − 1, p]

+ (n10 + 1)
√

k P[. . . n10 + 1 . . . n30 − 1 . . . ; k − 1, p]

+ (n34 + 1)
√

k + 1 P[. . . n34 + 1 . . . n14 − 1 . . . ; k + 1, p]

+ (n33 + 1)
√

k + 1 P[. . . n33 + 1 . . . n13 − 1 . . . ; k + 1, p]

+ (n32 + 1)
√

k + 1 P[. . . n32 + 1 . . . n12 − 1 . . . ; k + 1, p]

+ (n31 + 1)
√

k + 1 P[. . . n31 + 1 . . . n11 − 1 . . . ; k + 1, p]

+ (n30 + 1)
√

k + 1 P[. . . n30 + 1 . . . n10 − 1 . . . ; k + 1, p]

− (n43 + 1)
√

p P[. . . n43 + 1 . . . n41 − 1 . . . ; k, p − 1]

− (n33 + 1)
√

p P[. . . n33 + 1 . . . n31 − 1 . . . ; k, p − 1]

− (n23 + 1)
√

p P[. . . n23 + 1 . . . n21 − 1 . . . ; k, p − 1]

− (n13 + 1)
√

p P[. . . n13 + 1 . . . n11 − 1 . . . ; k, p − 1]

− (n03 + 1)
√

p P[. . . n03 + 1 . . . n01 − 1 . . . ; k, p − 1]

− (n41 + 1)
√

p + 1 P[. . . n41 + 1 . . . n43 − 1 . . . ; k, p + 1]

− (n31 + 1)
√

p + 1 P[. . . n31 + 1 . . . n33 − 1 . . . ; k, p + 1]

− (n21 + 1)
√

p + 1 P[. . . n21 + 1 . . . n23 − 1 . . . ; k, p + 1]
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− (n11 + 1)
√

p + 1 P[. . . n11 − 1 . . . n13 − 1 . . . ; k, p + 1]

− (n01 + 1)
√

p + 1 P[. . . n01 + 1 . . . n03 − 1 . . . ; k, p + 1]]. (C6)

The construction of these physical operators depends on whether the operators act from the right or left of the density matrix.
Further technical details of defining these mathematical equations are provided in Refs. [50,52].

Next we introduce the coherent pumping Hamiltonian HLA, which is divided into three parts, HLA = HLA1 + HLA2 + HLA3 .
First, HLA1 = h̄�1

∑
i(σ̂

i
21 + σ̂ i

12), which is given by

∂tP[n44, n43, n42, . . . n01; k, p]|HLA1 = i�1[(n14 + 1)
√

kP[. . . n14 + 1 . . . n24 − 1 . . . ; k − 1, p]

+ (n13 + 1)
√

k P[. . . n13 + 1 . . . n23 − 1 . . . ; k − 1, p]

+ (n12 + 1)
√

k P[. . . n12 + 1 . . . n22 − 1 . . . ; k − 1, p]

+ (n11 + 1)
√

k P[. . . n11 + 1 . . . n21 − 1 . . . ; k − 1, p]

+ (n10 + 1)
√

k P[. . . n10 + 1 . . . n20 − 1 . . . ; k − 1, p]

+ (n24 + 1)
√

k + 1 P[. . . n24 + 1 . . . n14 − 1 . . . ; k + 1, p]

+ (n23 + 1)
√

k + 1 P[. . . n23 + 1 . . . n13 − 1 . . . ; k + 1, p]

+ (n22 + 1)
√

k + 1 P[. . . n22 + 1 . . . n12 − 1 . . . ; k + 1, p]

+ (n21 + 1)
√

k + 1 P[. . . n21 + 1 . . . n11 − 1 . . . ; k + 1, p]

+ (n20 + 1)
√

k + 1 P[. . . n20 + 1 . . . n10 − 1 . . . ; k + 1, p]

− (n41 + 1)
√

p P[. . . n41 + 1 . . . n42 − 1 . . . ; k, p − 1]

− (n31 + 1)
√

p P[. . . n31 + 1 . . . n32 − 1 . . . ; k, p − 1]

− (n21 + 1)
√

p P[. . . n21 + 1 . . . n22 − 1 . . . ; k, p − 1]

− (n11 + 1)
√

p P[. . . n11 + 1 . . . n12 − 1 . . . ; k, p − 1]

− (n01 + 1)
√

p P[. . . n01 + 1 . . . n02 − 1 . . . ; k, p − 1]

− (n42 + 1)
√

p + 1 P[. . . n42 + 1 . . . n41 − 1 . . . ; k, p + 1]

− (n32 + 1)
√

p + 1 P[. . . n32 + 1 . . . n31 − 1 . . . ; k, p + 1]

− (n22 + 1)
√

p + 1 P[. . . n22 + 1 . . . n21 − 1 . . . ; k, p + 1]

− (n12 + 1)
√

p + 1 P[. . . n12 − 1 . . . n11 − 1 . . . ; k, p + 1]

− (n02 + 1)
√

p + 1 P[. . . n02 + 1 . . . n01 − 1 . . . ; k, p + 1]]. (C7)

Second, the contribution of the Hamiltonian HLA2 = h̄�2
∑

i(σ̂
i
30 + σ̂ i

03) is given by

∂tP[n44, n43, n42, . . . n01; k, p]|HLA2 = i�2[(n34 + 1)
√

kP[. . . n34 + 1 . . . n04 − 1 . . . ; k − 1, p]

+ (n33 + 1)
√

k P[. . . n33 + 1 . . . n03 − 1 . . . ; k − 1, p]

+ (n32 + 1)
√

k P[. . . n32 + 1 . . . n02 − 1 . . . ; k − 1, p]

+ (n31 + 1)
√

k P[. . . n31 + 1 . . . n01 − 1 . . . ; k − 1, p]

+ (n30 + 1)
√

k P[. . . n30 + 1 . . . ; k − 1, p]

+ (n04 + 1)
√

k + 1 P[. . . n04 + 1 . . . n34 − 1 . . . ; k + 1, p]

+ (n03 + 1)
√

k + 1 P[. . . n03 + 1 . . . n33 − 1 . . . ; k + 1, p]
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+ (n02 + 1)
√

k + 1 P[. . . n02 + 1 . . . n32 − 1 . . . ; k + 1, p]

+ (n01 + 1)
√

k + 1 P[. . . n01 + 1 . . . n31 − 1 . . . ; k + 1, p]

+ (n00 + 1)
√

k + 1 P[. . . n30 − 1 . . . ; k + 1, p]

− (n40 + 1)
√

p P[. . . n40 + 1 . . . n43 − 1 . . . ; k, p − 1]

− (n30 + 1)
√

p P[. . . n30 + 1 . . . n33 − 1 . . . ; k, p − 1]

− (n20 + 1)
√

p P[. . . n20 + 1 . . . n23 − 1 . . . ; k, p − 1]

− (n10 + 1)
√

p P[. . . n10 + 1 . . . n13 − 1 . . . ; k, p − 1]

− (n00 + 1)
√

p P[. . . n03 − 1 . . . ; k, p − 1]

− (n43 + 1)
√

p + 1 P[. . . n43 + 1 . . . n40 − 1 . . . ; k, p + 1]

− (n33 + 1)
√

p + 1 P[. . . n33 + 1 . . . n30 − 1 . . . ; k, p + 1]

− (n23 + 1)
√

p + 1 P[. . . n23 + 1 . . . n20 − 1 . . . ; k, p + 1]

− (n13 + 1)
√

p + 1 P[. . . n13 − 1 . . . n10 − 1 . . . ; k, p + 1]

− (n03 + 1)
√

p + 1 P[. . . n03 + 1 . . . ; k, p + 1]]. (C8)

Third, the contribution of the Hamiltonian HLA3 = h̄�c
∑

i(σ̂
i
42 + σ̂ i

24) is given by

∂tP[n44, n43, n42, . . . n01; k, p]|HLA3 = i�c[(n44 + 1)
√

kP[. . . n44 + 1 . . . n24 − 1 . . . ; k − 1, p]

+ (n43 + 1)
√

kP[. . . n43 + 1 . . . n23 − 1 . . . ; k − 1, p]

+ (n42 + 1)
√

kP[. . . n42 + 1 . . . n22 − 1 . . . ; k − 1, p]

+ (n41 + 1)
√

kP[. . . n41 + 1 . . . n21 − 1 . . . ; k − 1, p]

+ (n40 + 1)
√

kP[. . . n40 + 1 . . . n20 − 1 . . . ; k − 1, p]

+ (n24 + 1)
√

k + 1P[. . . n24 + 1 . . . n44 − 1 . . . ; k + 1, p]

+ (n23 + 1)
√

k + 1P[. . . n23 + 1 . . . n43 − 1 . . . ; k + 1, p]

+ (n22 + 1)
√

k + 1P[. . . n22 + 1 . . . n42 − 1 . . . ; k + 1, p]

+ (n21 + 1)
√

k + 1P[. . . n21 + 1 . . . n41 − 1 . . . ; k + 1, p]

+ (n20 + 1)
√

k + 1P[. . . n20 + 1 . . . n40 − 1 . . . ; k + 1, p]

− (n42 + 1)
√

pP[. . . n42 + 1 . . . n44 − 1 . . . ; k, p − 1]

− (n32 + 1)
√

pP[. . . n32 + 1 . . . n34 − 1 . . . ; k, p − 1]

− (n22 + 1)
√

pP[. . . n22 + 1 . . . n24 − 1 . . . ; k, p − 1]

− (n12 + 1)
√

pP[. . . n12 + 1 . . . n14 − 1 . . . ; k, p − 1]

− (n02 + 1)
√

pP[. . . n02 + 1 . . . n04 − 1 . . . ; k, p − 1]

− (n44 + 1)
√

p + 1P[. . . n44 + 1 . . . n42 − 1 . . . ; k, p + 1]

− (n34 + 1)
√

p + 1P[. . . n34 + 1 . . . n32 − 1 . . . ; k, p + 1]

− (n24 + 1)
√

p + 1P[. . . n24 + 1 . . . n22 − 1 . . . ; k, p + 1]

− (n14 + 1)
√

p + 1P[. . . n14 + 1 . . . n12 − 1 . . . ; k, p + 1]

− (n04 + 1)
√

p + 1P[. . . n04 + 1 . . . n02 − 1 . . . ; k, p + 1]]. (C9)
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FIG. 10. Contribution of optical pumping of the system �2; den-
sities are exchanged between n33 and n00 (red solid lines and blue
dashed lines) via the build up of quantum coherence. This graph
corresponds to the Lindblad equation given in Eq. (C8).

The next step is to draw the sketch for the required Li-
ouville operators for each specific finding. The sketches are
shown in Figs. 8–11. The coupling processes are represented
by an arrow connecting two distinguished symmetric states.
For the noninteracting Hamiltonian part, which is included in
the calculations, we use nonconnecting arrows. The pictorial
representation of the nonconnecting arrows are not shown in
the figures (Figs. 8–11) but they are included in the formula-
tion and the numerical simulation of our work. We use the L, R
algebra to determine the elementary Liouville operators in
implementing the code. A Liouville space operator is defined

FIG. 11. Contribution of optical pumping of the system �c; den-
sities are exchanged between n44 and n33 (red solid lines and blue
dashed lines) via the build up of quantum coherence. This graph
corresponds to the Lindblad equation given in Eq. (C9). Action of the
Lindblad dissipators: green (dash-dot) arrows describe spontaneous
emission.

by discerning whether it acts on the left (L) or right (R) side
of the density matrix [50], i.e., Aρ̂ = ALρ̂ and ρ̂A = ARρ̂. For
example, the definition of a collective spontaneous emission
Liouvillian from level a to level b is

L(ρ̂ ) = γ

2
(Ĵbaρ̂Ĵab − ĴabĴbaρ̂ − ρ̂ĴabĴba)

= γ

2

(
ĴL

ba · ĴR
ab − ĴL

ab · ĴL
ba − ĴR

ba · ĴR
ab

)
ρ̂. (C10)

In a similar way we can build the rest of the system.

[1] D. Craig and T. Thirunamachandran, Molecular Quantum Elec-
trodynamics (Dover, New York, 1998).

[2] M. Premaratne and G. P. Agrawal, Light Propagation in
Gain Media: Optical Amplifiers (Cambridge University Press,
Cambridge, 2011).

[3] R. T. Wijesekara, S. D. Gunapala, and M. Premaratne,
Phys. Rev. B 104, 045405 (2021).

[4] T. Perera, S. D. Gunapala, M. I. Stockman, and M. Premaratne,
J. Phys. Chem. C 124, 27694 (2020).

[5] S. Pathiranage, S. D. Gunapala, and M. Premaratne, J. Phys.:
Condens. Matter 33, 245301 (2021).

[6] S. Haroche and J.-M. Raimond, Exploring the Quantum: Atoms,
Cavities, and Photons (Oxford University Press, Oxford, 2006).

[7] M. Premaratne and G. P. Agrawal, Theoretical Foundations
of Nanoscale Quantum Devices (Cambridge University Press,
Cambridge, 2020).

[8] Y. Kaluzny, P. Goy, M. Gross, J. M. Raimond, and S. Haroche,
Phys. Rev. Lett. 51, 1175 (1983).

[9] J.-M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73,
565 (2001).

[10] F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Köhl, and T.
Esslinger, Nature (London) 450, 268 (2007).

[11] Q. Zhang, M. Lou, X. Li, J. L. Reno, W. Pan, J. D. Watson, M. J.
Manfra, and J. Kono, Nat. Phys. 12, 1005 (2016).
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