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Amplitude and phase locking of mechanical oscillation driven by radiation pressure
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Cavity optomechanical systems have been widely studied for many of their interesting properties, which can
be interpreted with their linearized dynamics. Previously, the genuine nonlinear dynamics of optomechanical
systems was only considered for very few phenomena such as self-induced oscillation and optomechanical chaos.
Beyond the scope of those previous studies, a phenomenon of frozen mechanical oscillation irrespective of the
intensity variation on the driving fields was recently discovered for an optomechanical system under two pump
fields having their frequencies properly matched [He et al., Phys. Rev. A 102, 011503(R) (2020)]. Here we
significantly advance the study by showing that similar phenomena can manifest under more general conditions
for the external driving fields. The mechanical oscillation in such doubly driven optomechanical systems can be
locked in either its amplitude or both amplitude and phase. Simultaneous amplitude and phase locking is possible
under a specific condition for the difference of the drive frequencies, whenever the drive intensity is sufficiently
high. The variations of the phenomena also exist in two coupled cavities containing one mechanical breathing
mode.

DOI: 10.1103/PhysRevA.105.013521

I. INTRODUCTION

In recent years optomechanical systems (OMSs) have
attracted a huge amount of attention for their interesting
properties. The radiation pressure created by a laser pump
plays a crucial role in OMSs, being the origin of the non-
linearity for such systems [1]. The dynamics induced by a
red-detuned pump field can realize optomechanical cooling
to macroscopic quantum states [2–31]. On the other hand,
optomechanical entanglement can be generated under certain
conditions [32–48] and could be applied to test the boundary
between classical and quantum realms [49–51]. These two
primary topics in the current research of OMSs can be un-
derstood by the linearization of the system dynamics around
an equilibrium point [1] or by other methods [52]. However, if
a blue-detuned driving field becomes sufficiently strong, some
phenomena that must be interpreted with genuine optome-
chanical nonlinearity will appear. For example, the dynamical
multistability of self-induced oscillation has been explored
with a stronger laser pump [53–57]. A sudden transition be-
tween two mechanical oscillations can also take place due to
the optomechanical nonlinearity in a coupled-cavity system
[58]. The present work considers another type of nonlinear
optomechanical phenomenon: the locking of the mechanical
oscillation under two simultaneously acting drives with their
matched frequencies. Such a phenomenon was recently shown
to exist in a doubly driven OMS, given one pumping field red
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detuned by the mechanical frequency, together with another
one with the resonant frequency of the optical cavity [59].

When the above-mentioned phenomenon of frozen me-
chanical oscillation takes place, the amplitude, frequency, and
phase of the mechanical resonator in an OMS will simul-
taneously remain unchanged even if one adjusts the pump
power of the external fields over a considerable range. The
frozen mechanical motion will be maintained until there is
a sudden random jump to another frozen state due to the
further enhanced drive power. The mechanical motion of the
OMS thus appears to be located on a series of fixed orbits
like energy levels [59]. If the cavity field and mechanical
resonator of the OMS are modeled by two harmonic oscil-
lators, respectively, such a phenomenon can be viewed as
a synchronization process for these two oscillators, during
which the motion of one oscillator (the mechanical resonator)
is completely locked. Synchronization is a traditional research
topic in nonlinear dynamics [60–63], which dates back to the
17th century [64]. Nowadays, the study of synchronization
has been well developed to chaotic systems [65,66], complex
networks [67–69], and many other biological, chemical, and
physical systems with their fascinating features, promising
applications in many different areas [70–78].

Synchronization of two oscillating objects generally refers
to the same pace of their phases and/or oscillation periods.
If their coupling strength is relatively strong, two oscillat-
ing objects can be synchronized for their amplitude contours
[61,79,80]. Compared to other synchronization phenomena,
the novelty of the scenario in Ref. [59] is that the three el-
ements of an oscillation, i.e., the amplitude, frequency, and
phase, can be simultaneously locked for one of the coupled
oscillators in the synchronization process. In Ref. [59], the
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locking phenomenon was found to take place when one of
the driving fields is red detuned exactly by the mechanical
frequency, while the other field is a fixed to be resonant with
the intrinsic cavity frequency. However, this combination of
drive frequencies is not unique for realizing the mechanical
locking, and the scenario in Ref. [59] is only a special case of
the phenomenon. One purpose of the present work is to clarify
the general frequency-matched condition for the driving fields
to lock the mechanical oscillation under radiation pressure.
We will also illustrate how a partial locking of the mechani-
cal motion (only locking the oscillation amplitude) can exist
under many other conditions.

The rest of the paper is organized as follows. In Sec. II
the system dynamics of the systems we consider is illustrated
with detailed models. Based on the exact simulation with the
dynamical equations, a partially locked mechanical oscillation
only in the amplitude is discussed in Sec. III, where the action
of only one resonant drive is considered. The main results
of the locking phenomenon due to various combinations of
the driving frequencies are presented in Sec. IV, which also
highlights a special pattern of frozen mechanical oscillation.
In Sec. V we continue to discuss similar phenomena occurring
in a coupled-cavity system. We conclude in Sec. VI with a dis-
cussion and summary. The article also includes an Appendix,
which explains the phenomena considered in an alternative
way.

II. SYSTEM DYNAMICS LEADING
TO LOCKED OSCILLATIONS

Though the OMS can have many different forms [1], we
use a Fabry-Pérot-type one with a movable mirror to represent
the systems considered, as in Fig. 1(a). The two external
driving fields can be simplified by one field with two tones,
which has the frequency components ωL1 and ωL2 [or their
detuning points �1 and �2 away from the cavity resonance
frequency] and the amplitude components E1 and E2. The
radiation pressure created by the pump field produces an in-
teraction potential

Vint = −gmXm
(
X 2

c + P2
c

)/
2 (1)

between two harmonic oscillators that model the cavity field
and mechanical resonator, respectively. It couples the cavity
field, with Xc and Pc its perpendicular quadratures and ωc

its intrinsic frequency, to the mechanical resonator with its
frequency ωm, displacement Xm, and momentum Pm. This po-
tential is proportional to a small optomechanical constant gm.
In terms of the dimensionless variables (Xc, Pc and Xm, Pm),
the dynamical equations of the system read

Ẋc = −κXc − gmXmPc +
∑

i=1,2

√
2Ei cos(�it ),

Ṗc = −κPc + gmXmXc +
∑

i=1,2

√
2Ei sin(�it ),

Ẋm = ωmPm,

Ṗm = −ωmXm − γmPm + gm
(
X 2

c + P2
c

)/
2. (2)

The term Ec = (X 2
c + P2

c )/2 in the last equation is the cavity
photon number, which is proportional to the force acting on

FIG. 1. Representative setups illustrating the mechanical locking
phenomena in OMSs. (a) Simple OMS in the form of a Fabry-
Pérot cavity with a movable mirror as the mechanical oscillator.
(b) Coupled-cavity system of microtoroids. One of them has its
breathing mechanical modes excited to a sustainable oscillation. The
other couples to the former with coupling strength J . The mechanical
oscillation Xm(t ) in the systems can be locked irrespective of the drive
amplitudes.

the mechanical resonator. Here the equations about the cavity
part are given in the observational frame rotating at the cavity
frequency ωc, so only the detuning �1 (2) = ωc − ωL1 (2) of a
drive component appears. The mechanical damping rate γm

in many types of OMSs can be much smaller than the cavity
damping rate κ [1], which is used to scale the other system
parameters in our numerical simulations. Because the realistic
mechanical frequency ωm is also much smaller than the cavity
resonance frequency ωc, the powers h̄ωLi E

2/κ (i = 1, 2) of
the two drive components or two driving fields are almost the
same under the condition E1 = E2 = E , even if their respec-
tive detuning points can differ by a few times ωm.

Another type of system we consider is constructed
with two coupled whispering-gallery-mode microresonators,
among which one has a breathing mechanical mode excitable
by the driving field. Considering the adjustable coupling
strength J between the two microresonators, one can describe
the dynamics with the interaction potential

Vint = −gmXm
(
X 2

c1
+ P2

c1

)/
2 + J

(
Xc1 Xc2 + Pc1 Pc2

)
. (3)

The corresponding dynamical equations for the system with
two more degrees of freedom become

Ẋc1 = − κXc1 − gmXmPc1 + JPc2 +
∑

i=1,2

√
2Ei cos(�it ),

Ṗc1 = − κPc1 + gmXmXc1 − JXc2 +
∑

i=1,2

√
2Ei sin(�it ),
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FIG. 2. Amplitude locking under a single resonant drive. (a) Dis-
tribution of the time-average mechanical energy 〈Em〉 with increasing
drive amplitude E . A logarithmic coordinate is used to show the
energy-level positions. Also shown are detailed views of the stabi-
lized patterns of (b) the mechanical energy and (c) the cavity energy
on the level n = 1. The system parameters are scaled with respect to
the cavity damping rate κ as gm/κ = 10−5 and ωm/κ = 20, and the
mechanical quality factor is Q = ωm/γm = 106.

Ẋm = ωmPm,

Ṗm = − ωmXm − γmPm + gm
(
X 2

c1
+ P2

c1

)/
2,

Ẋc2 = − κXc2 + JPc1 ,

Ṗc2 = − κPc2 − JXc1 . (4)

We will also study the locking phenomena in this type of sys-
tem. In what follows, we will apply the numerical simulations
to illustrate how the locking phenomena considered arise in
the systems described by Eqs. (2) and (4).

III. AMPLITUDE LOCKING UNDER ONE
RESONANT DRIVING FIELD

The previously discovered locking scenario is realized by
the cooperation of two driving fields, one resonant and one red
detuned by the mechanical frequency ωm [59]. There actually
exist more manifestations of such a phenomenon if given
many other choices of the driving fields. To have a systematic
view of these locking processes, we start from the situation of
only one resonant driving field with � = 0, which is the basis
for all locking phenomena we are going to discuss. When this
driving field is sufficiently strong, the stabilized mechanical
motion will be located on discrete states like energy levels
[59]. With a set of exemplary system parameters, the levels
are distributed with the dimensionless drive amplitude E/κ as
in Fig. 2(a). Beyond a threshold at E/κ ≈ 1.5 × 106, which
is found with the system parameters used for the figure,
the average mechanical energy will be frozen on the level
n = 1, independently of increasing the drive power (the av-
erage mechanical energy remains unchanged even close to
E/κ = 107).

Together with the discussion of the locking phenomenon,
we provide some facts about and notation for the stabilized
mechanical motion in the OMS we consider. In all situations

we consider in the present work, the OMS is totally dynam-
ical with an oscillating cavity field and mechanical resonator
(mechanical oscillator). There are sidebands with their peaks
centered at nωm (n is an integer) in a stabilized cavity photon
number Ec = (X 2

c + P2
c )/2 proportional to the cavity field en-

ergy by a factor h̄ωc. Among them, only the first sideband
peaked at the mechanical frequency ωm significantly influ-
ences the mechanical motion since it provides the only driving
force that is resonant with the mechanical frequency. As a
result, the stabilized mechanical motion in all our situations
considered takes a rather simple form

Xm(t ) = A cos(ωmt + φ) + d, (5)

where the pure displacement away from the equilibrium po-
sition without radiation pressure is much smaller than the
oscillation amplitude, i.e., d � A. The corresponding phonon
number, which is proportional to the mechanical energy (up
to a factor h̄ωm), is therefore

Em(t ) = [
X 2

m(t ) + P2
m(t )

]/
2

= A2/2 + d2/2 + Ad cos(ωmt + φ)

+ A(ḋ/ωm) sin(ωmt + φ) + ḋ2/2ω2
m. (6)

The positions of the energy levels in Fig. 2(a) are those of the
average mechanical energy

〈Em(t )〉 = A2
n/2 + 〈d2〉/2 ≈ A2

n/2. (7)

These energy levels correspond to the discrete amplitudes An

(n � 1 as the integers) of the mechanical resonator. In other
words, the amplitude of the stabilized mechanical oscillation
is locked to one of these fixed values and the change of the
oscillation amplitude takes the form of a transition between
the energy levels. In terms of the mechanical displacement
Xm(t ), the amplitude locking is simply exhibited as a fixed
amplitude for the stabilized mechanical oscillation, as shown
in Fig. 9(a) of the Appendix.

On each of the discrete levels, the oscillation phase φ in
Eq. (5) is not fixed at all. One example is in Fig. 2(b), where it
can be seen that φ definitely changes with the drive amplitude
E . In the current situation of a resonant driving field, the pure
displacement d of the mechanical resonator is relatively large
and becomes time dependent, as a result of a stronger driving
force gm(X 2

c + P2
c )/2 from the resonant pump. Then the nu-

merically simulated contours for the oscillatory mechanical
energy with the amplitudes An

√
d2 + (ḋ/ωm)2 ≈ And dis-

play the higher harmonic components as in Fig. 2(b). The
displacement d also slightly increases with the drive ampli-
tude E , giving a larger amplitude And for the mechanical
energy in Eq. (6). However, due to the amplitude-locking
mechanism, the time-averaged mechanical energy 〈Em(t )〉 =
A2

n/2 is almost fixed on each level n � 1. The more energy
added into the system due to an enhanced drive amplitude
E predominantly stays in the cavity field, having the cavity
photon number Ec = (X 2

c + P2
c )/2 to grow proportionally as

in Fig. 2(c).
The higher mechanical energy levels n � 2 manifest when

the drive amplitude is enhanced further on the right side of
Fig. 2(a). In this regime it seems that all these discrete levels
overlap with one another. Viewed on a refined scale, however,
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FIG. 3. Oscillation patterns for the stabilized mechanical energy under various combinations of two driving field frequencies: (a) �1 = 0
and �2 = ωm, (b) �1 = −ωm and �2 = ωm, (c) �1 = −ωm and �2 = 2ωm, (d) �1 = 0 and �2 = 4ωm, (e) �1 = 0.5ωm and �2 = 1.5ωm, (f)
�1 = 0.6ωm and �2 = 2.6ωm, (g) �1 = 0.1ωm and �2 = 3.1ωm, and (h) �1 = 0.2ωm and �2 = 4.2ωm. Here all stabilized oscillations are on
the first energy level. (a)–(d) The detuning points of the two driving fields are exactly on the integer times of the mechanical frequency ωm.
(e)–(h) The frequencies of the driving fields are displaced in parallel to keep their difference only. Both amplitude and phase locking only
manifest in (a) and (e). The system parameters are the same as those in Fig. 2.

there is still a one-to-one correspondence between the me-
chanical energy 〈Em〉 and drive amplitude E (for more details
see Ref. [59]). A slight variation of the drive amplitude E , as
well as the choice of the initial condition and the perturbation
from the noises, can make the system evolve randomly to
a different level in the regime. These energy levels differ
from the previously studied dynamical multistability of self-
sustained oscillation [53–57] by two facts. A self-sustained
oscillation occurs when a blue-detuned pump field becomes
stronger over a threshold. As a supercritical Hopf bifurcation,
the evolved limit cycle of the mechanical oscillator (or the
stabilized mechanical amplitude) grows continuously with the
drive amplitude E . In contrast, the frozen amplitude An in the
scenarios we consider does not change with E on each energy
level. The second difference is just the high sensitivity to the
external parameters in the evolution to the higher levels n � 2;
unlike the commonly known bifurcations, the transition be-
tween the evolved energy levels can become highly random.

There is one missing piece to compare the current dynam-
ical scenario with the one in Ref. [59], where another cooling
field detuned at � = ωm simultaneously acts on the OMS. As
the cooling field gradually becomes as strong as the resonant
one, the mechanical oscillation phase in Eq. (5) will also be
frozen to a fixed value φn on each level n � 1. We call it a
complete locking of the mechanical oscillation, which has the
simultaneously frozen amplitude and phase. The cooling field
will also lower the threshold value of the pump power for the
system to enter the regime of locked oscillation. Given the
system parameters in Fig. 2, for example, the threshold will
be lowered from E ≈ 1.5×106κ in Fig. 2(a) to E ≈ 5×105κ

under the joint action of the two fields. The complete locking

to both fixed An and φn is a more interesting scenario that
occurs in the doubly driven OMS. We will explore the general
condition for its realization in the next section.

IV. COMBINATION OF COMPLETE AND PARTIAL
LOCKING PHENOMENA

A. Drive frequencies difference by integer multiples of ωm

Based on a resonant drive, the simultaneous freezing of A
and φ will be realized by adding another red-detuned driving
field with �2 = ωm. One example is in Fig. 3(a), where the
average positions of stable mechanical energy are on the same
level except for a slight deviation when the drive amplitude
E is high (E = 6.0×106κ in the figure) to cause a slight
deformation of the energy level. In this situation all stabilized
mechanical oscillations have the same phase φn on each en-
ergy level, so the correspondingly stabilized phonon numbers
Em(t ) also oscillate at the same phase. In the illustration of the
phase locking, the reason for us to use the stabilized phonon
number proportional to the mechanical energy rather than the
stabilized Xm(t ) is that the evolved Em(t ) with its oscillation
amplitude And is much easier to distinguish for the different
drive amplitudes E , which cause the varied pure displacement
d . In the Appendix we also display such a phase-locking
phenomenon in Figs. 9(c) and 9(d), where the stabilized
Xm(t ) for different drive amplitudes E almost overlap with
one another because their varied pure displacements d are
negligible compared to the frozen amplitude A1. Moreover,
if one applies another blue-detuned field with �2 = −ωm,
instead of the red-detuned one �2 = ωm in Ref. [59], the
simultaneous amplitude and phase locking will nonetheless
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TABLE I. Drive-frequency-matched conditions for realizing the
complete and partial locking phenomena. Note that the phenomena
still exist under the parallel displacements �1 → �1 + δ together
with �2 → �2 + δ.

Drive condition Amplitude locking Phase locking

|�1 − �2| = ωm yes yes
|�1 − �2| = 2ωm yes no
|�1 − �2| = 3ωm yes no
|�1 − �2| = 4ωm yes no

manifest when the driving fields are sufficiently strong. Once
the drive amplitude E1 = E2 = E goes beyond the thresholds
for these situations, the amplitude A in Eq. (5) will be fixed to
a set of discrete values An, as well as the oscillation phase. It
is a typical demonstration of the discrete energy levels for the
macroscopic mechanical resonator in Fig. 1.

In view of the above observation, one could put forward
a general question: What happens if the frequencies of the
two driving fields are different by any integer multiples of the
mechanical frequency

|�2 − �1| = kωm, (8)

where k = 1, 2, 3, 4, . . .?
Figures 3(a)–(d) present four representative illustrations

for such frequency combinations. Though the evolutions un-
der different drive amplitudes E evolve to the same average
positions of 〈Em(t )〉 in all situations (the illustrations display
the stable oscillations on the first energy level), only under the
combination (�1 = 0,�2 = ωm) in Fig. 3(a) can the stabi-
lized oscillations be locked to the same phases. The complete
locking of the mechanical oscillation only exists with a com-
bination satisfying |�2 − �1| = ωm, a detuning difference
or frequency difference by exact one mechanical frequency,
while the partial locking to the first energy level manifests
for all illustrated combinations. Other combinations such as
those under the conditions |�2 − �1| = 5ωm, 6ωm have been
examined to achieve the partial locking only. The existence of
the complete and partial locking scenarios is summarized in
Table I.

The drive-frequency difference by the integer multiples of
ωm is the prerequisite to all locking scenarios. Even the partial
locking to the fixed amplitudes will be gone when there is a
small mismatch between two drive frequencies, e.g., the fre-
quency combination becomes (�1 = mωm,�2 = nωm + δ),
where δ is a small shift while m and n are two integers. Two
examples are given by Figs. 4(a)–4(d), respectively, to show
that the tendency of evolving to the same average position
〈Em(t )〉 for the different drive amplitudes E will disappear
with the increase of the frequency shift δ. One observation
is that, to a larger k in the combinations of |�2 − �1| = kωm,
the energy levels are more robust under the deviation of one
drive frequency; the amplitude locking for the combinations
satisfying |�2 − �1| = ωm, as exemplified by the combina-
tion (�1 = 0,�2 = −ωm) in Figs. 4(a) and 4(b), is easy to
destroy by a slight shift δ ∼ 0.01κ (note that ωm = 20κ in the
examples).

FIG. 4. Loss of the amplitude locking by the mismatch of two
drive frequencies: (a) �1 = 0 and �2 = −ωm + 0.05κ , (b) �1 = 0
and �2 = −ωm + 0.06κ , (c) �1 = −ωm and �2 = 2ωm + 0.1κ , and
(d) �1 = −ωm and �2 = 2ωm + 1.0κ . The tendency of destroy-
ing the amplitude locking is shown for the combinations (a) and
(b) (�1 = 0, �2 = −ωm ) and (c) and (d) (�1 = −ωm, �2 = 2ωm ).
The sample drive amplitudes in the figures are the same as in (a) and
the system parameters are the same as those in Fig. 2.

B. Parallel displaced drive frequencies

The locking phenomena will disappear if one of the driv-
ing fields is shifted in its frequency. However, they will be
well preserved under the condition that both fields are shifted
together by the same amount δ:

�1 → �1 + δ, �2 → �2 + δ. (9)

The examples in Figs. 3(e)–(h) exhibit this feature, which
is one of the most fascinating for the nonlinear dynamical
scenarios. The dynamical equations (2) are not invariant under
such parallel displacement of the drive frequencies, but the
same locking phenomenon under a specific drive condition is
nonetheless realized after such a displacement, possibly at the
cost of a higher drive power. Compared with the amplitude-
locking phenomenon in Fig. 3(c), the same type of locking is
realized after a displacement over ωm in Fig. 3(g). Suppose
that the highest pump power that is sustainable for a setup
corresponds to the amplitude Emax for each driving field; the
allowed displacement δ for preserving the complete or partial
locking has a certain range for a specific drive condition
|�2 − �1| = kωm. Some examples are given in Fig. 5. The
allowed displacement ranges can be extended further with an
increased Emax for the setup. The existence of the complete
locking after the parallel displacement under the condition
|�2 − �1| = ωm significantly generalizes the same dynamical
scenario reported in Ref. [59].

For the purpose of realizing an amplitude locking, one can
simply start from a resonant driving field with � = 0. Once
its drive power is sufficiently high, the amplitude locking
in the form of the energy levels in Fig. 2(a) will manifest.
Then one continues to shift the drive frequency from the point
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FIG. 5. Examples of the allowed parallel displacement ranges for
the specified drive conditions. The locking phenomena will be pre-
served under the displacement within the ranges. Here the maximum
drive amplitude is Emax = 3×107κ . The system parameters are the
same of those in Fig. 2.

� = 0, either to the blue-detuned or to the red-detuned side,
and will find that those energy levels will gradually disappear
and turn into something like energy bands (the mechanical
energy evolved in oscillation is distributed over much wider
ranges) in the process of deviating the drive frequency. At this
time, the addition of any other driving field with its frequency
differing from the previous one by some integer multiples
of the mechanical frequency ωm can restore the energy lev-
els, which are located at the different positions according to
the required drive amplitude E . Certainly the pump powers
need to be adjusted during the process. This process could
be viewed as a self-organization of the OMS, a few-body
system with only four degrees of freedom. In the well-known
process of optical lasing, the transition from the irregular light
of a lamp to the highly ordered light from a laser takes place
when the external pumping power is beyond a threshold. The
pump power is a control parameter for locking the emission
from a multitude of atoms (molecules) to the same pattern.
For the present scenarios we consider, two control parameters
(the pump power and the drive-frequency difference) work
together to bring about the locking phenomena in a few-body
system. A higher order of phase locking also manifests when
the frequency parameter is adjusted to have |�2 − �1| = ωm.

C. Special energy-level pattern

Now we look at a special combination of the driving fields
with (�1 = −ωm,�2 = ωm). Previously, the pumping by one
blue-detuned driving field together with another red-detuned
driving field was mostly studied for a configuration in which
they are applied to two different optical cavities, respec-
tively, and the mechanical resonator in the middle is under
the radiation pressure from two different cavities (see, e.g.,
[81–86]). In that scenario a time-independent steady state will
be reached to simplify the description. The difference in the
process considered herein is that the two fields pump the same
optical cavity simultaneously. According to the linearized
dynamics, the former driving field (�1 = −ωm) realizes a
resonantly enhanced two-mode squeezing effect to heat up
the mechanical motion, but the latter (�2 = ωm) induces the
optimum cooling effect on the mechanical oscillator, which
has been verified by experiments [18–31]. The joint action of
these two conflicting factors can bring about an unusual effect
in the nonlinear regime.

FIG. 6. Energy levels formed due to the driving fields of the
combination (�1 = −ωm, �2 = ωm ). The threshold for reaching the
energy levels is higher than other combinations, and the first three
energy levels appear with the same scale of E . The system parameters
in Fig. 2 are used here to produce the energy levels displayed with a
logarithmic coordinate.

With the increase of the drive amplitude E1 = E2 = E , the
mechanical motion initially responds in a linear way, having
its stabilized oscillation amplitude grow continuously with
E . The conflicting roles of the two driving fields make this
linear response period much longer than other drive-frequency
combinations. During this period the two competing factors
simply balance at the end of a dynamical evolution. However,
there will be a sudden transition to the phase of amplitude
locking when the driving fields become even stronger, though
the threshold for entering the locking phase should be high
for this particular drive-frequency combination. Compared
to the thresholds E ≈ 1.5×106κ for a single resonant field
and E ≈ 5×105κ for the combination (�1 = 0,�2 = ωm),
the amplitude locking will occur at E ≈ 1.35×107κ , obtained
with the same set of system parameters as in Fig. 2. An
interesting feature is that the amplitude locking manifests as
a sudden jump into the energy levels (see Fig. 6). This is
in sharp contrast to the gradual transition to the first energy
level as shown in Fig. 2. Moreover, across the tipping point to
the amplitude-locking phase, the first three mechanical levels
manifest almost together and the random transition due to a
slight variation of E constantly takes place between them. The
character of phase transition due to two competing factors is
the most obvious in the locking phenomena induced by the
combination (�1 = −ωm,�2 = ωm) of the driving fields.

V. LOCKING PHENOMENA IN
COUPLED-CAVITY SYSTEMS

The other kind of OMS in Fig. 1(b) has an excitable
breathing mode on a microresonator. Such a microresonator
can be coupled with others, to make interesting setups such
as parity-time symmetric couplers and phonon lasers (see,
e.g., [87–98]). Here we take a look at the locking phenom-
ena in this type of coupled system. The difference from the
previously discussed scenarios is an extra coupling to another
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FIG. 7. Dynamical evolutions of the mechanical motions under
the driving fields of the combination (�1 = 0, �2 = ωm ), which act
on a number of coupled-cavity systems, for (a) J = 1.0κ , (b) J =
5.0κ , (c) J = 10κ , and (d) J = 20κ . The drive amplitudes, ranging
from E/κ = 5.1×106 to 9.1×106 with an increase of 8×105 for
each step, are indicated by the yellow, black, red, pink, blue, and
indigo curves for the evolving courses. In (a) the yellow, red, and
black curves evolve to the first energy level, the pink and blue curves
to the second level, and the indigo curve to the third energy level.
The energy levels are shown with a logarithmic scale. Increasing the
coupling strength J gradually destroys the energy levels. The other
parameters are the same as those in Fig. 2.

microcavity. This mutual coupling between two microcavities,
as seen in the interaction potential [Eq. (3)] and the dynami-
cal equations [Eq. (4)], is a linear one. This linear coupling
competes with the nonlinear optomechanical interaction in
one of the microcavities, leading to a sudden transition of
the mechanical oscillation excited by one blue-detuned field
[58]. The locked mechanical motion to the energy levels for
a single microresonator can be also changed by a gradually
increased coupling strength J , and this will be our primary
concern.

The first example we examine is the combination (�1 =
0,�2 = ωm), one resonant field driving simultaneously with
another red-detuned field. We choose a number of evenly
distributed drive amplitudes E , which make the system of a
single cavity evolve to the first three energy levels, respec-
tively. When the coupling intensity J is increased to 1.0κ for
the coupled system, these energy levels will still be preserved
as shown in Fig. 7(a). The energy levels created by the driving
fields of the combination (�1 = 0,�2 = ωm) can be easily
destroyed by the mismatch of the drive frequencies [59], but
here we see that they are more robust under the coupling with
another cavity. Over a considerable range of coupling inten-
sity J , the optomechanical effect in the system becomes rather
stable; the values of the mechanical energy stimulated by var-
ious drive amplitudes go together to form an energy band as
in Figs. 7(b) and 7(c). As the coupling J becomes still larger,
there is a tendency for the system to reduce to a quasilinear
one. In Fig. 7(d) the finally evolved phonon number shows
a tendency of linear response to the external drive intensity;

FIG. 8. Dynamical evolutions of the mechanical motions under
the driving fields of the combination (�1 = −ωm, �2 = ωm ) for
(a) J = 1.0κ , (b) J = 5.0κ , (c) J = 10κ , and (d) J = 20κ . The drive
amplitudes, ranging from E = 1.39×107κ to 1.69×107κ with an
even step 5×105κ , are indicated with the yellow, black, indigo, pink,
red, blue, and green curves for the evolving courses. In (a) the yellow,
black, and red curves evolve to the first energy level, the pink and
blue curves to the second level, and the green and indigo curves to
the third level. A higher E does not necessarily give a higher energy
level here. The other parameters are the same as those in Fig. 2.

a higher value of the stabilized energy will be obtained due
to a higher mechanical energy magnitudes E . Note that the
mechanical energy magnitudes finally stabilized in Fig. 7(d),
especially the red, pink, blue, and indigo ones, are not on
energy levels but are simply the samples in a continuous distri-
bution, because the evolved curve due to an in-between drive
amplitude will be located somewhere between these curves.
By energy levels we mean that the averages of the evolved
mechanical energy are located only at fixed values and the
oscillation amplitudes of the stabilized mechanical energy are
small, irrespective of the drive amplitude E .

The special energy-level structure due to the combination
(�1 = −ωm,�2 = ωm) is our second example. The influence
on such energy levels by the coupling strength is illustrated in
Fig. 8. A special feature for this type of energy level is that the
evolved mechanical energy loses the monotonic relation with
the drive amplitude E as seen from the regime of amplitude
locking in Fig. 6, where the energy levels seemingly overlap.
For instance, in Fig. 8(a) the red curve due to a drive amplitude
higher than the pink one can go to the first energy level,
while the pink one evolves to the second level. The further
increased coupling J will deform the energy levels and make
the evolutions more irregular [see Figs. 8(b)–(d)]. Because
the optomechanical interaction is generally stronger in this
scenario, i.e., the drive amplitude should be much higher to
see the energy levels and other nonlinear effects, the system
still demonstrates a nonlinear behavior in Fig. 8(d), without
being reduced to a quasilinear one by a comparable intercavity
coupling as in Fig. 7(d).
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VI. CONCLUSION

The numerical simulations based on Eqs. (2) and (4) were
implemented with the computation platforms MATLAB (ODE45
and other solvers) and Mathematica. For the locking phenom-
ena on the first energy level (n = 1), any chosen computation
accuracy does not generally influence the simulation results.
In the regime of higher energy levels, however, different
choices of accuracy in the numerical calculation may lead a
dynamical evolution to different energy levels, but the sim-
ulated result always ends in one of the determined energy
levels without going elsewhere. This is similar to the action of
noise perturbations [99,100] that exist in the realistic systems
and induce the random transitions between the higher energy
levels (the regime with the irregular distribution of the energy
levels with the drive amplitude E ). The noise perturbations
can be simulated with the respective random drive terms in
the dynamical equations and they will not influence the dy-
namical behavior after the system stabilizes [59]. The target
of our present study is to illustrate the locking patterns for
the stabilized mechanical oscillation, which are the same on
each energy level and irrelevant to the final state a system
would evolve to. Therefore, we here neglect the noise per-
turbations and simply demonstrate the locking patterns with
the first level n = 1. For the possible experimental realization
of the locking phenomena, the threshold drive intensity is an
important concern. The driving fields with the combinations
(�1 = 0,�2 = ωm) and (�1 = 0,�2 = −ωm) are the best
candidates, since their required threshold intensities for en-
tering the first energy level are the lowest.

In the present work we demonstrated that the mechanical
motion in an OMS can be locked under various drive condi-
tions. The driving fields detuned at the red-detuned resonant
point � = ωm and the blue-detuned resonant point � = −ωm

were highly interesting in the previous study of OMSs, as the
former is the optimum one for implementing optomechanical
cooling and the latter is used to obtain the best two-mode
squeezing effect for achieving optomechanical entanglement.
Through numerical simulations we found that all detuning
points at kωm, where k includes both negative and positive
integers, as well as k = 0, were special to an OMS. The
stabilized oscillation of an OMS driven by a resonant field
can display amplitude locking. Whenever this OMS is driven
by a field detuned at some other integer multiples lωm of
the mechanical frequency, its stable oscillation amplitude can
also be locked if one more driving field detuned at a different
multiple of the mechanical frequency nωm is added and the
enhanced drive power is sustainable for the setup. Interest-
ingly, the frequencies of the two fields can be shifted together
to see the same amplitude locking, as long as the drive power
is correspondingly adjusted. Given a special combination in
which the frequencies of the two driving fields differ exactly
by the mechanical frequency, both the amplitude and phase of
a stabilized oscillation can be fixed to realize a complete lock-
ing. More features and possible applications of the locking
phenomena await further exploration.
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Fig. 2.
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APPENDIX A: ALTERNATIVE PRESENTATION
OF THE LOCKING PHENOMENA

In the main text we displayed the locking phenomena in
terms of the evolved mechanical energy or phonon number
Em, because different drive amplitudes E give rise to the var-
ied pure displacements d of the mechanical resonator and so
the corresponding amplitudes And of the stabilized Em(t ) can
be well distinguished even though the oscillation amplitudes
An are locked. For a direct demonstration of the amplitude-
and phase-locking scenarios, we illustrate here the locking
processes in terms of the stabilized mechanical displacement
Xm(t ).

We first start from the action of single resonant driving field
in Fig. 9. Because the involved drive amplitudes surpass the
threshold to form the first energy level, all stabilized Xm(t )
have the same amplitude as it is locked by a nonlinear mecha-
nism. From such a state of amplitude locking, we add another
driving field red detuned at � = ωm and gradually enhance
its intensity. Then the phase of all stabilized oscillations Xm(t )
will tend to be locked too, even given a red-detuned field not
so strong [E2 = 0.09E1 in Fig. 9(c)]. The further enhanced
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FIG. 10. From cooling to complete locking. Here we consider
a drive frequency combination (�1 = ωm, �2 = 0) for two driv-
ing fields with their amplitudes E1 and E2: (a) E2 = 0, (b) E2 =
0.02E1, (c) E2 = 0.09E1, and (d) E2 = E1. (a) Only under one
cooling field (E2 = 0), the mechanical motion Xm finally stops at
a time-independent steady state with a pure displacement d from
the equilibrium position without radiation pressure [one has A = 0
but d 	= 0 in Eq. (5)]. Here three different drive amplitudes, E1 =
2×106κ (red solid curve), E1 = 3×106κ (green dotted curve), and
E1 = 4×106κ (indigo dashed curve), are used to show such dis-
placements. (b)–(d) The gradual increase of the resonant field will
drive the mechanical resonator into oscillation and gradually lock
both oscillations to the same amplitude and phase. The mechanical
oscillation amplitude is also increased together with the enhancement
of the resonant field. All other parameters are the same as those in
Fig. 2.

red-detuned field (the cooling field) will decrease the ampli-
tudes of Xm(t ) to the minimum when it becomes as strong
as the resonant one (E2 = E1). The complete locking of the
oscillation amplitude and phase makes the evolved Xm(t ) look
the same. For this reason we used the evolved mechanical
energy in the main text to distinguish between the locked
mechanical motion for different drive amplitudes E .

Another interesting scenario results from the cooling by
a single red-detuned field, which renders the mechanical os-
cillator at a standstill in the end. The equilibrium positions
d realized by the exemplary drive amplitudes in Fig. 10(a)

FIG. 11. Disappearance of the locking phenomena due to vio-
lation of a frequency-matched condition for (a) �1 = 0 and �2 =
ωm + 0.05κ and (b) �1 = 0 and �2 = ωm + 0.4κ . Here E1 = E2 =
4×106κ (red solid curve) and E1 = E2 = 6×106κ (indigo dashed
curve). (a) The mechanical oscillations are still locked approximately
if the frequency of the cooling field is shifted by a very small amount.
(b) Both amplitude locking and phase locking will be lost after the
cooling field has more frequency shift. The system parameters are
the same as those in Fig. 2.

are simply the samples among a continuum distribution; the
other values of E between them will fill the gaps between any
two of these exemplary drive amplitudes. By adding another
resonant field, one will see that the stabilized mechanical
motion becomes oscillatory, as in Fig. 10(b). The tendency in
the process of enhancing the resonant field is that all stabilized
oscillations will have the same amplitude and phase, realizing
a complete locking of the mechanical oscillation. Meanwhile
the oscillation amplitude (or the mechanical energy) is in-
creased by the gradually strengthened resonant field. For all
different drive amplitudes E within a certain range, the sta-
bilized mechanical oscillations will have the same amplitude
A1 corresponding to the energy 〈Em(t )〉 ≈ A2

1/2 on the first
energy level, as long as the two drive frequencies satisfy the
condition |�2 − �1| = ωm.

In contrast, the amplitude and phase locking will gradually
disappear if the drive frequencies deviate from the condi-
tion |�1 − �2| = ωm. One example is in Fig. 11, where the
drive frequency combination (�1 = 0,�2 = ωm) is still con-
sidered. When the red-detuned cooling field deviates a little
from the point �1 = ωm (δ = 0.05κ) as in Fig. 11(a), the
mechanical oscillations due to different drive amplitudes E
are still locked approximately, unless a further refined scale
or a detailed spectrum analysis of the cavity field is applied to
view the stabilized states. However, a continual increase of the
frequency deviation (for example, δ = 0.4κ) will destroy both
phase locking and amplitude locking as in Fig. 11(b). This is
an alternative way to Fig. 4 for illustrating the loss of locking
phenomena by a drive frequency shift.
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Camp, and V. Vuletić, Optomechanical Cavity Cooling of an
Atomic Ensemble, Phys. Rev. Lett. 107, 143005 (2011).

[28] E. Verhagen, S. Delèglise, S. Weis, A. Schliesser, and T. J.
Kippenberg, Quantum-coherent coupling of a mechanical os-
cillator to an optical cavity mode, Nature (London) 482, 63
(2012).

[29] A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A.
Krause, and O. Painter, Observation of Quantum Motion of
a Nanomechanical Resonator, Phys. Rev. Lett. 108, 033602
(2012).

[30] R. W. Peterson, T. P. Purdy, N. S. Kampel, R. W. Andrews,
P.-L. Yu, K. W. Lehnert, and C. A. Regal, Laser Cooling of
a Micromechanical Membrane to the Quantum Backaction
Limit, Phys. Rev. Lett. 116, 063601 (2016).

[31] J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and
J. D. Teufel, Sideband cooling beyond the quantum backaction
limit with squeezed light, Nature (London) 541, 191 (2017).

[32] D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi,
A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer,
Optomechanical Entanglement between a Movable Mirror and
a Cavity Field, Phys. Rev. Lett. 98, 030405 (2007).

[33] M. Paternostro, D. Vitali, S. Gigan, M. S. Kim, C. Brukner, J.
Eisert, and M. Aspelmeyer, Creating and Probing Multipartite
Macroscopic Entanglement with Light, Phys. Rev. Lett. 99,
250401 (2007).

[34] D. Vitali, P. Tombesi, M. J. Woolley, A. C. Doherty, and
G. J. Milburn, Entangling a nanomechanical resonator and a
superconducting microwave cavity, Phys. Rev. A 76, 042336
(2007).

[35] C. Genes, A. Mari, P. Tombesi, and D. Vitali, Robust entan-
glement of a micromechanical resonator with output optical
fields, Phys. Rev. A 78, 032316 (2008).

[36] M. J. Hartmann and M. B. Plenio, Steady State Entanglement
in the Mechanical Vibrations of Two Dielectric Membranes,
Phys. Rev. Lett. 101, 200503 (2008).

[37] C.-L. Zou, X.-B. Zou, F.-W. Sun, Z.-F. Han, and G.-C. Guo,
Room-temperature steady-state optomechanical entanglement
on a chip, Phys. Rev. A 84, 032317 (2011).

[38] M. Abdi, S. Barzanjeh, P. Tombesi, and D. Vitali, Effect of
phase noise on the generation of stationary entanglement in
cavity optomechanics, Phys. Rev. A 84, 032325 (2011).

013521-10

https://doi.org/10.1103/PhysRevA.77.033804
https://doi.org/10.1103/PhysRevA.77.011804
https://doi.org/10.1103/PhysRevLett.101.263602
https://doi.org/10.1103/PhysRevA.80.063819
https://doi.org/10.1103/PhysRevB.84.094502
https://doi.org/10.1103/PhysRevLett.107.177204
https://doi.org/10.1103/PhysRevLett.110.153606
https://doi.org/10.1088/1674-1056/22/11/114213
https://doi.org/10.1103/PhysRevLett.118.233604
https://doi.org/10.1364/OE.26.033830
https://doi.org/10.1103/PhysRevA.99.023829
https://doi.org/10.1103/PhysRevA.102.011502
https://doi.org/10.1088/1361-6455/abf6b3
https://doi.org/10.1103/PhysRevLett.101.197203
https://doi.org/10.1038/nphys1301
https://doi.org/10.1038/nphys1304
https://doi.org/10.1038/nphys1303
https://doi.org/10.1038/nature08967
https://doi.org/10.1038/nature08681
https://doi.org/10.1103/PhysRevA.83.063835
https://doi.org/10.1038/nature10261
https://doi.org/10.1038/nature10461
https://doi.org/10.1103/PhysRevLett.107.143005
https://doi.org/10.1038/nature10787
https://doi.org/10.1103/PhysRevLett.108.033602
https://doi.org/10.1103/PhysRevLett.116.063601
https://doi.org/10.1038/nature20604
https://doi.org/10.1103/PhysRevLett.98.030405
https://doi.org/10.1103/PhysRevLett.99.250401
https://doi.org/10.1103/PhysRevA.76.042336
https://doi.org/10.1103/PhysRevA.78.032316
https://doi.org/10.1103/PhysRevLett.101.200503
https://doi.org/10.1103/PhysRevA.84.032317
https://doi.org/10.1103/PhysRevA.84.032325


AMPLITUDE AND PHASE LOCKING OF MECHANICAL … PHYSICAL REVIEW A 105, 013521 (2022)

[39] Q. Lin, B. He, R. Ghobadi, and C. Simon, Fully quantum
approach to optomechanical entanglement, Phys. Rev. A 90,
022309 (2014).

[40] Q. Lin and B. He, Optomechanical entanglement under pulse
drive, Opt. Express 23, 24497 (2015).

[41] Z.-X. Chen, Q. Lin, B. He, and Z.-Y. Lin, Entanglement
dynamics in double-cavity optomechanical systems, Opt.
Express 25, 17237 (2017).

[42] T. A. Palomaki, J. D. Teufel, R. W. Simmonds, and K. W.
Lehnert, Entangling Mechanical Motion with Microwave
Fields, Science 342, 710 (2013).

[43] S. G. Hofer, W. Wieczorek, M. Aspelmeyer, and K.
Hammerer, Quantum entanglement and teleportation in pulsed
cavity optomechanics, Phys. Rev. A 84, 052327 (2011).

[44] M. R. Vanner, I. Pikovski, G. D. Cole, M. S. Kim, C. Brukner,
K. Hammerer, G. J. Milburn, and M. Aspelmeyer, Pulsed
quantum optomechanics, Proc. Natl. Acad. Sci. USA 108,
16182 (2011).

[45] M. R. Vanner, J. Hofer, G. D. Cole, and M. Aspelmeyer,
Cooling-by-measurement and mechanical state tomogra-
phy via pulsed optomechanics, Nat. Commun. 4, 2295
(2013).

[46] A. A. Rakhubovsky and R. Filip, Robust entanglement with
a thermal mechanical oscillator, Phys. Rev. A 91, 062317
(2015).

[47] Q. Lin, B. He, and M. Xiao, Entangling Two Macroscopic
Mechanical Resonators at High Temperature, Phys. Rev. Appl.
13, 034030 (2020).

[48] K. Y. Dixon, L. Cohen, N. Bhusal, C. Wipf, J. P. Dowling,
and T. Corbitt, Optomechanical entanglement at room temper-
ature: A simulation study with realistic conditions, Phys. Rev.
A 102, 063518 (2020).

[49] W. H. Zurek, Decoherence, einselection, and the quantum
origins of the classical, Rev. Mod. Phys. 75, 715 (2003).

[50] A. J. Leggett and A. Garg, Quantum Mechanics versus Macro-
scopic Realism: Is the Flux There When Nobody Looks?
Phys. Rev. Lett. 54, 857 (1985).

[51] A. J. Leggett, Testing the limits of quantum mechanics: moti-
vation, state of play, prospects, J. Phys.: Condens. Matter 14,
R415 (2002).

[52] B. He, Quantum optomechanics beyond linearization,
Phys. Rev. A 85, 063820 (2012).

[53] T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J.
Vahala, Temporal Behavior of Radiation-Pressure-Induced Vi-
brations of an Optical Microcavity Phonon Mode, Phys. Rev.
Lett. 94, 223902 (2005).

[54] H. Rokhsari, T. Kippenberg, T. Carmon, and K. Vahala,
Radiation-pressure-driven micro-mechanical oscillator,
Opt. Express 13, 5293 (2005).

[55] F. Marquardt, J. G. E. Harris, and S. M. Girvin, Dy-
namical Multistability Induced by Radiation Pressure in
High-Finesse Micromechanical Optical Cavities, Phys. Rev.
Lett. 96, 103901 (2006).

[56] M. Ludwig, B. Kubala, and F. Marquardt, The optomechanical
instability in the quantum regime, New J. Phys. 10, 095013
(2008).

[57] A. G. Krause, J. T. Hill, M. Ludwig, A. H. Safavi-Naeini,
J. Chan, F. Marquardt, and O. Painter, Nonlinear Radiation
Pressure Dynamics in an Optomechanical Crystal, Phys. Rev.
Lett. 115, 233601 (2015).

[58] Q. Lin, B. He, and M. Xiao, Catastrophic transition between
dynamical patterns in a phonon laser, Phys. Rev. Res. 3,
L032018 (2021).

[59] B. He, Q. Lin, M. Orszag, and M. Xiao, Mechanical oscilla-
tions frozen on discrete levels by two optical driving fields,
Phys. Rev. A 102, 011503(R) (2020).

[60] S. H. Strogatz and I. Stewart, Coupled oscillators and biologi-
cal synchronization, Sci. Am. 269, 102 (1993).

[61] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization:
A Universal Concept in Nonlinear Sciences (Cambridge Uni-
versity Press, Cambridge, 2001).

[62] R. V. Jensen, Synchronization of driven nonlinear oscillators,
Am. J. Phys. 70, 607 (2002).

[63] A. Balanov, N. Janson, D. Postnov, and O. Sosnovtseva,
Synchronization: From Simple to Complex (Springer, Berlin,
2009).

[64] C. Huygens, Horologium Oscillatorium (Muguet, Paris, 1673).
[65] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phase Syn-

chronization of Chaotic Oscillators, Phys. Rev. Lett. 76, 1804
(1996).

[66] G. V. Osipov, B. Hu, C. Zhou, M. V. Ivanchenko, and J.
Kurths, Three Types of Transitions to Phase Synchronization
in Coupled Chaotic Oscillators, Phys. Rev. Lett. 91, 024101
(2003).

[67] F. Dörfler and F. Bullo, Synchronization in complex net-
works of phase oscillators: A survey, Automatica 50, 1539
(2014).

[68] J. Gómez-Gardeñes, Y. Moreno, and A. Arenas, Paths to
Synchronization on Complex Networks, Phys. Rev. Lett. 98,
034101 (2007).

[69] J. Gómez-Gardeñes, S. Gómez, A. Arenas, and Y. Moreno, Ex-
plosive Synchronization Transitions in Scale-Free Networks,
Phys. Rev. Lett. 106, 128701 (2011).

[70] J. R. Terry, K. S. Thornburg, Jr., D. J. DeShazer, G. D.
Vanwiggeren, S. Zhu, P. Ashwin, and R. Roy, Synchronization
of chaos in an array of three lasers, Phys. Rev. E 59, 4036
(1999).

[71] M. C. Cross, A. Zumdieck, R. Lifshitz, and J. L. Rogers,
Synchronization by Nonlinear Frequency Pulling, Phys. Rev.
Lett. 93, 224101 (2004).

[72] H. F. Chen and J. M. Liu, Complete phase and amplitude
synchronization of broadband chaotic optical fields generated
by semiconductor lasers subject to optical injection, Phys. Rev.
E 71, 046216 (2005).

[73] S. Yanchuk, K. Schneider, and O. Lykova, Amplitude syn-
chronization in a system of two coupled semiconductor lasers,
Ukr. Math. J. 60, 495 (2008).

[74] A. B. Tort, R. Komorowski, H. Eichenbaum, and N. Kopell,
Measuring phase-amplitude coupling between neuronal oscil-
lations of different frequencies, J. Neurophysiol. 104, 1195
(2010).

[75] R. T. Canolty and R. T. Knight, The functional role of
cross-frequency coupling, Trends Cognitive Sci. 14, 506
(2010).

[76] J. Fell and N. Axmacher, The role of phase synchronization in
memory processes, Nat. Rev. Neurosci. 12, 105 (2011).

[77] M. H. Matheny, M. Grau, L. G. Villanueva, R. B. Karabalin,
M. C. Cross, and M. L. Roukes, Phase Synchronization of Two
Anharmonic Nanomechanical Oscillators, Phys. Rev. Lett.
112, 014101 (2014).

013521-11

https://doi.org/10.1103/PhysRevA.90.022309
https://doi.org/10.1364/OE.23.024497
https://doi.org/10.1364/OE.25.017237
https://doi.org/10.1126/science.1244563
https://doi.org/10.1103/PhysRevA.84.052327
https://doi.org/10.1073/pnas.1105098108
https://doi.org/10.1038/ncomms3295
https://doi.org/10.1103/PhysRevA.91.062317
https://doi.org/10.1103/PhysRevApplied.13.034030
https://doi.org/10.1103/PhysRevA.102.063518
https://doi.org/10.1103/RevModPhys.75.715
https://doi.org/10.1103/PhysRevLett.54.857
https://doi.org/10.1088/0953-8984/14/15/201
https://doi.org/10.1103/PhysRevA.85.063820
https://doi.org/10.1103/PhysRevLett.94.223902
https://doi.org/10.1364/OPEX.13.005293
https://doi.org/10.1103/PhysRevLett.96.103901
https://doi.org/10.1088/1367-2630/10/9/095013
https://doi.org/10.1103/PhysRevLett.115.233601
https://doi.org/10.1103/PhysRevResearch.3.L032018
https://doi.org/10.1103/PhysRevA.102.011503
https://doi.org/10.1038/scientificamerican1293-102
https://doi.org/10.1119/1.1467909
https://doi.org/10.1103/PhysRevLett.76.1804
https://doi.org/10.1103/PhysRevLett.91.024101
https://doi.org/10.1016/j.automatica.2014.04.012
https://doi.org/10.1103/PhysRevLett.98.034101
https://doi.org/10.1103/PhysRevLett.106.128701
https://doi.org/10.1103/PhysRevE.59.4036
https://doi.org/10.1103/PhysRevLett.93.224101
https://doi.org/10.1103/PhysRevE.71.046216
https://doi.org/10.1007/s11253-008-0070-3
https://doi.org/10.1152/jn.00106.2010
https://doi.org/10.1016/j.tics.2010.09.001
https://doi.org/10.1038/nrn2979
https://doi.org/10.1103/PhysRevLett.112.014101


YI WU, GANG LI, BING HE, AND QING LIN PHYSICAL REVIEW A 105, 013521 (2022)

[78] F. Böhm, A. Zakharova, E. Schöll, and K. Lüdge, Amplitude-
phase coupling drives chimera states in globally coupled laser
networks, Phys. Rev. E 91, 040901(R) (2015).

[79] J. M. González-Miranda, Amplitude envelope synchronization
in coupled chaotic oscillators, Phys. Rev. E 65, 036232 (2002).

[80] Q. Qiu, B. Z. Zhou, P. Wang, L. G. He, Y. H. Xiao, Z. Y. Yang,
and M. Zhan, Origin of amplitude synchronization in coupled
nonidentical oscillators, Phys. Rev. E 101, 022210 (2020).

[81] P. Meystre, E. M. Wright, J. D. McCullen, and E. Vignes,
Theory of radiation-pressure-driven interferometers, J. Opt.
Soc. Am. B 2, 1830 (1985).

[82] M. Bhattacharya and P. Meystre, Trapping and Cooling a Mir-
ror to Its Quantum Mechanical Ground state, Phys. Rev. Lett.
99, 073601 (2007)

[83] A. M. Jayich, J. C. Sankey, B. M. Zwickl, C. Yang, J. D.
Thompson, S. M. Girvin, A. A. Clerk, F. Marquardt, and
J. G. E. Harris, Dispersive optomechanics: A membrane inside
a cavity, New J. Phys. 10, 095008 (2008).

[84] Y. Li, L. A. Wu, and Z. D. Wang, Fast ground-state cooling
of mechanical resonators with time-dependent optical cavities,
Phys. Rev. A 83, 043804 (2011).

[85] M. Karuza, C. Molinelli, M. Galassi, C. Biancofiore, R. Natali,
P. Tombesi, G. Di Giuseppe, and D. Vitali, Optomechanical
sideband cooling of a thin membrane within a cavity, New J.
Phys. 14, 095015 (2012)

[86] Y. J. Guo, K. Li, W. J. Nie, and Y. Li, Electromagnetically-
induced-transparency-like ground-state cooling in a double
cavity optomechanical system, Phys. Rev. A 90, 053841
(2014).

[87] J. Wen, X. Jiang, L. Jiang, and M. Xiao, Parity-time symmetry
in optical microcavity systems, J. Phys. B 51, 222001 (2018).

[88] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H.
Musslimani, S. Rotter, and D. N. Christodoulides, Non-
Hermitian physics and PT symmetry, Nat. Phys. 14, 11
(2018).

[89] B. He, L. Yang, Z. Zhang, and M. Xiao, Cyclic permutation-
time symmetric structure with coupled gain-loss microcavi-
ties, Phys. Rev. A 91, 033830 (2015).

[90] I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, Phonon
Laser Action in a Tunable Two-Level System, Phys. Rev. Lett.
104, 083901 (2010).

[91] H. Jing, S. K. Özdemir, X. Y. Lü, J. Zhang, L. Yang, and
F. Nori, PT -Symmetric Phonon Laser, Phys. Rev. Lett. 113,
053604 (2014).

[92] B. He, L. Yang, and M. Xiao, Dynamical phonon laser in
coupled active-passive microresonators, Phys. Rev. A 94,
031802(R) (2016).

[93] H. Lü, S. K. Özdemir, L.-M. Kuang, F. Nori, and H.
Jing, Exceptional Points in Random-Defect Phonon Lasers,
Phys. Rev. Appl. 8, 044020 (2017).

[94] Y. L. Zhang, C. L. Zou, C. S. Yang, H. Jing, C. H. Dong, G. C.
Guo, and X. B. Zou, Phase-controlled phonon laser, New J.
Phys. 20, 093005 (2018).

[95] B. Wang, H. Xiong, X. Jia, and Y. Wu, Phonon laser in the
coupled vector cavity optomechanics, Sci. Rep. 8, 282 (2018).

[96] Y. F. Xie, Z. Cao, B. He, and Q. Lin, PT -symmetric phonon
laser under gain saturation effect, Opt. Express 28, 22580
(2020).

[97] G. Z. Wang, M. M. Zhao, Y. C. Qin, Z. Q. Yin, X. S.
Jiang, and M. Xiao, Demonstration of an ultra-low-threshold
phonon laser with coupled microtoroid resonators in vacuum,
Photon. Res. 5, 73 (2017).
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