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Interaction-free imaging of multipixel objects
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Quantum imaging, one of the pillars of quantum technologies, is well suited to study sensitive samples which
require low-light conditions, like biological tissues. In this context, interaction-free measurements (IFM) allow
us to infer the presence of an opaque object without the photon interacting with the sample. Current IFM schemes
are designed for single-pixel objects, while real-life samples are structured, multipixel objects. Here we extend
the IFM imaging schemes to multipixel, semitransparent objects, by encoding the information about the pixels
into an internal degree of freedom, namely orbital angular momentum. This allows us to image the pixels in
parallel. Our solution exhibits a better theoretical efficiency than the single-pixel case. Our scheme can be
extended to other degrees of freedom, like the photon radial quantum number, in order to image one-dimensional
(1D) and 2D objects.
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I. INTRODUCTION

Quantum imaging [1–3] has established itself as a major
pillar of the rapidly expanding field of quantum technologies
[4,5]. Among the techniques found in quantum imaging we
can cite ghost imaging [6–9], imaging with undetected pho-
tons [10–14], sub-shot-noise quantum imaging [15–17], and,
finally, interaction-free measurement (IFM) imaging [18,19].
These quantum imaging techniques are not necessarily sepa-
rated, as shown in Refs. [20,21], where interaction-free and
ghost imaging techniques have been jointly used to harvest
their full potential.

Ghost, or coincidence imaging, uses correlated light beams
to image objects [6–9]. The beam intersecting the object is
collected into a “bucket detector” giving no spatial resolution.
The image is then recovered by coincidences between the
bucket detector and the free propagating beam that never inter-
sected the object, hence the name “ghost” imaging [8,22]. One
can distinguish between quantum and classical correlation
ghost imaging [23], with the advantage of the quantum ghost
imaging being the ability to image objects both in the near and
far field [24].

The technique of imaging with undetected photons
stemmed from the 1991 “induced coherence” experiment
[25]. More than two decades after this “mind-boggling ex-
periment” [26], the now famous imaging with undetected
photons was performed [10]. Further developments included
infrared spectroscopy with visible photons [11], applications
to semiconductor industry [12], and biological microscopy
with undetected photons [13,14,27].

IFM imaging is based on a counterintuitive feature of quan-
tum mechanics, first noticed by Reinginer [28], namely the
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concept of “negative results” of a measurement. The concept
was further refined by Dicke [29] and, finally, Elitzur and
Vaidman [30] presented their celebrated bomb tester in 1993,
based on a Mach-Zehnder (MZI) interferometer. Although it
created a stir [31], its detection efficiency remained below
25%, even if a nonbalanced interferometer was employed.
This efficiency barrier was broken by Kwiat et al. [32] by
using the quantum Zeno effect [33,34], i.e., the repeated weak
interrogation [35]. The same technique was further optimized
and experimental efficiencies as high as 73% [36] and 75%
[37] were obtained. A recent work based on quantum Zeno
stabilization of ultracold atoms [19] has showed efficiencies
of 90%. The leap from an efficient IFM object detector to an
imaging technique was taken in Ref. [18], where an actual
implementation was reported.

IFM imaging can have a major impact in live-cell imag-
ing [38,39] and low-damage biological imaging [40]. There
are already detailed proposals to introduce this technique to
electron microscopy [41–45]. Here, not only extremely low
probe beam fluxes are required [46], but one major problem is
the spatial extension of microscopic objects [47]. These issues
motivate our work.

We generalize the high-efficiency IFM imaging to spatially
extended objects by simultaneously probing all the pixels
without displacing and/or continuously realigning the sample.
We propose a method using a superposition of photonic an-
gular momentum (OAM) [48,49] states, based on a mapping
between each pixel and each OAM value.

The use of photons carrying OAM [50] stemmed from the
Allen et al. proposal [48] and nowadays is a mature technol-
ogy with countless applications [51–54]. Photonic OAM is
due to the helical phase front along the propagation direction
with quantized angular momentum l h̄ with l ∈ Z [55]. The
generation and detection of OAM states of light is done via
Dove prisms [56], refractive elements [57], or the more versa-
tile spatial light modulators (SLM) [58].
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FIG. 1. (a) Elitzur-Vaidman IFM experimental setup; (b) high-
efficiency IFM imaging scheme based on the quantum Zeno effect.

The IFM schemes discussed above are formulated in terms
of perfectly absorbing objects, while realistic scenarios in-
volve semitransparent objects [46,59–62]. In the latter case,
single-pixel IFM schemes were found to reach the loss-free
limit at a slower rate than for perfectly opaque objects [59,60].
It is then relevant to establish the behavior of the analogous
IFM scheme for multipixel semitransparent objects.

The article is structured as follows. In Sec. II we briefly
describe IFM experiments, from the Elitzur-Vaidman bomb
tester to the high-efficiency IFM employing the quantum Zeno
effect. We introduce and discuss our Mach-Zehnder-based
experimental proposal in Sec. III. In Sec. IV we optimize our
proposal through the use of a Michelson interferometer and
discuss the more realistic semitransparent objects in Sec. V.
We draw the conclusions in Sec. VI.

II. FROM IFM EXPERIMENTS TO EFFICIENT
IFM IMAGING

The first IFM setup is due to Elitzur and Vaidman [30].
The experiment consists of a balanced Mach-Zehnder inter-
ferometer with an opaque object placed in one of the arms; see
Fig. 1(a). After the first beam splitter, the photon is in an equal
superposition of being in both arms, 0 and 1. If the object
is absent, the photon interferes constructively at the second
beam splitter. Since the MZI is assumed balanced (50:50), D1

never clicks while detector D0 clicks with 100% probability.

TABLE I. Probabilities of different outcomes in the Elitzur-
Vaidman experiment.

f p0 p1 pabs

0 1 0 0
1 1

4
1
4

1
2

However, the presence of an object f destroys the interference
and hence there is a nonzero probability for detector D1 to
click. A click in D0 gives no information regarding the pres-
ence or absence of the object; however, a click at detector
D1 signals the presence of the object, although the photon
never interacted with it. For a single-photon source we have
the seemingly paradoxical situation of detecting the object f
without ever interacting with it.

The photodetection probabilities pi at detectors Di are
shown in Table I; pabs denotes the absorption probability
and we use the convention f = 0 (1) if the object is absent
(present).

The Elitzur-Vaidman (EV) scheme has an efficiency of
25%; here we define the efficiency as the probability p1 of the
photon reaching D1 if an object is present. To overcome the
low efficiency of the EV experiment, Kwiat et al. proposed
a scheme capable to achieve ideal efficiencies close to 100%
[32,36]. The key to achieve this high efficiency is to use the
quantum Zeno effect [33]: the coherent evolution of the pho-
ton is inhibited by a repeated weak measurement. In this case
the quantum Zeno effect is based on an inhibited polarization
rotation.

The scheme is depicted in Fig. 1(b) and works as follows.
A single photon is circulated N times inside the cavity formed
by the four mirrors, after which it is switched out (Sw) and its
polarization is measured. The photon is initially H polarized
and in each cycle Rθ rotates its polarization with an angle
θ = π

2N . An interferometer is defined by the two polarizing
beam splitters (PBS). An opaque object is present (or absent)
in the V arm of the interferometer. If the object is absent, after
N cycles the polarization is rotated from H to V and is thus
detected with probability p = 1 at the Dv detector. However,
if the object is present in the V arm of the interferometer,
the evolution from H to V is inhibited at each step. For
each cycle, the probability that the photon is not absorbed is
pnabs = cos2 θ and in this case the photon is projected back to
its initial polarization state, H . After N cycles, the probability
to find the photon H polarized is

ph =
N−1∏
n=0

pnabs = cos2N θ ≈ 1 − π2

4N
. (1)

The absorbtion probability pabs = 1 − ph = π2

4N can be made
arbitrarily small by increasing N . In the large N limit, the
probability to detect the photon in Dh approaches 1; see
Table II.

III. IFM IMAGING OF MULTIPIXEL OBJECTS

The previous schemes have an intrinsic limitation, namely
they are able to detect or image a single object, or pixel.
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TABLE II. Detection probabilities for Dh (ph) and Dv (pv), and
the absorption probability pabs. We assume N � 1.

f ph pv pabs

0 0 1 0
1 1 − π2

4N 0 π2

4N

However, in real-life applications the sample of interest is
an extended, multipixel object. In this section we extend the
previous schemes to objects having multiple (transparent or
absorbing) pixels. We first generalize the IFM scheme from
Fig. 1(a) to a multipixel object. We then use this approach
to improve the efficiency by using the quantum Zeno effect,
similar to the Kwiat et al. setup [36].

For the multipixel IFM imaging we use an extra degree of
freedom (DOF) in which to encode the spatial structure of the
sample. This DOF should be d dimensional since we want
to probe all the pixels simultaneously and we should be able
to perform multiplexing and demultiplexing. Possible choices
are path, wavelength, and OAM. The path DOF is not suitable
in our scheme, since the information about each pixel will be
lost after the multiplexing step and we will not gain any infor-
mation about the object structure. Wavelength is not a good
choice either, since the pixels can be opaque or transparent
depending on the probing wavelength (unless we convert all
wavelengths to a given λ0 before the object and convert them
back after the object). These problems are avoided if we use
OAM. The values OAM can take are theoretically unbounded
and several sorting schemes for OAM are known [63–65].

(i) Generalized IFM imaging. In order to encode the spatial
information of a multipixel object in the internal DOF (OAM),
we need to do the following.

(a) Initialize the single photon in an equal superposition of
all OAM states. This is necessary since we want to explore
all the pixels in parallel with a single photon. Clearly, the
dimension of the OAM space has to be the same as the number
of pixels.

(b) Transfer the information between spatial and OAM
DOF.

Our scheme is shown in Fig. 2(a). Similar to Fig. 1(a), the
object is situated in the 0 arm of a balanced Mach-Zehnder
interferometer, but in this case it is inside a path-to-OAM
encoder (green box). The encoder transfers the information
from the �th pixel (transparent or opaque, i.e., 0 or 1) to the
corresponding OAM value |�〉OAM.

We label the two arms of the MZI as 0 and d; the spatial
modes 0 to d − 1 correspond to the sample’s pixels. The
photon enters the interferometer in spatial mode 0 and the
first beam splitter places it in a superposition of the two
spatial modes 0 and d . Before reaching the object in arm 0,
a sorter S demultiplexes the OAM values � to different paths
corresponding to the pixels. We take f� = 0 (1) if the �th pixel
is transparent (opaque). After the interaction with the object,
all OAM components are multiplexed back to the same path
by an inverse sorter S−1.

Finally, all OAM modes interfere at the second beam
splitter. As before, a click in the detector D0 gives us no
information about the object. The information about the �th
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FIG. 2. IFM imaging of a multipixel object. (a) Single-pass in-
terferometer; (b) high-efficiency, multipass interferometer scheme.

pixel is encoded in the OAM mode � which exists on the
port d . Therefore, on path d we demultiplex again the OAM
values � to different detectors Dd,�. A click in the detector
Dd,� tells us that the �th pixel was opaque, since only in this
case the constructive interference at the second beam splitter
was destroyed.

It is important to note that a photon with OAM mode �

has a radial extension proportional to �. Thus, in order to
probe all pixels with the same transversal Gaussian mode, i.e.,
|0〉OAM, we insert OAM mode converters c (c−1, its inverse)
before (after) the object. On each path � the OAM converter
c changes |�〉OAM �→ |0〉OAM, and c−1 performs the inverse
transformation. These are spiral phase plates of order �, to-
gether with their inverses.

The combination between the sorter S and converter c is
equivalent to a qudit SWAP gate between OAM and path
degrees of freedom, Fig. 3. Thus, after interacting with the
object, the spatial information about the sample ( on or off
pixels) contained in the path qudit is swapped into the OAM
qudit by c−1 and S−1.

The probabilities for a detector to click are shown in
Table III; see Appendix A for details. Notice that they are
equal to the probabilities of the EV experiment (Table I)
scaled by 1/d , where d is the dimension of OAM (or the
total number of pixels). One can understand this by observing
that the setup in Fig. 2(a) is equivalent to d Elitzur-Vaidman
experiments run in parallel.
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FIG. 3. (a) Implementation of a SWAP gate between OAM and
path DOFs for states |ψ〉|0〉, i.e., when all photons enter in the zeroth
path. (b) Equivalent quantum network for the SWAP gate when the
path qudit is in the |0〉 state: a C(Xd )(OAM, path) gate followed by a
C(X †

d )(path, OAM) gate [66,67].

(ii) Generalized high-efficiency imaging. As before, we can
improve the efficiency of the interaction-free measurement by
using the quantum Zeno effect. The multipixel generalization
of the Kwiat et al. scheme [32,36] is shown in Fig. 2(b). The
main idea is similar: a photon with H polarization performs
multiple cycles of the setup. At the beginning of each cycle
the polarization is rotated by a small angle θ = π

2N , with the
photon being now in a superposition of H and V polarizations.
The two polarization components are sorted on spatial modes
d and 0 by a polarizing beam splitter. The object is situated in
the V arm.

As before, we use the photonic OAM to encode the infor-
mation about the pixels of the sample by inserting a sorter S
and an inverse sorter S−1 before and after the object, respec-
tively; the converters c, c−1 ensure that all pixels are probed
with a Gaussian, � = 0 OAM mode. If a pixel � is transparent,
the polarization is rotated stepwise towards V and the detector
D�,v will click after N cycles. If the pixel � is opaque, the
probability for the photon to be absorbed is small because
the V -polarization component is small. At each cycle the
photon state is projected, with a large probability, on the H
polarization. The probability of transmission after N cycles
for a photon with H polarization is (see Appendix B)

N−1∏
n=0

pnabs ≈ 1 − Nabs

d

π2

4N
, (2)

where Nabs = ∑d−1
�=0 f� is the number of opaque pixels and d

is the total number of pixels. In this case the detector D�,h will

TABLE III. Probabilities of different outcomes for the multipixel
IFM experiment.

f� p0,� pd,� pabs

0 1
d 0 0

1 1
4d

1
4d

1
2d

TABLE IV. Probabilities for the photon to reach one of the de-
tectors or to be absorbed after N cycles for the case of an opaque
multipixel object.

f� p�,h p�,v pabs

0 0 1
d 0

1 1
d (1 − π2

4N ) 0 1
d

π2

4N

click. For each OAM value � the presence of an opaque (trans-
parent) pixel leads to a click in the corresponding detector
D�,h (D�,v) due to the quantum Zeno effect. The correspond-
ing probabilities are shown in Table IV; see Appendix B for
details.

IV. MICHELSON SETUP

We can simplify the high-efficiency scheme if we use
a Michelson interferometer. This setup requires only two
sorters, compared to three in the Mach-Zehnder case.

In the folded high-efficiency configuration Fig. 4 the pho-
ton undergoes N cycles, similar to the scheme in Fig. 2(b).
The photon enters on path d and successively passes through a
polarization rotator. It is reflected back from the retroreflector
RR and after the second pass through the polarization rota-
tor a polarizing beam splitter directs the photon on spatial
modes 0 or d according to its polarization. The subsequent
evolution of the photon state is the same as in the Michelson–
Elitzur-Vaidman experiment until the photon reaches again
the polarizer beam splitter and starts a new cycle. Since the
photon passes through the polarization rotator twice during a
cycle, the rotation angle is now θ = π

4N .
On path d we use retroreflectors, such that the photon has a

double reflection and the OAM state |�〉 is unchanged; a mirror
reflection is equivalent to |�〉 �→ | − �〉. On path 0 we have
a single mirror, since the photon is in � = 0 state after the
converter c.

P

P

RR RR

...

...

c

S

Rθ

D0,v

S

Dd−1,h

0

f0 fd−1

Dd−1,v

D0,h

d

FIG. 4. Michelson configuration for interaction-free imaging of
a multipixel object: high-efficiency–multipass scheme.
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To switch out the photon after N cycles, we use Pockels
cells P placed in both arms. When activated, the Pockels cells
rotate the polarization by 90◦, and thus photons from both
arms exit through the same port of the PBS. In this case the
information is reversed: clicks in D�,v (D�,h) tell us the pixel �

is opaque (transparent).

V. SEMITRANSPARENT OBJECTS

So far we have discussed objects with fully opaque or fully
transparent pixels. We now extend our proposal to semitrans-
parent objects, which are better suited to describe realistic
cases like biological tissues, an important application of IFM
imaging.

We consider a multipixel object and denote by T� the trans-
mission coefficient of pixel �. The action of the path-to-OAM
encoder is described by an OAM-dependent transmission co-
efficient matrix; see Appendix C for details. For a single
cycle the transformation on the photon is M = OR, where
O and R are the action of the interferometer and the rotator,
respectively. The total transformation after N cycles is

MN = diag (mN
0 , mN

1 , . . . , mN
d−1), (3)

where each block

m� =
[

cos θ − sin θ√
T� sin θ

√
T� cos θ

]
(4)

encodes the combined effects of polarization rotation and
transmission through the semitransparent object for OAM
value �. By applying the transformation MN on the initial
state, we obtain the probabilities for the photon to reach the
detectors D�,h, D�,v:

p�,h = 1

d

(
1 − 1 + √

T�

1 − √
T�

π2

4N

)
, (5)

p�,v = 1

d

T�

(1 − √
T�)2

π2

4N2
. (6)

Remarkably, the absorption probability pabs = 1 − p�,h −
p�,v vanishes for large N , so in this case we can still talk about
interaction-free measurements. As expected for semitranspar-
ent pixels, the probability for the photon to be detected in any
D�,v detector is nonzero. However, this probability scales as
1/N2 and thus the photon is more likely to be detected in a
D�,h detector. Also, for semitransparent objects reaching the
lossless limit is slower for large N .

VI. DISCUSSION

Current imaging techniques have several limitations in
terms of resolution, spectral range, and/or contrast. One way
to overcome these limitations is to use various quantum-
enhanced techniques, like sub-shot-noise imaging [15–17] or
imaging with undetected photons [10,11]. A target application
for our IFM setup is extremely sensitive samples requir-
ing imaging in low-light conditions. In this article we have
extended IFM imaging to semitransparent, multipixel sam-
ples. This generalization keeps all the advantages of previous
schemes [30,32,36].

First, we have modeled the sample as a collection of fully
transparent or opaque pixels. In our scheme we encode the
information about the sample into OAM of single photons.
By starting with a photon in a superposition of OAM states,
we can probe multiple pixels in parallel.

A central ingredient of our proposal is the quantum sorter,
which demultiplexes the photon according to its orbital angu-
lar momentum and allows us to encode the information about
the pixels. The quantum sorter is also essential to recover the
information at the end by directing the photon to the corre-
sponding detector. Clearly, the number of detectors should
be the same as the number of pixels. State-of-the-art single-
photon counting cameras can have up to 512 × 512 pixels,
where each pixel is an independent single-photon detector
[68,69].

We have discussed two setups. In a Mach-Zehnder configu-
ration we need three OAM d-mode sorters and two converters,
whereas for a Michelson setup this reduces to only two OAM
sorters and one converter. This is a consequence of the fact
that both the sorter S and the converter c act as their own
inverses if the photon enters from the opposite direction.
Moreover, if the acquisition speed is not very important, the
final OAM sorter can be replaced by a computer-controlled
SLM [58] and thus only two photodetectors are needed, one
for each polarization.

In the case of IFM imaging of perfectly opaque (or trans-
parent) pixels, the absorption probability is lower compared
to the single-pixel case. This is due to the photon evolving
coherently in a superposition of paths, leading to the factor
Nabs/d in Eq. (2). In the large N limit, we obtain the same
probabilities as in the single-pixel case.

In this paper we have discussed only the case of ideal,
lossless components. However, for real systems the achiev-
able efficiencies have stronger constraints. The intrinsic losses
reduce the real efficiency compared to the ideal one, as the
number of cycles N increases, the former being expected to
reach a maximum value <1 at a finite number of cycles [36].

Interaction-free imaging schemes can also be implemented
with weak coherent states, which are experimentally more
accessible than Fock states [36]. In this case we need to reduce
optical imperfections and interferometric instabilities to reach
an efficiency close to 1.

For real-life applications we need to consider semitranspar-
ent pixels, where each pixel � has a transmission coefficient
T� ∈ [0, 1). Similar to the single-pixel case [59,62], we find
that for multiple semitransparent pixels we can still reach the
lossless limit, but at a slower rate compared to a fully opaque
object, Eqs. (5) and (6). While interaction-free measurements
do not improve over classical ones when trying to determine
an unknown transparency, they do allow one to distinguish
between high-contrast semitransparent samples [61]. In our
parallel setup, this can be realized at the single-pixel level by
analyzing the clicks in the corresponding detectors.

Although here we have discussed one-dimensional (1D)
samples, conceptually our method can be extended to 2D
objects as well. In order to image a 2D sample we can use
another photonic degree of freedom, e.g., the radial quantum
number r. By demultiplexing the photon in the second di-
mension according to the second DOF, we can describe each
pixel by a pair (�, r). In this sense, there are promising sorting
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schemes for the radial quantum number [70,71], together with
equivalent spiral-phase plates [72,73].
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APPENDIX A: INTERACTION-FREE IMAGING,
MULTIPIXEL CASE

Here we calculate the probabilities in Table III; see
Fig. 2(a). For simplicity we omit the action of the OAM
converters (c, c−1) situated immediately before and after the
object, since they do not change the calculations. The total
Hilbert space is Htot = HO ⊗ Hm, where HO and Hm are the
Hilbert spaces corresponding to the OAM and spatial mode,
respectively. The photon is initially in the state

|ψ0〉 = 1√
d

d−1∑
�=0

|�〉 ⊗ |0m〉. (A1)

After the first beam splitter (equivalent to a Hadamard gate on
the spatial mode) the state becomes

|ψ1〉 = 1√
2d

(
d−1∑
�=0

|�〉|0m〉 +
d−1∑
�=0

|�〉|dm〉
)

. (A2)

The sorter S demultiplexes the photons into different spatial
modes according to their OAM:

|ψ2〉 = 1√
2d

(
d−1∑
�=0

|�〉|�m〉 +
d−1∑
�=0

|�〉|dm〉
)

. (A3)

The total probability of the photon to be absorbed by any of
the pixels is given by

pabs = 〈ψ2|
(

d−1∑
�=0

f� |�, �m〉〈�m, �|
)

|ψ2〉 = Nabs

2d
, (A4)

where Nabs = ∑d−1
�=0 f� is the number of opaque pixels. The

probability for the photon to be transmitted is then

pnabs = 1 − pabs = 2d − Nabs

2d
. (A5)

In the case of nonabsorption, after the inverse sorter S−1 the
state is

|ψ3〉 = 1√
2d − Nabs

[
d−1∑
�=0

(1 − f�) |�〉|0m〉 +
d−1∑
�=0

|�〉|dm〉
]

(A6)

and after the second beam splitter the output state becomes

|ψ f 〉 = 1√
2d − Nabs

[
d−1∑
�=0

(1 − f�) |�〉 1√
2

(|0m〉 + |dm〉) +
d−1∑
�=0

|�〉 1√
2

(|0m〉 − |dm〉)

]
(A7)

= 1√
2d − Nabs

{
1√
2

[
d−1∑
�=0

(1 − f�) |�〉 +
d−1∑
�=0

|�〉
]
|0m〉 + 1√

2

[
d−1∑
�=0

(1 − f�) |�〉 −
d−1∑
�=0

|�〉
]
|dm〉

}
. (A8)

From Eqs. (A5) and (A7) we obtain the probabilities in Table III.

APPENDIX B: INTERACTION-FREE IMAGING OF A MULTIPIXEL OBJECT, HIGH-EFFICIENCY EXPERIMENT

In this case we have an extra degree of freedom—the polarization. The total Hilbert space is Htot = Hp ⊗ HO ⊗ Hm, where
Hp, HO, and Hm are the Hilbert spaces corresponding to the polarization, OAM, and spatial mode, respectively. The photon
starts in the initial state:

|ψin〉 = |H〉 ⊗ 1√
d

d−1∑
�=0

|�〉 ⊗ |dm〉. (B1)

The photon undergoes a cyclic evolution inside the loop until it is switched out after N cycles. For each cycle, we have a
polarization rotation Rθ , followed by a PBS, sorters S, S−1, and the second PBS. After n cycles the state of the photon is

|ψ ′〉 = 1

N f

{
cosn θ |H〉

d−1∑
�=0

f� |�〉 + [sin(nθ )|V 〉 + cos(nθ )|H〉]
d−1∑
�=0

(1 − f�) |�〉
}

|dm〉. (B2)

Let Nabs = ∑d−1
�=0 f� be the number of opaque pixels. Then from Eq. (B2) we have

N f =
√

d − Nabs + Nabs cos2n θ. (B3)
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In order to calculate the absorption probability during an arbitrary cycle, we consider another iteration starting from the state
(B2). Immediately after the polarization rotator the state is

|ψ ′′〉 = 1

N f

{
(cosn+1 θ |H〉 + cosn θ sin θ |V 〉)

d−1∑
�=0

f� |�〉

+ {sin[(n + 1)θ ]|V 〉 + cos[(n + 1)θ ]|H〉}
d−1∑
�=0

(1 − f�) |�〉
}

|dm〉. (B4)

The absorption probability for the (n + 1)th cycle is

pabs(n) = Nabs

N 2
f

cos2n θ sin2 θ = Nabs cos2n θ sin2 θ

d − Nabs + Nabs cos2n θ
.

(B5)

The nonabsorption probability for the (n + 1)th cycle is then

pnabs(n) = d − Nabs + Nabs cos2n+2 θ

d − Nabs + Nabs cos2n θ
. (B6)

The nonabsorption probability after N completed cycles is

pnabs =
N−1∏
n=0

pnabs(n) = 1 − Nabs

d
(1 − cos2N θ )

≈ 1 − Nabs

d

π2

4N
. (B7)

For N � 1, the nonabsorption probability pnabs → 1. For
θ = π

2N the final state in Eq. (B2) is

|ψ f 〉 = 1√
d

[
|H〉

d−1∑
�=0

f� |�〉 + |V 〉
d−1∑
�=0

(1 − f�) |�〉
]
|dm〉,

(B8)
as in Table IV.

APPENDIX C: INTERACTION-FREE IMAGING OF A
SEMITRANSPARENT MULTIPIXEL OBJECT

In this section we discuss the general case of semitrans-
parent multipixel objects. This generalizes Jang’s approach
[59] used for the polarization degree of freedom. In our case
the total Hilbert space is Htot = HO ⊗ Hp, where HO and
Hp are the Hilbert spaces corresponding to the OAM and
polarization, respectively. For simplicity we omit the spatial
mode Hilbert space and model the action of the path-to-OAM
encoder with an OAM dependent transmission coefficient ma-
trix

TOAM = diag (
√

T0,
√

T1, . . . ,
√

Td−1). (C1)

This is used to define the total action of the interferometer by

O = Id ⊗
[

1 0
0 0

]
+ TOAM ⊗

[
0 0
0 1

]
, (C2)

where Id is the identity on the OAM space. The polarization
rotator is

R = Id ⊗
[

cos θ − sin θ

sin θ cos θ

]
. (C3)

Then the total transformation has a block-diagonal form

M = OR = diag (m0, m1, . . . , md−1), (C4)
where each block

m� =
[

cos θ − sin θ√
T� sin θ

√
T� cos θ

]
(C5)

represents the combined effects of polarization rotation and
transmission through the semitransparent object for the OAM
value �. The total transformation after N cycles is also block
diagonal

MN = diag (mN
0 , mN

1 , . . . , mN
d−1), (C6)

which generalizes the results of Jang [59] and Azuma [62] for
the single-pixel case.

We apply the total transformation to the initial state

|ψin〉 = 1√
d

[ 1 1 . . . 1 ]T ⊗ [ 1 0 ]T

= 1√
d

[ 1 0 1 0 . . . 1 0 ]T (C7)

and obtain

|ψ f 〉=MN |ψin〉=[c0,h c0,v c1,h c1,v . . . cd−1,h cd−1,v]T ,

(C8)

where c�,h and c�,v correspond to the single-pixel amplitudes
given in Eq. (13) of [59]. The total probability of nonabsorp-
tion for each polarization is

ph =
d−1∑
�=0

|c�,h|2 ≈ 1 − 1

d

d−1∑
�=0

1 + √
T�

1 − √
T�

π2

4N
, (C9)

pv =
d−1∑
�=0

|c�,v|2 ≈ 1

d

d−1∑
�=0

T�

(1 − √
T�)2

π2

4N2
(C10)

for N � 1, θ = π
2N , and T� ∈ [0, 1). For the single-pixel case

we recover the results of Ref. [62].
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