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Exceptional point (EP) degeneracies in coupled cavities with gain and loss provide on-chip photonic devices
with unconventional features and performance. However, such systems with realistic structures often miss the
exact EPs even in simulation, and the mechanism of this EP disruption has yet to be thoroughly identified. Here
we extend the coupled-mode theory of one-dimensional non-Hermitian resonator arrays to study the effects of the
imaginary part of the intercavity coupling, which is a second-order term and attributed to material amplification,
absorption, and radiation. By taking an appropriate gauge for the model, we clarify that the imaginary coupling
components have a symmetric form in the effective Hamiltonian and hence represent non-Hermiticity. These
additional factors can lift the gain- and loss-based EP degeneracies. However, they are proportional to the sum of
the imaginary permittivities for involved cavity pairs. Thus, when the amplification and absorption of adjacent
cavities are balanced, their contribution to the imaginary coupling is canceled and the EP singularity can be
restored. Radiation-induced imaginary couplings measure the change in net radiation loss by the interference
between cavity modes. Their impact on the EP can also be counteracted by small cavity resonance detuning even
in loss-biased cases. We show and analyze eligible simulation examples based on photonic crystal nanocavities
and highlight the design of an ideal EP degeneracy that is protected by generalized parity-time symmetry and
induced by radiation.
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I. INTRODUCTION

Exceptional points (EPs) in parity-time-symmetric (PT -
symmetric) optical systems are the degeneracies of eigen-
modes originating from the contrast of their imaginary parts
of refractive indices, namely, distributed gain and loss [1–12].
Ideal EPs make not only some spectral eigenvalues but also
corresponding eigenstates identical. This EP degeneracy in-
duces directional responses [13–16], single chirality [17–19],
and enhancement of photonic local density of states [20–23].
In addition, EPs correspond to branch points of the spectral
eigenvalues that behave as complex radical multifunctions.
Thus, the system around them undergoes a peculiar phase
transition from extended to localized modes with singularity
[24,25]. This EP transition enables optical isolation [26,27],
modal control of lasers [28–32], and enhanced sensitivity
[33,34], to name a few. Moreover, encircling an EP can give
rise to eigenmode switching [35,36] and asymmetric mode
conversion [37,38]. Exceptional points also exhibit uncon-
ventional charge vortices, topological states, and symmetry
protection [39–48].

Despite their various intriguing properties, photonic EPs
are single points in continuous parameter spaces and can
hence be lifted by small perturbation, which is common in
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practical systems. The resultant unavailability of the exact EP
hampers not only the unconventional responses based on the
degenerate eigenstate but also the divergent change in fre-
quency required for sensing applications. In coupled cavities
(waveguides), this problem is usually attributed to the un-
desired detuning of their resonance frequencies (propagation
constants), which stems from structural disorder and biased
distributions of heat and active carriers. On the other hand,
the exact EPs often dissolve even in simulations that do not
take these effects into consideration [49,50]. Thus, the entire
mechanism of their disappearance should be explored.

Gain- and loss-induced EPs in evanescently coupled pho-
tonic lattices are mostly analyzed with the system’s effective
Hamiltonian in the coupled-mode theory (CMT) within the
first order of the coupling coefficient [51–53]. This framework
seems equivalent to a variational approach [54] and includes
the on-site gain and loss, mode detuning, and real coupling
terms. However, it does not cover the lifting of such EPs in
systems with no detuning.

In fact, it was pointed out phenomenologically that general
complex couplings might be responsible for this EP disrup-
tion [55]. An elaborate CMT for uniformly lossy waveguide
arrays [56] also revealed the existence of a small imaginary
component of the waveguide coupling that had been missed in
the literature. Moreover, a perturbation analysis for two cou-
pled planar waveguides [57] indicated asymmetric complex
couplings for guided-mode basis, which actually resulted in
smoothed EP transitions of eigenvalues. However, it is still
unclear how the material gain, absorption loss, and radiation
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of on-chip coupled resonators (waveguides) exactly contribute
to the system’s coupled-mode equations (CMEs). A compre-
hensive picture of such non-Hermitian CMEs is needed to
understand how the EP degeneracies are actually lost and
can possibly be restored. Dependable design principles for
realistic devices with exact EPs are also desired.

In this study we extend the non-Hermitian coupled-mode
formalism for periodic units of two dielectric resonators with
gain and loss. We clarify that the amplification, absorption,
and radiation of cavity fields all give rise to finite imaginary
parts of the intercavity couplings. These imaginary coupling
terms take a symmetric form in the effective Hamiltonian and
hence represents non-Hermiticity, as it works as the source of
anti-PT -symmetric EPs in other dissipative systems [34,58].
It generally lifts the EPs based on on-site gain and/or loss. We
also show, however, that if the unit cell has balanced imagi-
nary refractive indices in the cavities, their contribution to the
imaginary coupling is canceled. We simulate complex band
structures of photonic crystal cavities based on buried het-
erostructures with amplification and absorption and confirm
that our imaginary coupling explains well the disappearance
and revival of their EP depending on the parameters.

Coupled cavities with radiation loss are found to be for-
mally described by the same CMEs as those with material
gain and loss. Here we reveal that the radiation-induced imag-
inary couplings denote the change in net loss of coupled
modes by the interference of radiation fields. They may have
complicated nonlocal features unlike the permittivity-induced
effects, because radiation fields inherit phase coherence of
coupled modes and are free from exponential decay in air. We
examine a two-cavity system where the model is exact and
show a modified EP condition that additionally requires the
balance between the imaginary coupling and cavity frequency
detuning. Such EPs respect a generalized PT symmetry and
exhibit topological robustness to continuous changes in pa-
rameters. We also simulate two coupled point-defect photonic
crystal cavities and identify their ideal EP induced by radi-
ation. Structural modulation of the cavities results in both
the contrast of their solitary radiation loss and variation in
their complex intercavity coupling. Although the latter con-
tinuously dislocates the EP in the CMT parameter space, we
successfully find a condition where coexisting small reso-
nance detuning compensates for the imaginary coupling and
thus the system reaches a singular EP degeneracy.

II. OVERVIEW AND ARTICLE STRUCTURE

We consider one-dimensional periodic systems of coupled
single-mode optical resonators (Fig. 1). Their unit cells have
two generally distinct cavities with unperturbed resonance fre-
quencies (ω1, ω2) and on-site modal gain and/or loss (γ1, γ2).
All the cavities are supposed to be equally spaced so that they
will be uniformly coupled by evanescent waves.

In this study we show that the CMEs for such systems can
be written as

−i
da2h−1

dt
= (δ − iγ1)a2h−1 − (κr + iκi )(a2h−2 + a2h),

(1)

−i
da2h

dt
= (−δ− iγ2)a2h− (κr + iκi)(a2h−1+ a2h+1),

1 – i 1 2 – i 2 1 – i 1 2 – i 2

r + i i r + i i r + i i

FIG. 1. Conceptual schematic of the system. It comprises pairs
of equally spaced single-mode cavities with resonance frequencies
(ω1, ω2) and on-site gain and loss (γ1, γ2). In our CMT, the gain
and loss induce a small direction-independent imaginary coupling
iκi ∈ iR, in addition to the Hermitian evanescent coupling κr ∈ R.

where an is the mode amplitude for cavity n and h = 1, 2 . . .

is the index of the unit cells. The real coupling term κr ∈
R measures the lossless energy exchange between cavities
and is common in the literature. In addition, we derive an
imaginary counterpart iκi ∈ iR, which denotes the interplay
between the photonic hopping and material gain and loss, or
the modulation of net radiation loss by the interference of
radiation fields. The evanescently coupled cavities indicate
that κr � κi. Here ±δ = ±(ω1 − ω2)/2 are the relative mode
frequencies of the cavities to their average ω0 = (ω1 + ω2)/2.
This detuning parameter might be controlled to reach the EP
even under the existence of κi. In Sec. III we derive the CMEs
for coupled dielectric resonators with finite imaginary parts of
the permittivities of the cavity media in order to investigate
how the imaginary coupling terms appear and depend on the
material gain and loss. The system under the periodic bound-
ary condition exhibits the complex eigenfrequency detuning

�ω(k) = −i
γ1 + γ2

2

±
√

4(κr + iκi)2 cos2 kL

2
−

(γ1 − γ2

2
+ iδ

)2

, (2)

where k is the Bloch wave number and L is the lattice constant
of the unit cells. When κi = δ = 0, the system respects PT
symmetry and has exact EPs for |γ1 − γ2| � 4|κr |. However,
finite κi generally washes out such degeneracies from the band
structure, even though the constituent cavity resonances are
coincident, i.e., δ = 0.

In Sec. V we show the power of our CMT formalism with
a simulation of buried-heterostructure photonic crystal cavity
arrays. The simulation result clarifies that the amplification-
and absorption-based imaginary couplings are proportional
to the sum of the imaginary permittivities of the involved
cavities, being consistent with our analytic derivation. The
balanced material gain and loss in the unit cell hence cancel
their contribution to the imaginary coupling and restore the
EP, as long as radiation effects and δ are negligible.

In Sec. IV we provide a CMT for passive coupled cavities
with contrast of their radiation loss. By modeling the radiation
effects with a virtual absorber placed at infinity, we obtain
CMEs with the same form as Eq. (1). Here we focus on a
system of two cavities, because some nonlocal imaginary cou-
plings, implied in Sec. V, may be present in radiation-based
systems with more cavities. For clarity, we write the CMEs
here as

−i
da1

dt
= (δ − i�1)a1 − (κr + iKi )a2,

(3)

−i
da2

dt
= (−δ − i�2)a2 − (κr + iKi )a1,

013523-2



IMAGINARY COUPLINGS IN NON-HERMITIAN … PHYSICAL REVIEW A 105, 013523 (2022)

where (�1, �2) and Ki denote the cavities’ radiation loss and
radiation-induced imaginary coupling. Its theoretical eigen-
frequency detuning �ω± reads

�ω± = −i
�1 + �2

2
±

√
(κr + iKi )2 −

(
�1 − �2

2
+ iδ

)2

.

(4)
Again, finite Ki or δ generally lifts the EPs of �ω± in the
non-Hermitian phase transition where the loss contrast l ≡
(�1 − �2)/2 is varied. However, we can identify such dis-
placed EPs in the two-parameter space with δ and l . We also
discuss their topological robustness based on generalized PT
symmetry [46].

In Sec. VI we demonstrate theoretically the radiation-based
EP in two coupled Si photonic crystal nanocavities. By adjust-
ing two distinct structural parameters, we control both δ and
l and find a parameter trajectory where the system respects
the general PT symmetry. As a result, we reach an ideal EP
accompanied by the singular coalescence of the eigenvalues
�ω± and balanced Ki and δ. Our CMT explains the entire
simulation result without any notable discrepancy that would
suggest unexpected factors.

We discuss the applicability of our CMT and conclude our
study in Sec. VII.

III. NON-HERMITIAN COUPLED-MODE THEORY:
EFFECTS OF MATERIAL AMPLIFICATION

AND ABSORPTION

A. Derivation of coupled-mode equations

Here we rigorously derive our CMEs [Eq. (1)] for active
dielectric resonators and clarify how the permittivity-based
imaginary couplings appear. The considered system is shown
schematically in Fig. 2(a). It comprises unit cells of two
rectangular cavities defined by heterostructures with high real
specific permittivities {ε j,r} compared to that of the boundless
cladding material εe,r . Here the modular cavity index j is

j =
{

1 (n mod 2 = 1)
2 (n mod 2 = 0). (5)

The two constituent cavities in three-dimensional Cartesian
coordinates can have different sizes 2wx, j , 2wy, j , and 2wz, j

in the x, y, and z directions, respectively. The cavity media
also have generally distinct imaginary parts of permittivity
{ε j,i}. We postulate that the structural and material discrep-
ancy among the cavities is sufficiently small so that the
considered cavity modes have the same order and symmet-
ric property. The position of the nth resonator is defined as
rn ≡ (xn, yn, zn) = n�rp, where the displacement between any
adjacent cavities is equal and defined as �rp. The relative per-
mittivity distribution of the system with N cavities can hence
be written as

ε(r) = εe,r + iεe,i +
N∑

n=1

[(εn,r − εe,r ) + i(εn,i − εe,i )]ζn(r),

(6)

ζn(r) = [H (�xn + wx, j ) − H (�xn − wx, j )]

× [H (�yn + wy, j ) − H (�yn − wy, j )]

× [H (�zn + wz, j ) − H (�zn − wz, j )], (7)

εe,r + iεe,i  

ε1,r + iε1,i  
ε2,r + iε2,i  

Φ1(r – rn) 
Φ2(r – rn+1) 

ε1,r + iε1,i  
ε2,r + iε2,i  

Φ1(r – rn+2) 
Φ2(r – rn+3) 

r 

rn = nrp xy
z

(a)

{x, y, z}

{xn, yn, zn}

2w{x,y,z},j

ζn

1

(b)
Ψm+1,r

(c)

0

εl,r− εe,r
r

rm+1rmrm−1 rm+2

εl,r− εe,r
Φl Φl

FIG. 2. (a) Non-Hermitian coupled dielectric resonators. The
unit cell comprises two equally aligned cavities with complex di-
electric constants of {ε j,r + iε j,i} and unperturbed cavity modes {� j},
where j = 1, 2 is the cavity modular index. The system is buried
in a boundless cladding material with a permittivity of εe,r + iεe,i.
(b) Function ζn(r) in Eq. (7) that specifies the domain of cavity n. It
is centered at rn = (xn, yn, zn) and has widths of {2wx, j, 2wy, j, 2wz, j}
in the {x, y, z} directions. (c) Relative real permittivity distribution

m+1,r (r) based on Eq. (16) and schematic of the real coupling
κm+1,m [Eq. (23)] from �l̄ (r − rm+1) to �l (r − rm ), with l and l̄
the modular indices for cavity m and m + 1. Here 
m+1,r lacks the
contribution of the (m + 1)th cavity (dashed lines) and hence extracts
the inner product �l · �l̄ just within the mth one.

with εn,r = ε j,r ∈ R and εn,i = ε j,i ∈ R according to Eq. (5),
�xn ≡ x − xn, �yn ≡ y − yn, and �zn ≡ z − zn. Here ζn(r)
specifies the nth cavity with the products of Heaviside func-
tions H (·) [56]; see also Fig. 2(b).

Our CMT uses the electric eigenmodes E j (r, t ) for the
constitutive single cavities ( j = 1, 2), each of which is as-
sumed here to be completely transparent (ε j,i = εe,i = 0) and
isolated in the cladding material. The time-domain Maxwell
equation for electric fields E(r, t ) is

∇ × ∇ × E(r, t ) + 1

c2
ε(r)

∂2E(r, t )

∂t2
= 0, (8)

where c is the speed of light in a vacuum. Here E j (r, t )
can be decomposed into a dynamical factor exp(iω jt ) and
the vector-field components � j (r) that satisfy the spatial
Maxwell equation derived from Eq. (8), namely,

E j (r, t ) = � j (r) exp(iω jt ), (9)

∇ × ∇ × � j (r) = ω2
j

c2
ε j (r)� j (r), (10)

ε j (r) = εe,r + (ε j,r − εe,r )ζ0, j (r), (11)

ζ0, j (r) = [H (x + wx, j ) − H (x − wx, j )]

× [H (y + wy, j ) − H (y − wy, j )]

× [H (z + wz, j ) − H (z − wz, j )], (12)

where ε j (r) is the permittivity distribution of cavity medium
j singly placed at the origin and ω j is the modal angular
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eigenfrequency for cavity j. Here the complex refractive index
is written as n j,r − in j,i in this notation.

The key of our formulation is to determine the gauge of
the basis functions {E j (r, t )}. They are lossless and thus ω j ∈
R, because of the condition that each of the solitary cavity
media is transparent and its cladding layer is infinitely thick
[Eqs. (11) and (12)]. This means that both Eq. (10) and its
solution can be real, i.e., � j (r) ∈ R3 ∀ r. We explicitly take
this gauge so that the overlap integrals between any basis
cavity modes also become real in determining the form of the
CMEs.

In the coupled-mode approximation, the fields of the entire
non-Hermitian resonator array are expanded with the dis-
placed lossless cavity modes. We hence write E(r, t ) as

E(r, t ) =
[

N∑
n=1

an(t )� j (r − rn)

]
exp(iω0t ). (13)

Here an(t ) is the complex amplitude for cavity n and ω0 =
(ω1 + ω2)/2 is the average mode frequency. The effects of
resonance detuning, gain and loss, and intercavity couplings
are reflected in the dynamics of an(t ). By substituting Eq. (13)
into Eq. (8) and using Eq. (10), we obtain

N∑
n=1

[
ω2

jε j (r − rn)� j (r − rn)
]
an(t )

= −ε(r)
N∑

n=1

� j (r − rn)
[(

∂2
t + 2iω0∂t − ω2

0

)
an(t )

]
,

(14)

where ∂t ≡ ∂/∂t for simplicity. With the slowly varying ap-
proximation, we neglect ∂2

t an(t ) in Eq. (14). Subsequently,
ε(r) of the system [Eq. (6)] is deformed as

ε(r) = ε j (r − rn) + 
n,r (r) + iεi(r), (15)


n,r (r) =
N∑

k=1
k �=n

(εk,r − εe,r )ζk (r), (16)

iεi(r) = i

[
εe,i +

N∑
k=1

(εk,i − εe,i )ζk (r)

]
(17)

so that the terms with an(t ) can be organized. Here 
n,r (r)
denotes the relative real permittivity profile, excluding the
contribution of cavity n, and εi(r) is the entire imaginary
potential distribution. Equation (14) reduces to

N∑
n=1

[2δ jε j (r − rn)� j (r − rn)]an(t )

−
N∑

n=1

[ω0
n,r (r)� j (r − rn)]an(t )

− i
N∑

n=1

[ω0εi(r)� j (r − rn)]an(t )

= −2iε(r)
N∑

n=1

� j (r − rn)∂t an(t ), (18)

where δ j = ω j − ω0 and we have used ω2
j − ω2

0 ∼ 2ω0δ j

based on |ω j − ω0| 	 ω0. As shown below, the first, second,
and third terms of the left-hand side of Eq. (18) contribute to
the cavity detuning, real coupling, and on-site gain and loss
together with the imaginary coupling, respectively.

Equation (18) is now integrated with
∫

dr �l (r − rm) over
the space, with l the modular index for the mth cavity, namely,

l =
{

1 (m mod 2 = 1)
2 (m mod 2 = 0). (19)

Here the fields are normalized with
∫

dr �∗
l (r − rm) ·

εl (r − rm)�l (r − rm) = ∫
dr εl (r − rm)�2

l (r − rm) = 1, re-
calling that {�l=1,2(r)} are real. In contrast, we ignore
δ j

∫
dr �l (r − rm) · ε j (r − rn)� j (r − rn) for m �= n, because

of |δ j | 	 ω0 and
∫

dr �l (r − rm) · ε j (r − rn)� j (r − rn) 	
1. Note that εl (r − rm) is based on Eq. (11) for j → l and
defines medium l at r = rm by ζ0, j (r − rm) = ζm(r).

Because ∂t an(t ) is also a small first derivative [much
less than ω0an(t ) mostly], we drop all the tiny modula-
tion on its coefficient coming from other than εl (r − rm)
in ε(r), i.e.,

∫
dr ε(r)�l (r − rm) · ∑N

n=1 � j (r − rn)∂t an(t ) ∼
∂t am(t ) [see, for example, Eqs. (15)–(17) and Ref. [53]].
On the other hand, we keep the intercavity overlap in-
tegral with the imaginary permittivity, ω0

∫
dr εi(r)�l (r −

rm) · ∑N
n=1 � j (r − rn)an(t ) for m �= n on the left-hand side

of Eq. (18), in order to examine how they affect the responses
of this non-Hermitian system.

When we limit the couplings to the nearest-neighbor
(NN) components (tight-binding approximation), we obtain
an equation of motion for {am(t )},

−i
dam

dt
= (δl − iγl )am − (κm−1,m + iκ ′

m−1,m)am−1

− (κm+1,m + iκ ′
m+1,m)am+1, (20)

with the parameters

δl = ωl − ω0, (21)

γl = ω0

2

∫
dr εi(r)�2

l (r − rm)

≈ ω0

2

∫
dr[εe,i + (εm,i − εe,i )ζm(r)]�2

l (r − rm), (22)

κm±1,m = ω0

2

∫
dr 
m±1,r (r)�l (r − rm) · �l̄ (r − rm±1),

(23)

κ ′
m±1,m = ω0

2

∫
dr εi(r)�l (r − rm) · �l̄ (r − rm±1). (24)

Here l̄ is the modular index for the m ± 1th cavity, which
is paired with l so that (l, l̄ ) = (1, 2), (2, 1). Equation (22)
suggests that the on-site gain or loss γl in the coupled system
can be approximated as that applied to the solitary cavity
l with �l (r). Here κm±1,m and κ ′

m±1,m denote the real and
imaginary coupling components, respectively. As shown in
Eqs. (10), (15), (16), and (18), we measure the perturbation
from the system of the isolated resonances with high and
close frequencies {ω j} based on {ε j (r − rn)}. As such, the
derived real couplings κm±1,m just evaluate the fields incoming
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to cavity m and exclude the effect of those inside the adjacent
cavities via 
m±1,r (r) [Fig. 2(c)]. In contrast, the imaginary
couplings κ ′

m±1,m involves the entire contribution of the imag-
inary permittivity distribution εi(r), since the original basis
{� j} is free from it. The latter is hence affected by the gain
and loss for both the mth and (m ± 1)th cavity modes. Note
that κm,m/δl ≈ 0 because 
m(r) in κm,m filters out the intensity
in cavity m and the cladding material.

Remarkably, we notice that the inversion with reference
to rm, i.e., r − rm → r̄ − rm and r − rm±1 → r̄ − rm∓1, links
the pairwise coupling factors in both Eqs. (23) and (24). This
is because �l̄ (r − rm±1) are based on the same cavity mode
�l̄ (r) and because �l (r − rm) and �l̄ (r − rm±1) have the
same parity. We then have

κm−1,m = ω0

2

∫
d r̄ 
m−1,r (r̄)�l (r̄ − rm) · �l̄ (r̄ − rm−1)

= κm+1,m, (25)

κ ′
m+1,m = κ ′

m−1,m. (26)

Here we have considered the condition that the field prod-
ucts �l (r − rm) · �l̄ (r − rm±1) are well confined within the
correspondent adjacent cavities and that the cavities are peri-
odically aligned.

In addition, εi(r) is periodic and hence ensures that the
intercavity imaginary couplings (κ ′

m−1,m, κ ′
m,m+1) in the for-

ward direction are equivalent to the backward counterparts
(κ ′

m,m−1, κ ′
m+1,m), namely,

κ ′
m,m±1 = ω0

2

∫
dr εi(r)�l̄ (r − rm±1) · �l (r − rm)

= κ ′
m±1,m. (27)

This is not straightforward for the real couplings. However,
the correspondent pairwise factors are approximately equal at
least, because the basis modes (�l ,�l̄ ) are nearly identical
and the cavities have the common interval |�rp|:

κm,m±1 = ω0

2

∫
dr 
m,r (r)�l̄ (r − rm±1) · �l (r − rm)

≈ κm±1,m. (28)

Importantly, Eq. (28) maintains the equality κm,m±1 = κm±1,m

for the cavities of the same structure, i.e., (wx,1,wy,1,wz,1) =
(wx,2,wy,2,wz,2) and ε1,r = ε2,r [see also Eqs. (16) and (23)].
Equations (27) and (28) indicate that the coefficient matrix
for the mode amplitudes {am(t )} in Eq. (20) is complex
symmetric.

With Eqs. (20)–(28), we eventually reach the non-
Hermitian CMEs for the system,

−i
da2h−1

dt
= (δ − iγ1)a2h−1 − (κr + iκi )(a2h−2 + a2h),

−i
da2h

dt
= (−δ − iγ2)a2h − (κr + iκi )(a2h−1 + a2h+1),

(29)

where h = 1, 2, . . . , N/2; a0 = aN+1 = 0; κr ∈ R and κi ∈
R are the real and imaginary couplings, respectively; ±δ =
±(ω1 − ω2)/2 are the resonance detunings of the cavities
from ω0 = (ω1 + ω2)/2; and γl > 0 and γl < 0 denote gain

and loss for cavity l . Applying the periodic boundary condi-
tion, we have the linear equation Ĥ (k)�aB(k) = �ω(k)�aB(k)
for the system’s Bloch eigenvector �aB and eigendetuning
�ω(k) with the Hamiltonian

Ĥ (k) =
(

δ − iγ1 −(κr + iκi)(1 + e−ikL )
−(κr + iκi)(1 + eikL ) −δ − iγ2

)
,

(30)

where k is the Bloch wave vector and L = 2|�rp| is the lattice
constant for the unit cells. Its solutions can be written as

�ω(k) = −i
γ1 + γ2

2

±
√

4(κr + iκi)2 cos2 kL

2
−

(γ1 − γ2

2
+ iδ

)2

,

(31)

�aB(k) =[�ω(k) + δ + iγ2,−(κr + iκi)(1 + eikL )]T, (32)

where T denotes transposition.

B. Imaginary coupling and bulk EPs

The derivation of our model provides useful knowl-
edge about the system response. First, Eqs. (27) and (28)
mean that the effective system Hamiltonian with an open
boundary condition has a complex symmetric form and is
hence non-Hermitian. Forward and backward intercavity cou-
plings (cm,m+1, cm+1,m ) in non-Hermitian systems just indicate
cm,m+1 �= c∗

m+1,m in general and are affected by how to take
the basis. Here we have resolved such an arbitrary property
by determining the nontrivial constraint cm,m+1 = cm+1,m =
κr + iκi with the on-site cavity mode basis. This results in
a limited number of independent parameters in the model
and hence enables us to figure out the behavior of realistic
photonic devices, as seen in Sec. V.

Next we can estimate how the imaginary couplings depend
on the material properties. Let us consider a cavity array
composed of identical heterostructures with a real part of
their permittivity of εc,r . As the cladding material in such a
system is typically a passive dielectric or air, we can safely set
εe,i = 0. In this case, κi is determined by the overlap integral
of the fields just within the cavity media and the cavity mode
can be defined as �l (r) = �l̄ (r) ≡ �(r). With Eqs. (17) and
(24), we then have

κ ′
m±1,m = ω0

2

∫
dr εi(r)�l (r − rm) · �l̄ (r − rm±1)

≈ ω0

2
εl,i

∫
dr ζm(r)�(r − rm) · �(r − rm±1)

+ ω0

2
εl̄,i

∫
dr ζm±1(r)�(r − rm) · �(r − rm±1)

= ω0

2
(ε1,i + ε2,i )C, (33)

where

C =
∫

dr ζm(r)�(r − rm) · �(r − rm±1)

=
∫

dr ζm±1(r)�(r − rm) · �(r − rm±1). (34)

013523-5



TAKATA, ROBERTS, SHINYA, AND NOTOMI PHYSICAL REVIEW A 105, 013523 (2022)

Equation (33) offers an important conclusion that the imag-
inary coupling is proportional to the sum of the imaginary
dielectric constants of the cavities involved. This means that
loss-biased systems, even without any real potential contrast
(i.e., ε1,i + ε2,i > 0 and δ = 0), will miss the exact EP, be-
cause κi results in a finite imaginary component inside the
radical term in �ω(k) [see Eq. (31)]. Moreover, the local
overlap integral C also appears in the expression for the real
part of the coupling, i.e., Eq. (23). As a result, the order of the
ratio between the real and imaginary couplings is given by

κi

κr
∼ ε1,i + ε2,i

εc,r − εe,r
. (35)

Equation (35) shows why κi is second order in terms of the
NN mode overlap integral. In the context of the EP forma-
tion requiring the balance between on-site imaginary potential
contrast and real couplings, the right-hand side of Eq. (35)
implicitly reflects the overlap integral compared to the on-site
field intensity. The approximate equality here means that most
on-chip cavities are planar devices and hence governed by
effective indices, causing a deviation from Eq. (35) based on
the material permittivities.

With Eq. (31), we obtain a sufficient condition for �ω(k)
to have EPs as

1

2

g + iδ

κr + iκi
= η ∈ R, |η| � 1, (36)

where g = (γ1 − γ2)/2. Equation (36) requires that g + iδ and
κr + iκi are parallel in the complex plane. Such a δ appears to
be achievable for each g when |g| � 2|κr |. However, both g
and κi have been clarified to depend on the imaginary per-
mittivities (ε1,i, ε2,i ) with Eqs. (22) and (33), and the desired
argument arg(g + iδ) is hence not constant for active devices.
If the detuning δ also varies significantly with external pump-
ing, via thermal and carrier effects, it might be generally
difficult to reach an EP in experiment.

To address this problem, we show in Sec. V that the
permittivity-induced imaginary coupling is suppressed when
the system has balanced gain and loss, i.e., κi = 0 for ε1,i =
−ε2,i, in a simulation of buried-heterostructure photonic crys-
tal nanocavities.

IV. NON-HERMITIAN COUPLED-MODE THEORY:
IMPACT OF RADIATION

A. Modeling of radiation in coupled-mode theory

Every single mode of practical cavities and waveguides
exhibits radiation loss, which has a clearly different physical
origin from the material absorption studied in the preceding
section. Here we show a way to treat the radiation within
the CMT framework and discuss its impact on the imaginary
coupling.

We first consider a dielectric cavity medium, a cladding
material of finite size, and an extensive air layer outside for
each of the unperturbed single-mode cavities. All the mate-
rials here have real dielectric constants and the cavity modes
are supposed to have strong light confinement. A minute part
of each mode leaks out of the cladding layer and couples with
radiative plane waves. Here we consider enclosing the whole
system with a perfect electric conductor (PEC) located at

infinity so that the weak radiation fields are kept within the de-
fined air domain. In this case, the operator ∇ × ε−1(r)∇× of
the wave equation for the magnetic fields is Hermitian. More-
over, an eigenstate for the Maxwell equations has magnetic
and electric fields with a common eigenfrequency. Thus, we
can take a series of real electric cavity modes {� j (r) ∈ R3}
and their frequencies {ω j ∈ R} for our basis,

∇ × ∇ × � j (r) =ω2
j

c2
ε′

j (r)� j (r), (37)

ε′
j (r) = 1 · ζA(r) + εe,rζB(r) + (ε j,r − εe,r )ζ0, j (r), (38)

where ε′
j (r) is the permittivity distribution for the jth isolated

cavity system; n × � j (r) = 0 (r → ∞), with n a unit vector
normal to the PEC; and ζ0, j , ζA(r), and ζB(r) are products
of Heaviside functions that mark the position of the cavity
medium, air layer, and cladding material, respectively [see
Eq. (12) again, for example]. The permittivities of the cavity,
cladding material, and air are ε j,r , εe,r , and εA = 1, with 1 <

εe,r < ε j,r satisfied for the formation of cavity modes. The
reason for assuming such a basis is that optical modes with
radiation fields cannot be expanded rigorously by confined
modes just with exponentially decaying tails, which are used
in Sec. III.

Here we model the radiation effects by placing a virtual
absorbing layer just in front of the PEC at infinity (Fig. 3),
in analogy to well-known simulation techniques such as
the finite-difference time-domain method and finite-element
method. Although the reflection from such an absorber can
be totally suppressed [59], we need a magnetic conductivity
that introduces an additional term to the temporal Maxwell
equation for that case. For simplicity, we just suppose that its
permittivity ε∞ has the same real part as that of air, Reε∞ = 1,
and a small imaginary part Imε∞ = ε∞,i and that its size is
large enough to damp the light thoroughly. Because we can
make this virtual layer thicker at will, we should be able to find
a value of ε∞,i with which its reflection does not affect the re-
sponse of the cavities. The location of the absorber is denoted
by ζ∞(r) and expressed with some combination of Heaviside
functions so that its relative permittivity distribution is written
as ε∞(r) ≡ [1 + iε∞,i]ζ∞(r). We also put ζ∞(r) ⊂ ζA(r) and
can hence regard the perturbation by ε∞(r) as adding iε∞,i

to a part of the original air layer ζA(r) in Eq. (38). An open
system with N cavities ceases to be affected by the PEC in
this arrangement and its permittivity distribution ε′(r) has
apparent non-Hermiticity just by the absorption iε∞,iζ∞(r) in
the virtual layer, namely,

ε′(r) = εR(r) + iε∞,iζ∞(r), (39)

εR(r) = 1 · ζA(r) + εe,rζB(r) +
N∑

n=1

(εn,r − εe,r )ζn(r), (40)

where the nth cavity is again defined with ζn(r) shown in
Eq. (7) and located inside the background cladding region,
ζn(r) ⊂ ζB(r).

We again consider an array of unit cells with two distinct
cavities (l = 1, 2), where they have contrast of radiation loss
arising from small structural modulation, (wx,1,wy,1,wz,1) �=
(wx,2,wy,2,wz,2). By following the same derivation as in
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ε2,r
ε1,r

ε∞ = 1+ iε∞,i

cladding εe,r

virtual absorber

εA = 1

r∞ » N|rp|
air

x
yz

FIG. 3. Modeling radiation loss as a virtual absorbing layer
placed at infinity and surrounding a cavity array. The system orig-
inally has N dielectric cavity media, a cladding material layer with
finite size, and a boundless air region outside. We introduce an imag-
inary permittivity iε∞,i to a part of the air domain and reckon this
as a virtual absorber that totally damps the light. We assume that the
minimum distance r∞ between each cavity and the absorbing layer is
orders of magnitude larger than the array length N |�rp|. Although the
absorber is supposed to be distributed far in the ±x and ±y directions,
it is omitted for a better view of the system structure.

Sec. III, we obtain the CMEs for the system with ε′(r) as

−i
da2h−1

dt
= (δ − i�1)a2h−1 − (κr + iKi )(a2h−2 + a2h),

−i
da2h

dt
= (−δ − i�2)a2h − (κr + iKi )(a2h−1 + a2h+1),

(41)

while the on-site radiation loss �m < 0 and imaginary cou-
pling Ki within the NN read

�l ≈ ω0

2

∫
dr ε∞,iζ∞(r)�2

l (r − rm), (42)

Ki = ω0

2

∫
dr ε∞,iζ∞(r)�l (r − rm) · �l̄ (r − rm±1), (43)

where (l, l̄ ) = (1, 2), (2, 1) correspond to the modular indices
for (m, m ± 1). As shown in Eq. (42), the radiation loss of the
field is formulated with half of the mode intensity that reaches
the distant absorber. The definition of the real coupling κr

is shown in Eq. (28). We have considered that Eq. (43) for
all m is based on the single pair of cavity modes {�1,�2}
and the virtual absorptive layer is supposed to be equidistant
from any of two adjacent cavities. Such an imaginary coupling
term might also be derived when we virtually place dissipation
ports [60] so that each of them is symmetrically coupled with

each pair of NN cavities. However, our CMT will cover more
general cases, where the entire structure may be asymmetric
or anisotropic, by describing the coupling terms as integral
forms.

Here we find a remarkable relation

ω0

2

∫
dr ε∞,iζ∞(r)

∣∣∣∣ 1√
2

[�l (r − rm) + �l̄ (r − rm±1)]

∣∣∣∣
2

= �1 + �2

2
+ Ki. (44)

Equation (44) defines radiation loss for the superposi-
tion of the two basis cavity modes, [�l (r − rm) + �l̄ (r −
rm±1)]/

√
2. Each of the square terms �1 and �2 [Eq. (42)] is

the solitary contribution of each cavity. In contrast, the cross
terms Ki correspond to the forward and backward imaginary
couplings [Eq. (43)] and measure explicitly the impact of the
interference between �1 and �2. Within the NN approxi-
mation, we can extend our discussion to the entire N-cavity
system, namely,

ω0

2

∫
dr ε∞,iζ∞(r)

∣∣∣∣∣ 1√
N

N∑
n=1

�l (r− rn)

∣∣∣∣∣
2

≈ �1+ �2

2
+ 2Ki.

(45)
The imaginary coupling Ki is hence an essential factor de-
termining the net radiation loss of coupled resonators. It is
notable that the coefficient of Ki in Eq. (45) is twice as large
as that in Eq. (44). This difference corresponds to whether
each cavity couples with one or two other ones.

Equation (43) does not mention how �l and �l̄ interfere,
because it depends on their detailed spatial shapes. Here
Ki will include the contribution of both the interference of
evanescent fields residing mostly in the cladding layer and
that of plane waves radiated into the air. For the latter, each
cavity would behave like a point source and hence implicitly
provides an approximate factor proportional to 1/|r − rn|,
with rn the cavity position. Such a nonlocal property may lead
to non-negligible second-nearest-neighbor (SNN) radiation-
based imaginary couplings, third-nearest-neighbor ones, and
so on. They are in principle contained in the left-hand side of
Eq. (45).

Here we compare the radiation-induced imaginary cou-
plings and permittivity-based ones. As seen in Eqs. (29) and
(41), the effects of radiation and of the imaginary permittivi-
ties of gain media appear in the same form in the CMEs. The
difference between them is that different cavities can make
separable contributions in the latter. Then, what if the cladding
material has a finite imaginary permittivity εe,i instead of the
cavities? In fact, that case also yields an imaginary coupling
κi,B in the symmetric form. The κi,B is given by the overlap
integral of two adjacent cavity modes within the cladding
material, which is multiplied by εe,i, and this term is analogous
to the radiation-induced imaginary coupling, i.e., Eq. (43).
The following interpretation of the imaginary coupling helps
us understand such a similarity from the local perspective.

Let us consider that the spatial cavity modes {� j (r − rn) ∈
R3} are perturbed by the additional loss in the cladding
material and interpret this effect as the modulation of the
coupling terms. If the evanescent fields between cavities un-
dergo small leakages or absorption, they will have an extra
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factor exp(−α|�rp|), where α is the net extinction coefficient.
Because we focus on the case for α|�rp| 	 1, this term can be
decomposed as exp(−α|�rp|) ≈ 1 − sin(α|�rp|) [≈cos(α|�rp|) −
sin(α|�rp|)]. This means that the loss during the coupling al-
most preserves the original evanescent fields while giving a
small sinusoidal (quadrature) factor that induces phase retar-
dation of tunneling waves. Thus, the basis modes overlapping
within the cavities come to exhibit the interference that is
absent in the Hermitian system and the resultant change in
their intensity (i.e., energy) corresponds to the relative loss
in the cladding layer. In the CMT framework, this process is
reflected effectively in a finite argument of the complex cou-
pling, and hence Ki, regardless of how the fields are damped
in the coupling paths.

Nonetheless, we emphasize that the permittivity-induced
imaginary couplings are mostly limited to the NN compo-
nents, because they are based on evanescent fields. In contrast,
distant cavities can have finite radiation-based imaginary cou-
plings. Such nonlocal nature of radiation is expected to be
essential in systems with imaginary band structures that sig-
nificantly deviate from cosinusoidal shapes, one of which is
shown later in Fig. 5(b).

B. Non-Hermitian two-cavity system

In Sec. VI we examine the impact of the radiation-induced
imaginary coupling by simulating a system of two cavities
where the CMT is exact in terms of the coupling profile.
Here we describe the theoretical responses of such a system.
Note that the analysis is also applicable quantitatively for
the amplification- and absorption-based system. Equation (41)
can reduce to

−i
d

dt

(
a1

a2

)
=

(
δ − i�1 −(κr + iKi )

−(κr + iKi ) −δ − i�2

)(
a1

a2

)

≡ Ĥ

(
a1

a2

)
. (46)

The eigendetuning �ω± for Eq. (46) is given by

�ω± = −i
�1 + �2

2
±

√
(κr + iKi )2 −

(
�1 − �2

2
+ iδ

)2

.

(47)
By a trivial modification of Eq. (47) with l ≡ (�1 − �2)/2,
we can identify the condition for the EP as (κr + iKi )2 − (l +
iδ)2 = 0, namely, {

κr = l, Ki = δ,

κr = −l, Ki = −δ.
(48)

The two cases here correspond to two EPs in the entire pa-
rameter space. This simply means the equivalence of the two
cavities; either of them can be lossier. In addition to the bal-
ance between the real coupling κr and loss contrast l , a finite
imaginary coupling Ki must be compensated by the frequency
detuning δ for reaching the EP. This means that EPs in real
systems, more or less, should be found in the hybrid of PT -
symmetric and anti-PT -symmetric potential in terms of the
on-site mode basis, as has been shown phenomenologically
[55].

We further discuss the topological robustness of the EPs in
the two-cavity system with the imaginary coupling. Here we
exclude the average potential contribution from the effective
Hamiltonian Ĥ , which does not affect the essential behavior
of the system. The resultant unbiased Hamiltonian is defined
as

Ĥ ′ ≡ Ĥ + i
�1 − �2

2
Î =

(
δ − il −(κr + iKi )

−(κr + iKi ) −δ + il

)
,

(49)
where Î is the 2 × 2 identity matrix. By separating the real and
imaginary parts of the radical term in Eq. (47), we obtain the
eigenvalues of Ĥ ′ as

�ω′
± = ±

√
κ2

r − K2
i − l2 + δ2 + 2i(κrKi − lδ). (50)

Remarkably, we notice a condition

κrKi − lδ = 0 (51)

for purely real or imaginary eigenvalues �ω′
±, which are also

seen in ideal PT -symmetric coupled cavities. We show below
that systems with Eq. (51) actually respect a generalized PT
symmetry [44–46].

By using Pauli matrices (σ̂x, σ̂y, σ̂z )T ≡ σ̂, the unbiased
Hamiltonian is written as

Ĥ ′ = −(κr + iKi )σ̂x + (δ − il )σ̂z = (b + id ) · σ̂, (52)

where b = (−κr, 0, δ)T and d = (−Ki, 0,−l )T. Here Ĥ ′ does
not include any σ̂y components, and Eq. (51) means the or-
thogonality of the real and imaginary spin coefficient vectors,
b · d = 0. In this case, the orthogonal transformation defining
a rotation of the effective spinor (a1, a2)T around y axis,

R̂ ≡ exp

(
−i

θ

2
σ̂y

)
=

(
cos θ

2 sin θ
2

− sin θ
2 cos θ

2

)
, (53)

θ = tan−1

(
δ

κr

)
, (54)

is found to reframe the system so that the modified Hamilto-
nian has purely real couplings and imaginary on-site potential
contrast,

H̃ ′ = R̂Ĥ ′R̂−1 =
(−iξ −χ

−χ iξ

)
, (55)

ξ = κr l + Kiδ√
κ2

r + δ2
, χ =

√
κ2

r + δ2. (56)

Here a tilde is used to mark an operator in the rotated system.
It immediately follows that H̃ ′ respects the conventional PT
symmetry

P̃T̃ H̃ ′(P̃T̃ )−1 = H̃ ′, (57)

where P̃ = σ̃x is the inversion operation and T̃ = K̃ denotes
complex conjugation. Equation (57) reduces to the general
PT symmetry for the original basis

Û Ĥ ′∗Û −1 = Ĥ ′, ÛÛ ∗ = +1, (58)

where Û = Û ∗ = R̂−1P̃R̂ is a unitary operator.
Our EPs with Eq. (48) satisfy Eq. (51). Thus, they are char-

acterized by the general PT symmetry [46], i.e., Eq. (58). The
complex spectrum �ω′

± has fractional rounds of phase vor-
tices around the EPs, which are denoted by ν = ± 1

2 depending
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FIG. 4. (a) Top-view schematic of the unit cell of the considered
nanocavity array. The system is composed of a two-dimensional
triangular-lattice photonic crystal slab and periods of two active
heterostructures that are buried in narrow line defects and arranged
in a zigzag geometry. (b) The z component of the magnetic fields of
a coupled ground mode for n1,i = n2,i = 0. Evanescent fields spread
in diagonal directions and the strong coupling is hence achieved.

on whether their direction is clockwise or counterclockwise
[39–41]. This fractional charge ν comes from the fact that
a square-root complex function needs two laps of variables
around the branch point to get back to the same value. It actu-
ally corresponds to the Z2 topological invariant of the general
PT -symmetric EPs. The EPs with finite ν are hence robust
to continuous changes in the parameters. In other words, for
any systems with specific (κr, Ki ), there exists a trajectory
[Eq. (51)] that guarantees the general PT symmetry in the
(l, δ) space. We can always find the EPs incorporated there by
varying the two parameters l and δ, unless the EPs annihilate
each other just at the origin: κr = l = 0 and κi = δ = 0.

V. IMAGINARY COUPLINGS AND EXCEPTIONAL POINTS
IN COUPLED ACTIVE HETEROSTRUCTURE

NANOCAVITIES

In this section we apply the theoretical framework de-
veloped in Sec. III to a practical simulation example of
an array of buried-heterostructure photonic crystal nanocav-
ities [23,49,61,62], which is one of the well-behaved non-
Hermitian coupled-mode platforms. Figure 4(a) depicts the
top view of its unit cell schematically. The system is con-
structed on an InP slab (nInP = 3.16) with a thickness of t =
250 nm suspended in the air and has a periodic condition in
the horizontal (x) direction. The underlying two-dimensional
photonic crystal is a triangular lattice of circular air holes with
radius R = 120 nm and lattice constant a = 450 nm. Bulk
InGaAsP heterostructures (nBH,r = 3.539) with dimensions of
5a(2.25 μm) × 0.3 μm × 0.15 μm are buried in line defects
with five air holes removed. They are arranged in a zigzag
alignment and form effectively a one-dimensional coupled
cavity chain, because their ground mode has evanescent tails
in the �-M and �-M ′ directions, as shown in Fig. 4(b). The
cavities are all equally spaced and the unit cell period is
L = 18a. The line defects are narrowed by shifting both the
upper and lower rows of air holes toward the center so that
their width is 0.85W0 (W0 = √

3a). This structural modulation
improves the optical confinement of the coupled modes. The
single nanocavity with eight layers of photonic crystals on

both sides, which are also adopted in the periodic system, has
a Q factor of Q = 1.9 × 105 for the ground mode. Photonic
band structures of the three-dimensional system are computed
by a numerical solver based on the finite-element method
for different configurations of the imaginary indices of the
heterostructures denoted by n1,i and n2,i.

Figures 5(a) and 5(b) present the complex band struc-
ture ω(k) ≡ ω0 + �ω(k) for the system of cold cavities, i.e.,
n1,i = n2,i = 0. As seen in the analytic eigendetuning [Eq.
(31)] with δ = 0 and γ1 = γ2, Reω(k) is of a folded cosine
shape here [Fig. 5(a)]. Meanwhile, we notice that the average
of the upper and lower real bands is slightly dispersive and
there is hence a tiny SNN coupling component. In this case,
the detuning is corrected according to the Rice-Mele Hamil-
tonian [63,64] and the mode frequencies read

Reω(k) = ω0 − 2ρ cos(kL + φ) ± 2κr cos
kL

2
, (59)

where ω0 is the resonance frequency of a single cavity and ρ ∈
R and φ ∈ R are the amplitude and additional phase factor of
the SNN coupling, respectively. Note that the SNNs of each
cavity are a unit cell away and thus the dispersion by them de-
pends on kL. The blue solid curves in Fig. 5(a) are the analytic
real bands [Eq. (59)] for κr = 32.08 GHz, ρ = 0.662 GHz,
and φ = 0.013 rad, which fit closely with the simulation result
(blue circles). In contrast, the imaginary bands have narrow
but complicated oscillation structures [Fig. 5(b)]. Because
the imaginary parts of the material indices are all zero, this
property should solely be attributed to radiation. The cavity
modes here are formed in the thin air-suspended slab. Thus,
their small out-of-plane radiation fields result in not only finite
on-site loss but also nonlocal imaginary couplings that give
rise to the fast oscillation components in Imω(k).

Complex band structures for cavities with uniform ab-
sorption loss, n1,i = n2,i ≡ nL,i > 0, are systematically inves-
tigated. An example with nL,i = 0.005 is plotted in Fig. 5(c).
Here, simulated Reω(k) (symbols) can be reproduced well by
Eq. (59) with almost the same parameters used for Fig. 5(a),
as shown again by blue curves (only ρ is slightly changed:
ρ = 0.661 GHz). Although Imω(k) for this case still looks
wavy, its upper and lower bands become split except for
k = π/L and are nearly linear around the same point.

As is known in classic laser theory [65], the absorption
(carrier excitation by photons) and radiation (coupling with
a thermal reservoir) are considered as independent processes.
In addition, when the system comprises identical cavities with
no loss contrast, it essentially has a single frequency band,
where any intercavity couplings can only make separable cos-
inusoidal contributions. Thus, we should be able to extract the
contribution of absorption to the simulated Imω(k), by sub-
tracting the imaginary bands induced by radiation [Fig. 5(b)]
from those involving both the absorption and radiation effects
[Fig. 5(c)]. The resultant dispersion relative to the average is
shown as markers in Fig. 5(d). Remarkably, it exhibits a clear
twofold cosinusoidal structure, which is consistent again with
Eq. (31) for δ = 0 and γ1 = γ2 = γ , namely,

Imω(k) + γ = ±2κi cos
kL

2
. (60)
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FIG. 5. Complex band structures ω(k) for the system with uniform refractive indices of nanocavities. (a) Reω(k) and (b) Imω(k) for
n1,i = n2,i = 0. Here Imω(k) in (b) is induced purely by radiation. (c) ω(k) of an absorptive system with n1,i = n2,i = 0.005. Data colored
blue represent Reω(k) and those in red Imω(k). (d) Contribution of the cavities’ material absorption to the imaginary dispersion in (c),
which is obtained as the difference between Imω(k) in (c) and that in (b). Its folded cosinusoidal shape confirms the existence of the NN
imaginary coupling κi. The markers show the result of the finite-element simulation and the solid curves the analytic result. The parameters are
κr = 32.08 GHz, φ = 0.04 rad, and (a) ω0 = 194.1547 THz and ρ = 0.662 GHz, (c) ω0 = 194.1546 THz and ρ = 0.661 GHz for Re�ω(k),
and (d) κi = −0.137 GHz. The dotted curves are a guide for the eye.

Because of the identity
∫ π/L

0 2κi cos(kL/2) = 4κi, we can
determine the absorption-induced imaginary coupling κi by
integrating the discrete data points numerically. Here we
have κi = −0.137 GHz and the corresponding analytic curves
(solid and red) in Fig. 5(d) by Eq. (60) indeed agree with
the simulation result. The slight discrepancy between them,
especially for k � 0.2π/L, is possibly due to a minor con-
tribution of nL,i to ε j,r affecting the mode radiation or due to
some fluctuation of simulation conditions. We also find κr > 0
and κi < 0 from the correspondence between the eigenmode
profiles and complex eigenfrequencies for k = 0.

By repeating the above-mentioned parameter estimation
for various nL,i, we obtain different κi, as depicted in Fig. 6.
The simulated data (black squares) clearly show a relation of
proportionality between κi and nL,i, which is confirmed by
their regression line (red solid line) giving negligible errors
in both the slope and intercept, −κi = 13.735 × 2nL,i GHz.
Because εi = Im(nr − ini )2 = −2nrni ∝ ni and we use the
same material (namely, nBH,r) for the two heterostructures in
the unit, this result strongly supports the notable consequence,
Eq. (33), in our CMT derivation. With Eq. (35), we also
confirm that κr and κi have opposite signs when the system
is absorptive, namely, ε1,i + ε2,i < 0.

We further examine the impact of imaginary couplings
on the system under biased and unbiased PT -symmetric
configurations. We introduce imaginary index contrast for the
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FIG. 6. Simulated imaginary couplings by absorption κi < 0
for different imaginary indices of each heterostructure nL,i (black
markers). Least-square fitting (red line) determines their linear de-
pendence as −κi = 13.735 × 2nL,i GHz. As nL,i ∝ ε1,i = ε2,i, this
relation confirms the proportional relation between κi and ε1,i + ε2,i,
i.e., Eq. (33).
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FIG. 7. System complex band structures ω(k) with contrast of gain and loss. (a) Reω(k) and (b) Imω(k) for (n1,i, n2,i ) = (0.0154, 0.01).
(c) Reω(k) and (d) Imω(k) for (n1,i, n2,i ) = (0.0027, −0.0027). The markers show the simulation results and solid curves the analytic results
with Eq. (61). The parameters are κr = 32.08 GHz, φ = 0.04 rad, ρ = 0.66 GHz, and (γ1 − γ2)/2 = −46.5 GHz corresponding to n1,i − n2,i =
0.0054. The remaining parameters for (a) and (b) are κi = −0.34887 GHz, (γ1 + γ2)/2 = −218.25 GHz, and ω0 = 194.1543 THz and for
(c) and (d) κi = −0.07 GHz, (γ1 + γ2)/2 = −0.43 GHz, and ω0 = 194.1547 THz. In (c) and (d) the EP singularity is restored because κi is
suppressed by n1,i + n2,i = 0. Here, only a small contribution of radiation loss remains.

cavities, which induces the EP transition in the band structure.
When the heterostructures have significant absorption loss
and only a small portion of it is compensated, non-negligible
κi will be present and affect the system response. Figures 7(a)
and 7(b) display Reω(k) and Imω(k), respectively, for a
loss-biased case with (n1,i, n2,i ) = (0.0154, 0.01). A previous
study [49] points out that the singularity is most effective
when the phase transition occurs near k = 0.5π/L with
|γ1 − γ2|/2 = √

2κr . Here n1,i − n2,i = 0.0054 is close to
this condition and corresponds to (γ1 − γ2)/2 ≈ −46.5 GHz.
As seen in Figs. 7(a) and 7(b), the EP degeneracy is lifted and
the divergence of the complex differential frequency dω/dk
around the coalescence of Reω(k) is significantly suppressed
in this lossy system. Moreover, Imω(k) in the exact phase
(k � 0.5π/L) is split. These features indicate the existence of
finite κi.

Remarkably, our non-Hermitian CMT is consistent with
the simulation result in Figs. 7(a) and 7(b). The theoretical
eigenfrequencies for the system with δ = 0 and a finite SNN
coupling are given by

ω(k) = ω0 − 2ρ cos(kL + φ) − i
γ1 + γ2

2

±
√[

2(κr + iκi ) cos
kL

2

]2

−
(γ1 − γ2

2

)2

. (61)

Here we already have the information of ω0, κr , ρ, and φ from
Fig. 5 and the average of Imω(k) in Fig. 7(b) gives (γ1 +
γ2)/2 = −218.25 GHz. Thus, the only unknown parameter in
Eq. (61) is κi. Now we predict its value by the extrapolation
of Fig. 6 for the general case with n1,i �= n2,i. Equation (33)
and the slope of Fig. 6 suggest κi = −13.735 × (n1,i + n2,i ) =
−0.348 87 GHz for (n1,i, n2,i ) = (0.0154, 0.01). We draw an-
alytic curves of ω(k) in Figs. 7(a) and 7(b) with the collected
parameters including κi. They agree well with the simulated
eigenfrequencies shown as symbols. This indicates that our
CMT is valid for a system with a broad range of gain and loss
based on the cavity media.

If κi is proportional to n1,i + n2,i, we should be able to
cancel it by setting n2,i = −n1,i. Figures 7(c) and 7(d) depict
ω(k) for (n1,i, n2,i ) = (0.0027,−0.0027) and show that this is
indeed the case. Here the abrupt coalescence of the complex
bands is restored, as compared to Figs. 7(a) and 7(b). Because
we keep the value of n1,i − n2,i and hence (γ1 − γ2)/2, it is
only the change in κi that affects the radical term in Eq. (61),
namely, the EP transition. Thus, the singular spectral behavior
directly reflects the suppression of the imaginary coupling by
the balanced gain and loss. We also find that theoretical curves
with (γ1 + γ2)/2 = −0.43 GHz and reduced κi = −0.07 GHz
successfully reproduce the simulation result (markers) includ-
ing its fine structure around k = 0.5π/L. Here the former
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FIG. 8. (a) Two coupled Si H1 photonic crystal cavities with
contrast of radiation loss. Cavity 1 (upper) has a solitary theoretical
Q factor over 108. The loss rate for cavity 2 (lower) is varied by
displacing air holes away from the point defect. Here s1 and s2 de-
note hole shifts for the innermost and second innermost layers from
the lattice-matched position, respectively. (b) One of the considered
hexapole supermodes.

parameter is actually taken from the imaginary band edge in
Fig. 5(b) and the latter is within the order of the loss splitting
in the same plot. Thus, we regard the remaining κi as the NN
approximation of the radiation effects.

Overall, our theoretical model and method compose a pow-
erful tool to predict the behavior of photonic coupled-mode
systems with amplification and absorption. The imaginary
coupling by the gain media is deterministic and it can be
canceled with balanced gain and loss.

VI. RADIATION-INDUCED EXCEPTIONAL POINTS
IN PHOTONIC CRYSTAL NANOCAVITIES

In this section we show a way to design a clean radiation-
based EP and the mechanism of its formation in a realistic
on-chip device. We simulate and analyze the two-cavity sys-
tem illustrated in Fig. 8(a), which only contains the NN
coupling. The system comprises an air-suspended Si photonic
crystal slab and two point-defect nanocavities [66]. Here the
upper and lower cavities, cavities 1 and 2, respectively, are
separated by a distance of d = 4

√
3a, where a = 426 nm

is the hole period. The slab thickness is 250 nm and the
refractive index of Si is set as 3.47. The system has 9 and
11 barrier layers on each side of the photonic molecule in the
x and y directions, respectively. The air holes of the photonic
crystal have radius R0 = 131 nm, while those closest the point
defects are of smaller size, R1 = 102 nm.

For controlling the mode frequencies and radiation loss,
both cavities involve spatial shifts of their innermost and
second innermost shells of air holes directed away from their
centers [red and orange ones in Fig. 8(a)], with the regular
hexagonal hole alignment kept. For cavity 1, the first and
second shells are constantly broadened in their half diago-
nals by 89.5 and 20.5 nm from the lattice-matched position,
respectively. As a result, we find a hexapole mode with a
ultrahigh theoretical Q factor of Q = 1.4 × 108; details will
be studied numerically and experimentally elsewhere [67]. We
also adjust the shifts of the inner and outer layers for cavity 2,
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FIG. 9. (a) Wavelength λ and (b) Q factor of the single hexapole
cavity mode depending on s1 and s2. Because of the distinct gradients
of λ and Q, we can change them independently with s1 and s2.

denoted by s1 and s2, respectively, so that it has much larger
radiation loss but keeps its frequency close to that of cavity 1.
The z component of the magnetic fields for one of the coupled
modes is depicted in Fig. 8(b).

Figures 9(a) and 9(b) show the dependence of the wave-
length λ and Q factor on s1 and s2 for the hexapole mode
of cavity 2 in the solitary environment. Here (λ, Q) change
monotonically with (s1, s2) and thus they have a one-to-one
correspondence in our entire simulation result. Figure 9(a)
has diagonal isowavelength lines, since both parameters affect
the cavity shape and hence λ. In contrast, Q is dominated
by s2 in this low-Q regime, as seen in Fig. 9(b). We have
found that it can be as small as Q ≈ 500 before s2 becomes
large enough for the second shell to merge with other air
holes. The result shows that we can achieve a wide range
and independent control of the resonance detuning δ and loss
contrast l = (�1 − �2)/2 (−�i is the on-site radiation loss of
cavity i), by varying s1 and s2.

The difference in the system eigenfrequencies � =
�ω+ − �ω− helps us demonstrate an ideal EP transition in
our simulation. With Eq. (50), we see that it only includes the
radical term, namely,

� = 2
√

κ2
r − K2

i − l2 + δ2 + 2i(κrKi − lδ), (62)

where κr and Ki are the real and imaginary couplings defined
in Eqs. (28) and (43), respectively. Equation (62) hence gives
the information of the corresponding unbiased system dis-
cussed in Sec. IV. Remarkably, simulated eigenvalues with a
purely real or imaginary � satisfy Eq. (51), thereby resulting
in the general PT symmetry. We seek such data points so that
we can find an exact EP on this continuous parametric curve
mapped onto the (s1, s2) plane.

When we modify Eq. (51) as

Ki = lδ

κr
, (63)

we can also solve for κr by substituting Eq. (63) back into
Eq. (62),

κr = ± 1√
2

√√√√�2

4
− l2 − δ2 +

√(
�2

4
− l2 − δ2

)2

+ 4l2δ2.

(64)
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FIG. 10. Exceptional point phase transition induced only by the radiation loss in the simulated system. (a) Reω± and (b) Imω± of the
eigenfrequencies ω = ω± around the EP. Colored symbols show the solutions with Imω+ ≈ Imω− or Reω+ ≈ Reω−, which means � ∈ R or
� ∈ iR within an error of 0.3 GHz. The inset of (a) shows Reω± on a slice of the parameter space with s1 = 66 nm, which exhibits an avoided
crossing. (c) Parameters (s1, s2) yielding the colored plots in (a) and (b). (d) Complex eigenfrequencies on the trajectory shown in (c) as a
function of s2. An almost ideal EP is formed, despite the system being affected by the imaginary coupling Ki arising from radiation.

This means that the data with � ∈ R or � ∈ iR impose an
additional constraint and hence enable us to estimate κr and Ki

with Eqs. (63) and (64), in combination with (l, δ) obtained in
an additional simulation for the corresponding single-cavity
conditions.

Simulation of our two-cavity device reveals an ideal radi-
ation loss-based EP. Figures 10(a) and 10(b) depict the real
and imaginary parts of the pairwise eigenfrequencies ω± =
ω0 + �ω± on the (s1, s2) plane, respectively [see Eq. (47)
for �ω±]. Here we highlight a series of solutions that have
negligible Re� or Im� (less than 0.3 GHz) in blue and red
in Figs. 10(a) and 10(b), respectively. When the solitary res-
onance frequency of the hexapole mode of cavity 2 is close
to that of cavity 1, the system exhibits a strong coupling.
We can hence see the resultant avoided crossing of the two
frequency branches for relatively large s1 and small s2 [inset
of Fig. 10(a)]. Sweeping s1 and s2 with fine resolutions in this

region enables us to find the solutions with Im� ≈ 0 (� ∈ R),
i.e., evenly distributed coupled modes with the same net loss.
By carefully tracing such states along with an isowavelength
(frequency) line for larger s2 (and loss |�2|), the eigenvalues
with real splittings � ∈ R coalesce and turn into those with
imaginary ones � ∈ iR (Re� ≈ 0). This process is shown as
the colored data, which thereby demonstrate the general PT
phase transition with Eq. (51). The flat spectrum away from
the strong coupling domain in Fig. 10(a) comes from the static
cavity 1 and corresponds to the lower Imω in Fig. 10(b). The
dispersive solution based on cavity 2 is distributed outside the
plot range of Fig. 10(a) and has the higher Imω.

Figure 10(c) shows the actual trajectory of the parameters
that give � ∈ R or � ∈ iR in the simulation. Here s1 is ad-
justed in 0.001-nm units to acquire the data points shown by
markers. The solid curve is the least-squares quadratic inter-
polation of the simulation result s1 = 1.182 685 × 10−3s2

2 −
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FIG. 11. (a) Simulated frequency fi and loss rate −�i for the hexapole mode of each isolated cavity (i = 1, 2), revealing steady resonance
detuning 2δ in the EP transition [Fig. 10(d)]. Here (s1, s2) of cavity 2 follow the plot in Fig. 10(c). Each result includes the correction by
the shift of the second innermost air hole layer for the other cavity. Cavity 1 holds Q factors over 106. (b) Complex cavity coupling κr + iKi

estimated with (a) as a function of �2. The radiation loss also promotes the in-plane spatial mode broadening and hence enhances both κr and
Ki. (c) Ratio between Ki and δ in the EP transition. It increases with s2 and reaches unity at the EP, namely, Ki = δ, confirming the compensation
of the imaginary coupling by the detuning there.

5.276 275 × 10−1s2 + 1.013 309 × 102; s1 and s2 are in
nanometers and their coefficient of determination R2 satisfies
1 − R2 ≈ 10−8.

Holding this relation of (s1, s2), the complex eigenfre-
quencies under the EP transition are redrawn as a function
of s2 in Fig. 10(d). By the change in s2 and �2, a nearly
strict EP is formed at (s1, s2) = (64.431 nm, 86.84 nm). Here
Re�ω± reach the singular coalescence without notable resid-
ual splitting and Im�ω± bifurcate sharply from the coincident
branches. We actually need extra care to achieve such clean
properties of the EP even in simulation, when realistic struc-
tures are considered [49,50,55,57]. This is mostly due to
persisting imaginary couplings, and the question we answer
here is how the EP is restored in our system whose only
non-Hermitian factor is radiation.

To analyze the spectrum of the coupled eigenmodes, we
perform another series of simulations for the frequency fi =
ω0 ± δ and loss rate −�i of each cavity mode (i = 1, 2).
The result for the parameter points of Fig. 10(c) is shown
in Fig. 11(a) as a function of s2. Here we notice that the
cavities in the coupled system are so proximate that structural
modulation for one cavity affects the resonance of the other.
Thus, we include the shift of the second innermost hole shell
by s2 for cavity 2 in simulating cavity 1, and vice versa
with the fixed layer displacement of 20.5 nm for cavity 1, to
obtain better accuracy; the condition is hence different from
Fig. 9. Remarkably, the mode frequency f1 of cavity 1 is
consistently higher than that of cavity 2 ( f2), revealing finite
cavity detuning 2δ = f1 − f2 ≈ 2.5 GHz over the entire EP
transition. The on-site loss −�2 of cavity 2 is significantly
varied via s2 in the range between 60 and 140 GHz. On the
other hand, cavity 1 holds Q > 106, despite that s2 > 77 nm
means highly lattice-mismatched scattering defects located
nearby.

With Fig. 10(d), Fig. 11(a), and Eqs. (63) and (64) at hand,
we can now calculate the dependence of κr + iKi on −�2 > 0,
as shown in Fig. 11(b). Because �1 is negligible and δ varies
little, the trend in the complex coupling is attributed to the
major loss factor −�2. In this case κr is positive, since the

antisymmetric eigenmode (−1, 1)T [Fig. 8(b)] has the higher
frequency corresponding to ω0 + �ω+. We also find Ki > 0
due to l = (�1 − �2)/2 > 0 in Eq. (63). Further, κr as well
as Ki has a positive correlation with −�2, because enhancing
radiation also involves in-plane spatial mode broadening. As
such, this result arises not from material properties but from
the change in the cavity mode profiles {�1,�2}. The point
closest to the EP has l = 46.61 GHz and κr = 46.41 GHz,
which indicate κr = l in Eq. (48) within an error of 0.3 GHz.
Solid curves provide best-fit regression lines for the data, κr =
−0.1222(1.425 × 10−3)�2 + 34.96(0.1373) GHz and Ki =
−1.161×10−2(6.254×10−4)�2 + 0.1261(6.025×10−2)GHz,
which indicate clear correlation among (κr, Ki, �2) in the
broad parameter range of the plot. Nonetheless, we do not
intend to identify the global dependence of the coupling terms
on the parameters with the linear regression. Because the
change in |�2|/2 is larger than that in κr , we can find the EP
as long as the process is continuous. The values of Ki are
small and thus fluctuate by subtle parameter and meshing
conditions in the finite-element simulation.

Because the variation in the detuning is actually correlated
with that in the imaginary coupling, we can obtain a consis-
tent transition of their ratio Ki/δ in the process, as shown in
Fig. 11(c). Here Ki/δ is dominated by Ki and increases with
−�2 and hence s2. Remarkably, the plot crosses Ki/δ = 1
precisely at the EP, namely,

Ki = δ, (65)

clarifying the cancellation of the effect of imaginary coupling
by the balanced detuning. Equation (65) together with κr = l
is indeed the condition for the system to reach an EP, Eq. (48).
This means that our simulation result is fully explained within
the framework of our CMT.

VII. DISCUSSION

The non-Hermitian CMT derived here will be ap-
plicable for many systems of evanescently coupled di-
electric resonators, such as stripe lasers [50,68] and
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vertical-cavity surface-emitting lasers [16,69]. The imagi-
nary couplings in whispering-gallery-mode cavities, such
as ring and disk resonators [26–29], will also be obtain-
able by taking into consideration pairwise circulation of the
modes.

The validity of the CMT is based on the condition that the
basis modes are not significantly disrupted. Quantitatively, it
is guaranteed by the fact that the evanescent coupling (κr �
50 GHz) and gain and loss (|γl |, |�i| � 260 GHz) are much
smaller than the cavity-mode frequencies (∼200 THz) in our
simulation. Here, by modeling the radiation with the huge
but closed system including the air and virtual absorber, our
CMT has been explicitly shown to cover the radiation loss and
radiation-induced imaginary couplings. Our result indicates
that it can predict the behavior of dielectric cavities with
amplification, absorption, and radiation, which exhibit net Q
factors of several hundreds and larger, within the scope of the
Maxwell equations.

In contrast, for metallic nanoresonators and nanoantennas
based on surface-plasmon polaritons, their modal properties
are determined intrinsically by the striking kinetic loss of
carriers that demands Q ≈ 10. In this case, a lossless basis
can no longer be prepared, and thus coupled modes have
to be expanded by states with complex frequencies, which
are termed quasinormal modes (QNMs) [70]. A prominent
signature of QNMs is the divergence of far fields, and such
QNM systems involve the modification of the analytic for-
mulas for the mode volume and Purcell factor [71]. This
QNM formalism is also essential for very leaky optical
resonators [72].

We have not detected visible features peculiar to QNMs
in our simulation. In addition, the first-order CMT repro-
duced the experimental spontaneous emission spectrum of
coupled high-Q photonic crystal lasers operating near a
weakly loss-biased EP [23]. However, we notice that a rigor-
ous quantum-mechanical treatment of spontaneous emission,
which is beyond the conventional Fermi’s golden rule based
solely on the photonic local density of states, is necessary,
especially when the system has gain [73]. Another exception
to our CMT is systems of electromagnetic resonators, where
electric and magnetic fields are coupled via surface current
densities [74,75].

We have clarified that biased PT -symmetric cavities with
large total loss can suffer from a pronounced effect from
the imaginary couplings {κi + Ki}. By compensating for their
loss and applying gain to half of them with pumping, the
permittivity-induced component {κi} can be suppressed drasti-
cally. In contrast, the radiation-based factor {Ki} might not be
necessarily canceled even for lasers, since it depends crucially
on the cavity mode profiles and their arrangement. In partic-
ular, the behavior of imaginary couplings in two-dimensional
arrays, including possible nonlocal factors, should be investi-
gated in detail.

We can find a rigorous radiation-based EP by adjust-
ing both the cavity detuning δ and loss contrast l . In our
simulation, the spatial shifts of the air holes were finely
controlled. Technically available resolutions of the hole po-
sition are about 0.1 nm; thus, experimental demonstration
of the device may result in a spectrum that is slightly off
from the exact EP. However, resonance linewidths of loss-

biased coupled modes near the EP are dominated by the
lossy cavity and thus broad enough to cover such discrepancy.
Representative EP responses, such as spectral coalescence
and unidirectional reflectivity, are hence expected to be
observed.

In conclusion, we established the coupled-mode theory for
optical cavities with amplification, absorption, and radiation.
We analytically determined the imaginary couplings between
cavities with different imaginary permittivities. We also pre-
sented an explicit model and physical implications of the
radiation-induced imaginary coupling terms in the coupled-
mode formalism. They have equal forward and backward
components for the basis bound modes, representing non-
Hermiticity of the system.

Regardless of their origins, the imaginary couplings can
lift the EP degeneracy. Thus, their impact should be measured
in practical systems, and it is necessary to find out how to
counteract them and restore the EP. We provided a scheme
to precisely estimate the permittivity-induced imaginary cou-
pling and confirmed its properties with a simulation of a
periodic array of buried-heterostructure nanocavities. Because
this factor is proportional to the sum of the imaginary parts
of dielectric constants for adjacent cavity media, it can be
suppressed by their balanced gain and loss. We also identified
the radiation-induced imaginary coupling as the contribution
of the cavity modes’ interference to their net radiation loss. In
systems of two resonators with contrast of radiation loss, the
EPs should remain protected by the general PT symmetry.
Our simulation actually revealed the ideal radiation-based EP
of the two H1 Si photonic crystal cavities. Here we confirmed
that not only the real coupling and loss contrast but also the
imaginary coupling and cavity detuning were balanced at the
EP.

There have been several theoretical approaches for clari-
fying the disruption and restoration of the EP in practical sys-
tems. In an early study, the imaginary coupling was introduced
as a phenomenological term [55]. A perturbation-analysis
formalism for two waveguides [57] presented permittivity-
induced complex couplings that lifted the EP, but they seemed
asymmetric in terms of the guided-mode basis. Another CMT
derived imaginary couplings in systems with uniform absorp-
tion loss [56]. Our CMT extends Ref. [56] and covers all
major gain and loss mechanisms in lasers. It enables us to
determine the imaginary couplings as well as other parameters
in simulations of practical systems, and the resultant analy-
sis will give consistent complex eigenfrequencies that let us
identify the EP protected by the generalized PT symmetry.
This work hence establishes dependable design principles for
photonic devices with EPs. In addition, the imaginary cou-
pling has potential as an additional degree of freedom, which
would elevate non-Hermitian state control and nonlinear
effects.
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Christodoulides, Dynamically Encircling Exceptional Points:
Exact Evolution and Polarization State Conversion, Phys. Rev.
Lett. 118, 093002 (2017).

[39] D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, and F. Nori,
Edge Modes, Degeneracies, and Topological Numbers in Non-
Hermitian Systems, Phys. Rev. Lett. 118, 040401 (2017).

[40] H. Zhou, C. Peng, Y. Yoon, C. W. Hsu, K. A. Nelson, L. Fu, J. D.
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