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Vortex-pair annihilation in arrays of photon cavities
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We investigate theoretically the evolution of the vortex number in an array of photon condensates that is
brought from an incoherent low-density state to a coherent high-density state by a sudden change in the pumping
laser intensity. We analyze how the recombination of vortices and antivortices depends on the system parameters
such as the coefficients for emission and absorption of photons by the dye molecules, the rate of tunneling
between the cavities, the photon loss rate and the number of photons in the condensate.
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I. INTRODUCTION

Vortex excitations of superfluids [1] play a crucial role in
a variety of phenomena such as the Berezinskii–Kosterlitz–
Thouless (BKT) transition, the Kibble–Zurek (KZ) mecha-
nism, the formation of Abrikosov vortex lattices, and the drag
force on objects moving through a superfluid. These phenom-
ena have been experimentally studied on a number of physical
platforms such as superconductors, liquid helium, and ultra-
cold atoms [2]. What all these systems have in common is that
they are, up to a very good approximation, in (local) thermal
equilibrium, a condition that is typically broken in experimen-
tal platforms that are based on optical systems [3,4]. Optical
Bose–Einstein condensates (BECs) have been experimentally
achieved in optical cavities filled with a dye molecule solution
and in microcavities where a photon is strongly coupled to an
exciton resulting in exciton polaritons [5]. While in the latter
system, interactions between exciton polaritons can lead to
stimulated scattering into the ground state, in the photon-dye
system it is repeated absorption and re-emission of photons
[6] that enables a macroscopic occupation of the ground
state [7–9].

Due to photon losses, optical BECs need constant pump-
ing by an excitation laser in order to reach a steady state
where pumping balances the losses. Experimentally realized
photon condensates are therefore driven-dissipative systems.
The availability of several other experimental platforms,
such as exciton-polaritons [4], superconducting circuits [10],
and Rydberg atoms [11], for the study of driven-dissipative
systems and their interest for quantum simulation and
quantum computation has spurred substantial theoretical
activity [4,10,12,13].

A typical photon condensation experiment starts from an
empty cavity and optical excitations are created by turning
on the pumping laser where the phase transition is crossed
when the photon density exceeds the threshold. Upon crossing
the threshold, the system goes from the disordered to the
ordered state, which according to the KZ mechanism may lead
to the formation of vortex pairs. Vortices in nonequilibrium
BECs have been the subject of both experimental [14–18] and

theoretical [19–22] study in exciton-polariton systems,
whereas in nonequilibrium photon condensates, vortices have
only been studied theoretically [23].

The vortex pairs that are generated after a pump power
quench are expected to disappear in a subsequent phase an-
nealing stage, such that, in the steady state above the critical
density, no vortices remain. The recombination of vortices
and antivortices depends on their interactions, which has been
shown to be crucially affected by the nonequilibrium condi-
tion giving rise to particle currents away from the vortex core.
As a consequence, vortices, even of opposite signs, experience
a long-range repulsion [22], which obviously hampers their
recombination. This physics was theoretically investigated for
exciton polaritons and indeed it was found that the vortex-
pair annihilation is strongly affected by the nonequilibrium
condition, where it was even observed that very long lived
complexes of vortices and antivortices may form under certain
conditions [24].

Photon condensates are even somewhat more peculiar
for the study of vortex physics, because their negligible in-
teractions imply that the core size tends to infinity in the
equilibrium limit. This stands in contrast to polariton con-
densates, where the interactions always keep the vortex core
size finite. It was, however, shown recently that a finite vortex
core and therefore well-defined vortex excitations do exist in
lattices of coupled nonequilibrium photon condensates [23].
Such lattices of photon condensates can be experimentally
created by patterning the microcavity mirrors [25,26], anal-
ogous to lattices for exciton polaritons [27]. These vortices
feature several unusual properties such as self acceleration and
core deformation in addition to the aforementioned outward
currents.

The two-dimensional (2D) nature of polariton condensates
implies that the phase transition between the normal and su-
perfluid state at equilibrium is of the BKT type. Numerical
simulations have provided evidence that a similar transition
exists out of equilibrium [18,24,28,29], even though stud-
ies based on the renormalization group have pointed out
that the phase transition is crucially affected at long dis-
tances by the Kardar–Parisi–Zhang (KPZ) dynamics of the
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FIG. 1. Sketch of a part of the photon condensate array under
study: the photonic cavity modes are coupled through tunneling
with amplitude J and are lost from the cavities at rate γ . The dye
molecules are localized in the cavities and can be in the ground-state
or excited-state manifolds (indicated by different colors). The system
is pumped by a laser with intensity P that excites the dye molecules.

phase, which tends to destroy the ordered phase [30–33].
In practice, however, the KPZ physics can be limited to
very large system sizes, so that in experimental 2D systems
the BKT-like physics dominates [18,24,28,29]. Recently, we
have shown by analytical arguments and numerical simula-
tions that also photon condensates without interactions do
feature a BKT like phase transition, that is stabilized by the
driving and dissipation [34]. The question of the dynami-
cal formation of the ordered state after a rapid switching of
the pumping intensity is therefore also relevant for photon
condensates.

In the present paper, we address this issue. In particular, we
investigate the annihilation of vortex pairs in a lattice of pho-
ton condensates where the pumping laser intensity is suddenly
ramped up, starting from zero (see Fig. 1). After a short initial
transient, the density goes relatively quickly to its steady state,
but many phase defects, remnants of the random phases of
the initial state, remain. By varying the system parameters
(tunneling strength, emission and absorption coefficients, loss
rate, photon number) around the range of their typical ex-
perimental values, we try to shed more light on the physics
that governs the annihilation dynamics. We reveal a regime
where the quasicircular vortex trajectories together with the
long-range repulsion lead to a low mobility vortex-antivortex
phase that shows very slow annihilation. In addition, we show
that, for very high emission or absorption rate, the annihi-
lation is fast and tends to the time dependence derived for
the relaxational dynamics of the XY model [35,36], a regime
that was previously also obtained in numerical simulations for
polariton condensates close to thermal equilibrium [24,29].

The remainder of the paper is organized as follows: In
Sec. II, we recapitulate our classical field model for pho-
ton condensates and describe the numerical simulations. In
Sec. III, we discuss the various dependencies of the pair anni-
hilation rate on the system parameters: the rates of emission
and absorption, tunneling and losses, and the photon number.
Our conclusions are presented in Sec. IV.

II. MODEL

At the semiclassical level, the system of coupled photon
condensates can be described by a generalized Gross–
Pitaevskii equation (gGPE) for the photon field ψ (x) at each
cavity position x [37]

ih̄
∂ψ (x, t )

∂t
= i

2
[B21M2(x, t ) − B12M1(x, t ) − γ ]ψ (x, t )

− (1 − iκ )J
∑

x′∈Nx

ψ (x′, t ), (1)

where γ is the photon loss rate and J is the coupling between
the nearest-neighbor cavities [25,26]. The photons thermal-
ize thanks to repeated absorption and emission by the dye
molecules with respective rate coefficients B12 and B21. The
ground (excited) molecular state occupation is denoted by M1

(M2) and obeys M1(x) + M2(x) = M, where M is the number
of dye molecules at each lattice site. The emission and ab-
sorption coefficients of the thermalized molecules satisfy the
Kennard–Stepanov relation [38–40] B12 = eβ�B21, where �

is the detuning between the cavity frequency and the dye zero-
phonon transition frequency. The Kennard–Stepanov relation
for the absorption and emission coefficients leads to energy
relaxation with dimensionless strength κ = B12M̄1/(2T ) (we
set the Boltzmann constant kB = 1) [37].

The noise enters in the model due to fluctuations stemming
from spontaneous emission that are described by adding a unit
modulus complex number with random phase to the photon
amplitude at the spontaneous emission rate B21M2 [41,42].
We have checked numerically that this way of introducing
stochasticity yields the same results as a Langevin noise term
representing the shot noise in the emission and absorption
processes.

Equation (1) is coupled to a rate equation describing the
evolution of the number of excited molecules due to emission
and absorption processes and external pumping. The latter
has to be applied to compensate for the photon losses. The
steady-state average value n̄ of the photon number in each
cavity, n = |ψ (x)|2, results from the balance between the
pumping rate P and losses and satisfies P = γ n̄. Under the
condition J � T , which assures that the occupations of all
momentum states are much larger than one, the generalized
Gross–Pitaevskii classical field model (1) is valid for all the
modes and there is no need to use a more refined quantum
optical approach [43–45].

The noise, inherent to the spontaneous emission by the
dye molecules, leads to the density and phase fluctuations.
For the simplest case of a single cavity, a crossover in the
density fluctuations between a “grand canonical” regime with
large fluctuations (δn2 ∼ n̄2), for n̄2 � Meff , and a “canon-
ical” regime with small fluctuations (δn2 � n̄2), for n̄2 �
Meff , have been observed [46,47]. Here, the “effective” num-
ber of molecules is given by Meff = (M + γ e−�/T /B21)/[2 +
2 cosh(�/T )]. For e�/T � 1, one has Meff ≈ M̄2 ≈ ηMe�/T

with η = 1 + γ /(2κT ), while the energy relaxation parameter
becomes κ ≈ B21Me�/T /(2T ).

In our simulations, the following parameters are fixed:
the temperature T = 25 meV, the energy detuning � =
−180 meV, and the total number of molecules M = 5 × 1010.
With these dye molecule parameters, Meff ≈ 3.73 × 107 and
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n2/Meff varies from 67 for n = n0 down to 0.026 for n =
0.02 n0, where n0 = 5 × 104 is our unit for the photon density.
The other relevant parameters are expressed in the follow-
ing units: B0 = 10−7 meV for the emission coefficient, J0 =
0.02 meV for the coupling strength, and γ0 = 0.02 meV for
the loss rate. In each simulation, the initial state is formed
by random values of the phase and (very small) number of
photons (n < 10−3n̄) in each cavity, with no correlation be-
tween cavities. The pair annihilation dynamics are studied for
an array of 200 × 200 coupled photon cavities with periodic
boundary conditions. Sample-averaged curves correspond to
10 to 32 runs.

III. DISCUSSION OF THE NUMERICAL RESULTS

A. The role of the emission-absorption rates

Photon condensates reach thermal equilibrium in the
steady state when the loss rate is much smaller than the rates
of absorption and re-emission. Even though, in the present
study, we do not investigate the steady state, one can still ex-
pect that the relative importance of emission-absorption with
respect to losses has some influence on the phase relaxation
dynamics. In our simulations, we have first kept the loss rate
fixed at γ0 = 0.02 meV and varied the emission coefficient
B21 and correspondingly the absorption coefficient according
to B12 = eβ�B21 at fixed detuning.

Figure 2(a) shows the time evolution of the vortex-pair
density σ (the number of pairs per cavity) for various emission
coefficients B21 on a double-logarithmic scale. Quite remark-
ably, we see a rich behavior in the evolution of the vortex
pair density. Starting with the lowest value of B21 (red full
line), we see after an initial constant at very short times a
fast decay up to t ≈ 10 ns and a subsequently slower decay
up to t = 100 ns, when only two vortex pairs remain in the
simulation region. The relatively slow timescale on which
the vortex-pair annihilation manifests itself is promising for
its experimental detection: the observation of dynamics on
the nanosecond scale or slower is well within the domain of
standard electronics.

The initial pair number annihilation rate increases when
the emission coefficient B12 is increased. There are two mech-
anisms that explain this dependence: (i) an increase of B21

implies a more efficient interaction of cavity photons with
the reservoir formed by dye molecules, and hence a more
efficient role of pumping that tends to keep the condensate
density close to its steady-state value n̄ [24,48]. Larger B21

therefore more strongly disfavors states with many vortex
cores, since in these states there are many cavities with photon
densities much smaller than n̄. (ii) An increase in B21 implies
an increase in κ ≈ B21Me�/T /(2T ). According to Eq. (1),
the effect of κ is to eliminate the photon field’s phase and
density gradients. A larger value of κ therefore leads to a faster
recombination of vortices and antivortices.

Figure 3 illustrates that, at κ > 1, it is mainly the value of
κ that determines the vortex-pair annihilation rate. It shows
the time evolution of the pair number for different values
of B21 with an independent variation of κ [i.e., not accord-
ing to κ = B12M̄1/(2T )]. Curves with the same κ but with
different B21 are close to each other, clearly illustrating that

-0.03 0.030
td (ns)

(a)

(b)

b

c

FIG. 2. (a) Evolution of the vortex-pair density σ at different
values of the emission coefficient B21 and fixed J = J0, γ = γ0,
n̄ = n0. The inset shows the long-time dynamics of σ at B21 = 10B0

(solid line) in comparison with the “Langevin” [dashed line σ =
1.15 × 10−3[1 + t/(189 ns)]−1] and “SRH” [dotted line σ = 1.15 ×
10−3 exp[−t/(220 ns)] ] recombination dynamics. Panels (b) and
(c) show trajectories of vortices (red) and antivortices (blue) in the
array with B21 = 10B0 on the time intervals labeled in panel (a) with
“b” and “c,” respectively. td is the time the core dwells in a given unit
cell of the array, with the sign of the dwelling time representing the
vorticity sign.

the pair number dynamics is mainly governed by κ . The thin
solid line in Fig. 3 shows the analytical dependence for the
number of vortices obtained for relaxation dynamics of the
two-dimensional XY model σ (t ) ∝ (t/t0)−1 ln(t/t0) [35,36]
and agrees well with the numerics for the largest values of
κ . This agreement is in analogy with simulations done for
exciton-polariton condensates [24,29]. Also in line with the
current observations, it was found in the polariton case that
the vortex annihilation is accelerated when increasing κ [24].

Going back to Fig. 2, one observes that the long-time
behavior of σ (t ) varies nonmonotonically with B21. For B12 =
10B0, a clear plateau (on the log-log scale used) develops
between t = 10 ns and t = 100 ns. We propose as the mech-
anism for the formation of the plateau the interplay between
vortex-antivortex distances and the radius of the quasicircular
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FIG. 3. Evolution of the vortex-pair density σ at different values
of the emission coefficient B21 and damping parameter κ , expressed
in units of κ0 = 0.076, in the case where these two parameters
are treated as independent of each other, and for fixed J = J0,
γ = γ0, n̄ = n0. The thin solid line corresponds to a decay σ =
0.043(t/t0)−1 ln(t/t0) with t0 = 3 ps.

trajectories of self-accelerated vortices and antivortices, which
decreases with increasing B21 [23]. Quasicircular vortex tra-
jectories with relatively small radius constitute an important
distinctive feature of the system under consideration as com-
pared with the exciton-polariton condensates analyzed in
Refs. [22,24]. The quasicircular form of the trajectories leads
to a localization of vortices, hampering their encounters when
the vortex density becomes low. This is illustrated in Figs. 2(b)
and 2(c), with their time intervals indicated in Fig. 2(a) as
“b” and “c,” respectively. In Fig. 2(b), with the higher vortex
density, trajectories of vortices (red) and antivortices (blue)
intersect quite frequently, leading to efficient annihilation.
Within the corresponding subnanosecond time interval, as
many as 70 vortex-antivortex pairs annihilate in the simulation
region. In contrast, the low vortex density in Fig. 2(c) together
with the well localized vortex orbits prevent annihilation
during the longer time interval “c.” In addition to the self-
acceleration that leads to circular orbits, the nonequilibrium
situation leads to outward particle flows from vortex cores that
cause—similarly to the case of exciton-polariton condensates
[22]—long-range repulsion of vortices independent of their
mutual chirality [23]. As a consequence, the localized orbits
show very little overlap in the regime of low density. Further-
more, most of these orbits are seen to have a very low mobility,
similar to a reduced transverse mobility of electrons in a mag-
netic field, so that vortex-antivortex collisions are rather rare.
As a result, only one pair recombines in the simulation region
in the time interval of about 13 ns. Increasing the emission rate
B21 both reduces the radius of the circular vortex trajectories
and increases the long-range repulsion [23], explaining why
the plateau only develops for sufficiently large B21.

The subsequent decay of the pair density for B12 = 10B0

can be understood from the recombination of low-mobility

particles, analogous to particle-hole recombination in low-
mobility semiconductors. In the inset of Fig. 2(a), we compare
σ (t ) with fits to the Langevin pairwise and Shockley-Read-
Hall (SRH) single-particle recombination, described by

d

dt
np = −αn2

p (Langevin), (2)

d

dt
np = −αnp (SRH). (3)

The better fit to the Langevin model for times up to about
500 ns shows that pairwise annihilation is dominant when the
pair density is sufficiently large. At later times, when the pair
density has dropped, there is some deviation towards the SRH.
The vortex density evolution is seen to be relatively close to
the Langevin dynamics but with some deviation towards the
SRH. Our tentative explanation of this deviation is that—as
implied by Fig. 2(c)—not all vortices have the same mobility.
Indeed, the exact SRH dependence would correspond to the
limiting case where most of the vortices are pinned (have zero
mobility) and some are mobile. Then it is natural to expect that
less drastic but still significant differences in mobility result in
some “intermediate” annihilation curve as compared with the
purely Langevin and SRH dynamics.

As seen from Fig. 2(a), when increasing the emission co-
efficient from B21 = 10B0 to B21 = 20B0, the plateau on the
σ (t ) shifts down to lower pair densities and fully disappears
at B21 = 30B0. At those large B21, the energy relaxation pa-
rameter κ exceeds unity and the effect of its increase on the
long-time pair-density dynamics dominates over that of the
emission-absorption rates.

At the longest times, when only a few pairs remain (σ �
10−4), the slope of σ (t ) becomes flatter. In this regime, there
is a formation of metastable low-density vortex-antivortex
configurations. This interpretation is supported by the re-
sults of our simulations for finite arrays, where formation of
metastable vortex-antivortex states, qualitatively resembling
those obtained in gGPE simulations for exciton-polariton con-
densates [24], has been observed [49].

B. The role of tunneling and losses

From the two parameters J and γ out of which the length
scale rv ∝ √

J/γ has been argued to serve as a first estimate
for the vortex core size [23], the effect of the tunneling on the
pair relaxation dynamics is the most straightforward. Com-
paring in Fig. 4 the solid with the dotted curve, one sees that
the pair relaxation rate is enhanced when J is increased, a
dependence that can be understood with the following “spatial
resolution” argument. An increase of J can be thought of as an
increase in spatial resolution within the continuum limit of the
lattice model [23]. Correspondingly, the long-time behavior
of σ (t ) at J = 2J0 is close to that of σ (t )/2 at J = J0, except
at shortest t , when the vortex cores strongly overlap and the
structure of individual vortices is not well developed, so that
the spatial resolution argument is not applicable.

In contrast to the dependence on J , the effect of the loss
rate γ is more subtle. The comparison of the solid and dashed
lines in Fig. 4 shows that, for larger γ , relaxation is faster
at intermediate times, but slower at long times. Our interpre-
tation of these dependencies is as follows: At earlier times,
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FIG. 4. Evolution of the vortex-pair density σ at different values
of the coupling strength J and loss rate γ at fixed B21 = B0 and n̄ =
n0. The inset shows the single-run evolution of σ at two different
relatively small values of J and fixed J/γ = 1, B21 = 3B0, n̄ = n0.

when the vortex density is large, it is mainly the enhanced
stabilization of the density due to pump-loss dynamics that
leads to a faster disappearance of vortex pairs. This argument
is in line with the explanation of the role of B21 on the very
early time dynamics in the discussion of Fig. 2. At lower
pair density, however, the outward particle currents, leading
to repulsion between vortices of opposite chirality, become
important [23]. These currents increase with the loss rate and
therefore stronger losses suppress the pair annihilation rate.
In general, the competition between the two different effects
of losses on the annihilation rate results in a rather intricate
influence of γ on the shape of the annihilation curve. When
J and γ are varied simultaneously, keeping the length scale
rv = √

J/γ fixed, the effect of J on σ (t ) dominates, as illus-
trated in the inset of Fig. 4: the curve with larger J (dotted)
shows a faster decrease of σ with respect to the one at lower
J (full line).

A remarkable feature of the curves σ (t ), shown in the inset
of Fig. 4 and corresponding to rather weak coupling J , is
their nonmonotonic behavior at relatively low pair densities.
This behavior reflects noise-induced generation of new vortex
pairs, which becomes more pronounced with decreasing J
as the system gradually approaches the BKT transition point
[34]. These pair generation processes significantly slow down
relaxation of the system towards a vortex-free state.

C. The influence of photon number

Let us finally discuss how the photon number affects the
pair annihilation rate. In Fig. 5(a), we show σ (t ) for various
photon numbers, that are smaller than those used in Figs. 2–4.

The first effect of a decreasing photon number is that
it takes longer before the appreciably fast pair annihilation
starts. This is the same trend as in Fig. 2 for decreasing
emission rate. The reason is analogous to that for lower photon

(a)

(b)

FIG. 5. (a) Evolution of the vortex-pair density σ at different
values of the emission coefficient B21 and average photon density
n̄ for fixed J = J0 and γ = 0.35γ0. (b) Oscillations of the inverse
vortex-pair density σ−1 (dotted line) in comparison with the oscil-
lations of the spatially averaged photon density 〈n〉 (solid line) at
B21 = B0, n̄ = 0.06 n0.

number: it takes longer for the density to stabilize around its
mean value because of slower absorption-emission dynamics.

A second feature that stands out in Fig. 5(a) is that, at the
smallest photon number n = 0.02 n0 = 1000, the pair density
does not decay to zero (dash-dot-dotted line). The reason is
that the photon number is below the critical photon number
for the Berezinskii–Kosterlitz–Thouless phase transition nc ≈
1200, estimated with the use of the numerical and analytical
results from Ref. [34]. The vortices present at late times (after
t ≈ 30 ns) are therefore spontaneous vortices caused by the
noise in the system and are no longer due to the random initial
condition of the photon field. For the dash-dotted curve at the
second lowest photon number n = 0.06 n0 = 3000, creation
of new pairs by the noise leads to pronounced fluctuations
of the pair density and strongly slows down its overall final
decay. Since the photon number is much above the critical
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number for the BKT transition, we expect that the pair number
will tend to zero at very long times.

A further notable feature of the two curves at the lowest
photon numbers are the oscillations after the initial decay of
σ . These are related to the behavior of the photon number
density [see Fig. 5(b)], which exhibits relaxation oscillations
analogous to lasers [50] or perturbed photon condensates [51].
At lower densities, the noise becomes relatively more impor-
tant, leading to a more intense creation of new vortex pairs.
Consequently, the vortex number shows oscillations, which
decay together with the photon density oscillations and have
the opposite phase (with some retardation).

Let us now turn to the difference between the solid and
dashed lines in Fig. 5(a), which illustrate most clearly that,
far above the BKT transition, a lower photon number speeds
up the decay of vortex pairs. We identify two reasons for
this dependence. First, at lower photon number, the outward
currents from each vortex core, which are responsible for
the vortex-antivortex repulsion, decrease [49], facilitating the
annihilation of vortex pairs. Second, at lower photon numbers,
the larger radius of the quasicircular vortex trajectories and
higher relative intensity of the noise [49] give the vortices a
higher mobility, such that the formation of quasistable vortex
patterns similar to that shown in Fig. 2(c) is less likely.

IV. CONCLUSIONS AND OUTLOOK

We have studied in this paper the phase annealing of a lat-
tice of nonequilibrium photon condensates, which is created
by a rapid switching of the pump-laser intensity. The initial
state shows very poor coherence due to its random phases at
each lattice site. After a transient with large density fluctua-
tions, well-defined vortices and antivortices are formed. The
energy relaxation, which stems in the case of photon conden-
sates from the Kennard–Stepanov relation, leads subsequently
to the annihilation of vortex pairs. Our numerical simulations
show that when the emission and absorption rates are very
high, the vortices annihilate with the time dependence from
XY model relaxational dynamics [35,36].

At lower values of the emission and absorption rates, vor-
tex repulsion, caused by outward currents from the vortex
cores, in combination with quasicircular motion of self-
accelerated vortices can considerably slow down the pair
annihilation. In this regime, a repulsive gas of vortices and
antivortices with low mobility is formed, which survives for a
significantly longer time. Its annihilation was shown to be in
between Langevin and SRH-like dynamics.

For what concerns the influence of the tunneling and loss
rates, the dependence on the former is the most straightfor-
ward. A modification of the tunneling rate can be seen as a
change in spatial resolution with a corresponding effect on
the vortex density (an increased tunneling leads to a decrease
in the number of vortices). The dependence of the vortex
annihilation on the loss rate is less pronounced and exhibits
different trends at early and late times. Increasing the losses
leads to an increase of the annihilation rate at early times and
a slowing down at later times.

Finally, we have investigated the role of the photon number.
Naturally, when the photon number is decreased below the
critical number for the BKT transition, the vortex pairs no
longer disappear at late times, but an equilibrium between
their recombination and their noise-induced generation is es-
tablished. Within the ordered phase, however, increasing the
photon number slows down the vortex pair annihilation due to
an increase of outward currents and a reduction of the vortex
mobility.

In the present work, we have focused on the presence and
absence of vortices, the natural perspective from the phase
annealing of 2D equilibrium condensates. It has been shown,
however, that for sufficiently large systems, the phase dy-
namics of nonequilibrium condensates belongs to the KPZ
universality class. It would be interesting to look for sig-
natures of the KPZ physics on the phase annealing of
nonequilibrium photon condensates.

Our simulations were performed for a translationally in-
variant system with equal tunnelings between all lattice sites,
where the ground state is one with a uniform phase. The time
needed to eliminate the vortices from the system is therefore
the time that the system needs to reach the lowest-energy
state. It has been suggested to use photon condensates for
analog computation by letting them find the ground state of a
nontrivial classical XY model Hamiltonian [25]. Our insights
obtained here on the annihilation of vortex pairs are expected
to be relevant for the estimation of the time needed to reach
the ground state in such applications and the trends that were
observed for the dependence on the system parameters may
be useful in order to improve the performance of analog com-
puting with photon BECs.
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Szymańska, Phys. Rev. X 7, 041006 (2017).

[34] V. N. Gladilin and M. Wouters, Phys. Rev. A 104, 043516
(2021).

[35] B. Yurke, A. N. Pargellis, T. Kovacs, and D. A. Huse, Phys. Rev.
E 47, 1525 (1993).
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