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Stabilization of higher-order vortex solitons by means of nonlocal nonlinearity
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We report the experimental observation of the instability suppression of higher-order vortex solitons in
cylindrical lead glass with thermal nonlocal nonlinearity. A scalar higher-order vortex soliton with a topological
charge l = 10, which is vulnerable to azimuthal breakup when it is perturbed by an initial noise, is stabilized by a
coaxially propagating, mutually incoherent Gaussian beam, forming a Gauss-vortex vector soliton (GVVS). The
vortical annular profile and topological charge in the GVVS, and the vortical annular profile in the Gauss-vortex
vector breather (GVVB), can be preserved during the propagation. Numerical simulations for unperturbed and
perturbed scalar vortex solitons, GVVS, and GVVB demonstrate close agreement with experimental results.
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I. INTRODUCTION

Light beams carrying orbital angular momentum (OAM)
are usually associated with optical vortices, which feature a
hollow core surrounded by a toroid-shaped intensity profile.
Due to their fascinating properties, including the screw-type
wave front [1], energy flow within a cross section [2], and
unlimited value of topological charge [3], optical vortices
possess considerable promise for applications in information
encoding and processing [4], OAM multiplexing [5,6], and
rotating Doppler effect [7], among others. When a vortex
beam propagates in a nonlinear medium, the combined ef-
fect between self-focusing and diffraction may lead to its
non-diffracting propagation, forming a spatial vortex soli-
ton. Two-dimensional (2D) solitons with embedded vorticities
have garnered growing interest because of their concentra-
tion of energy in space and power handing capabilities [8,9].
However, a well-known problem impeding the application
of vortex solitons in self-focusing nonlinear media is vortex
breakup driven by the intrinsic azimuthal instability [10]; this
process has been observed experimentally in nematic liquid
crystals (NLCs) [11], saturable vapors [12], and photorefrac-
tive nonlinear media [13].

Many physically relevant settings and models were pro-
posed to prevent the breakup of bright vortex soliton
with topological charge l = 1. The stable scalar (single-
component), single-charged vortex soliton was theoretically
proposed in cubic self-focusing and quintic self-defocusing
nonlinear media [14] and Bose-Einstein condensates (BECs)
[15], and experimentally observed in square lead glass [16]
and bulk NLC [17], both of which feature strongly nonlocal
nonlinearity. A self-confined scalar vortex nematicon was re-
cently achieved in planar NLC cells, with the aid of material
nonlocality and low birefringence [18]. Another route towards
vortex-annulus stabilization relied on the vector (multicom-
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ponent) vortex solitons (VVSs). A class of two-color VVSs,
denoted by the (0, 1) state, was predicted in theory [19,20]
and implemented in NLC experiments [21,22]. It revealed
that the crater-shaped vortex can be confined by the nonlocal
refractive potential induced by the bell-shaped fundamental
beam. Another class of two-component VVSs, denoted by
the (+1, −1) state, shows that the vortex pair with hidden
vorticity always exhibits better stability than one with explicit
vorticity in NLCs [23,24], as well as BECs with attractive
interactions [25].

Motivated by applications in such areas as multichannel
communication [26] and yeast cell trapping [27], the stabi-
lization of the vortex soliton with a large value of topological
charge has become an especially interesting research topic.
Vortex solitons with l > 2 may be stable in media with
quadratic-cubic [28], and cubic-quintic nonlinearities [29]. Li
et al. constructed 2D self-trapped vortical quantum droplets,
and found the quantum droplets with charge up to 5 are sta-
ble within a certain norm region [30]. Another possibility to
create stable 2D giant vortex rings (vortex solitons with an in-
definitely large value of charges) was predicted in binary BEC
with its two components coupled by microwave radiation
[31,32]. With respect to the higher-order vortices in coupling
systems, we theoretically discovered that the azimuthal insta-
bility of a higher-order (l > 2) vortex can be eliminated by a
lower-order (l � 2) vortex, including the fundamental beam,
in thermal nonlocal media with cylindrical symmetry, even
when the higher-order charge is extremely large [33,34].

In this work, we experimentally demonstrate the formation
of a Gauss-vortex vector soliton (GVVS) and a Gauss-vortex
vector breather (GVVB), both of which consist of one higher-
order (l = 10) bright vortex being stabilized by the other
fundamental Gaussian beam, in one of the most popular non-
local nonlinear media, namely, lead glass. The annular shape
and topological charge of the vortex component in the GVVS
and GVVB can be preserved during the propagation. The re-
fractive index waveguide induced by the Gaussian component
leads to the stabilization of the nonlinear vortex beam when
the power ratio exceeds a critical value. These experimental
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FIG. 1. Sketch of the experimental arrangement. Verdi-V12, Ti-
sapphire solid-state green (λ = 532 nm) laser; λ/2, half-wave plate;
PBS, polarization beam splitter; M1−2, mirrors; VPP1−2, vortex
phase plates with charges l = 10 and l = − 10, respectively; WC:
wire cross; F1 − F4, 75, 50, 200, and 150 mm focusing lenses,
respectively; BS, beam splitter; LG, lead glass, which is thermally
contacted by a copper-made heat sink; MO, 5× microscope ob-
jective; GP, Glan prism; CCD1−2, charge-coupled device cameras.
Dashed square (a) shows the detecting elements, while dashed square
(b) shows the back-converting elements.

results are collaborated by numerical propagations for per-
turbed stationary solutions of a scalar vortex soliton, GVVS,
and GVVB.

II. EXPERIMENTAL SETUP AND RESULTS

A schematic of the experimental arrangement is shown in
Fig. 1. The source is a continuous wave (cw) Ti:sapphire solid-
state laser with wavelength λ = 532 nm. The output linearly
polarized fundamental beam is split into two components by
the polarization beam splitter, PBS. The horizontally polar-
ized Gaussian beam, passing through the telescope composed
of F1 and F2, carries the power Pg, whereas the vertically
polarized vortex beam, passing through the vortex phase plate
VPP1, carries the charge lv = 10 and the power Pv . A wire
cross, WC, with a diameter of about 150 μm is placed be-
hind the VPP1, adding initial perturbation corresponding to
azimuthal index k = 4 to the vortex beam with a diameter
of about wp−p = 5.0 mm (defined by peak to peak intensity).
The two orthogonally polarized beams are combined by the
beam splitter, BS, to propagate coaxially, and are focused
on the front face of the cylindrical heavily lead-doped glass
with length L = 57.5 mm and radius R = 7.5 mm. The lin-
ear refractive index, optical absorption, thermo-optical, and
thermal conductivity coefficients of the lead glass are, respec-
tively, n0 = 1.9, α = 0.07 cm−1, β = 1.4 × 10−5 K−1, and
κ = 0.7 W/(m K) [33]. In dashed square (a), the output scalar
and vector beam spots on the rear face of the sample are
recorded by the CCD1 camera (WinCamD-LCM) via a 5×
microscope objective, MO. In dashed square (b), the vertically
and horizontally polarized components in the composite beam
are separated by rotating the Glan prism, GP, and converted
to Gaussian spots by passing through VPP2 with an oppo-
site charge (l = −10) and focusing on the CCD2 camera
(WinCamD-UHR).

First, we investigate the linear and nonlinear behaviors of
scalar beams propagating alone through the lead glass. As the
focal lengths of F1–F3 are selected to be 75, 50, and 150 mm,

FIG. 2. Experimental beam profiles depicting the linear and non-
linear behaviors of scalar beams propagating through a cylindrical
lead glass sample. (a)–(c) The scalar Gaussian beam with input beam
width w0g = 19.5 μm. (d)–(f) The scalar unperturbed vortex beam
with input beam width w0v = 30 μm. (g)–(i) The scalar vortex beam
perturbed by a wire cross.

the input radii for Gaussian beam [Fig. 2(a)] and unperturbed
(without wire cross) higher-order vortex [Fig. 2(d)] are w0g =
19.5 μm and w0v = 30.0 μm, respectively. Thus, the input
beam width ratio of the two components is σ = w0g/w0v =
0.65, and their normalized diffraction distances are Zg =
L/k0w

2
0g = 6.7 and Zv = L/k0w

2
0v = 2.8, with k0 being the

wave number in media. For low input power of Pj = 10 mW
( j = g, v), both beams diffract without any appreciable non-
linear self-action [Figs. 2(b) and 2(e)]. With the increase of
input power, these scalar beams undergo self-focusing and
shrink gradually, giving rise to a Gaussian soliton [Fig. 2(c)]
and a vortex soliton [Fig. 2(f)] at the critical powers of Pg =
540 mW and Pv = 1900 mW, respectively. The observation
of a charge-10 vortex soliton without azimuthal breakup is
consistent with the results reported earlier [33], where an
annulus-preserving charge-4 vortex soliton can be observed
just because its normalized diffraction distance was relatively
short (Zv = 2.1), and its azimuthal instability has not devel-
oped yet. In contrast, by placing a cross filament into the
optical setup, the input ring [Fig. 2(g)] is added perturbation
corresponding to azimuthal index k = 4, and the output vortex
clearly splits into four focused fragments under the same input
power. This breaking process indicates that perturbation with
an appropriate azimuthal index can accelerate the breaking
speed upon propagation.

In order to stabilize the perturbed higher-order vortex and
prevent its breakup, we investigate the incoherently coupled
interaction of two components propagating simultaneously in
the form of a GVVS. We have proved that a vector vortex
soliton with a given input beam width ratio can exist only at an
appropriate power ratio [35]. Thus, for the input Gauss-vortex
composite beams with beam width ratio σ = 0.65 [Figs. 3(a)
and 3(c)], we change their power ratio (by rotating the
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FIG. 3. The formation of the stable GVVS (lg = 0, lv = 10, η =
0.4) without and with perturbation at the critical power of 1500 mW.

half-wave plate) to a critical value predicted in theory, i.e.,
η = Pg/Pv = 0.4, and search for the GVVS by increasing the
total input power P = Pg + Pv . From the top row in Fig. 3,
we can see that the output Gaussian and vortical spots can
approach their respective input sizes simultaneously, forming
a stable GVVS with a ring shape around a bright center.
Obviously, the critical power of the GVVS (Pc = 1500 mW) is
between those of scalar Gaussian soliton and vortex soliton. In
contrast to the beam split in Fig. 2(i), when the perturbed vor-
tex is accompanied by the relatively weak Gaussian beam, its
annular shape can be preserved at the soliton power, as shown
in Fig. 3(d). It could be said that the azimuthal instability of
the higher-order vortex is suppressed due to the cylindrical
nonlocal refractive potential induced by the Gaussian soliton.

To confirm the annular shape of the stabilized vortex com-
ponent, we separately record the constituent components of
the output GVVS by rotating the Glan prism placed behind
lead glass. The horizontally and vertically polarized com-
ponents of the perturbed GVVS are displayed in Figs. 4(a)
and 4(b), respectively. The comparison of beam profiles in
Figs. 2(i) and 4(b) vividly demonstrates the circumvention
of vortex breakup and the stabilizing effect of the Gaus-

FIG. 4. Beam images of the horizontally (a) and vertically (b)
polarized components of the perturbed GVVS displayed in Fig. 3(d).
(c,d) Beam images of the horizontally and vertically polarized com-
ponents passing through VPP2 with charge l = − 10, respectively.

FIG. 5. The output profiles of the GVVB for (a)–(c) various input
powers at a fixed power ratio of η = 0.4 and (d)–(f) various power
ratios at a fixed input power of Pc = 1500 mW.

sian soliton. On the other hand, the OAM state of a vortex
beam can be detected by loading a conjugate spiral phase
to eliminate the screw-type phase singularity [36]. As shown
in dashed square (b) of Fig. 1, VPP2 with charge l = − 10
is used to convert the horizontally polarized Gaussian beam
into a vortex beam with charge l = − 10 [Fig. 4(c)], and
convert the vertically polarized vortex beam into a bright
fundamental spot [Fig. 4(d)]. This bright spot without phase
singularity verifies the preserving of the topological charge
of the stabilized vortex. Thus, in summary, we ascertain that
the vortex character, including the annular profile and topo-
logical charge, of the stabilized vortex is maintained after the
propagation.

Finally, we investigate the behaviors of the GVVB when
the power of each component deviates from the soliton power.
Figures 5(a)–5(c) depict the output spots of the perturbed
GVVB with a fixed power ratio of η = 0.4. As the total
power increases, the vortical radius decreases monotonically,
whereas the Gaussian radius undergoes aperiodic oscillations.
Specifically, the vortical annulus can be preserved in the
whole process of increasing power, whenever the input power
is less than the critical power or larger than the critical power.
On the other hand, at the fixed total power of Pc = 1500 mW,
we observe the beam profile evolution for various power ratios
by rotating the half-wave plate. As shown in Fig. 5(d), the
GVVB with η = 0, i.e., the scalar vortex beam, exhibits a
four-lobe azimuthal distortion, which is similar to the break-
ing scenario in Fig. 2(i). However, when the power ratio
η = Pg/Pv exceeds the critical power ratio of η = 0.4, e.g.,
η = 0.7 as shown in Fig. 5(f), the annular ring of the per-
turbed vortex can also be preserved during propagation. Thus,
we can conclude that the vortical annulus can be preserved
in the GVVB with total power deviating from the soliton
power, or in the GVVB with the power ratio exceeding the
critical value.

III. NUMERICAL PROPAGATIONS FOR GVVS AND GVVB

To model the experiments presented above, we
consider the coaxial propagation of two monochro-
matic beams with orthogonal polarization in
cylindrically symmetric lead glass with strongly
thermal nonlocality. Their propagating behaviors
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FIG. 6. Top row: the output profiles of the scalar vortex solitons without and with input perturbation, and (a) the growth curves of their
VND. Bottom row: the output composite profiles of the GVVS without and with input perturbation, and (b) the growth curves of the VND for
vortical components.

can be described by the following coupled equations in
cylindrical coordinates (ρ, φ, z) [16,33]:
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where ψ j is the complex field amplitude, �n is the nonlinear
refractive index, and φ is the azimuthal angle. Equation (1)
can be simplified to its dimensionless form via the variable
and coordinate transformations as follows:

q j = (
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0

/
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)1/2
ψ j, n = k2

0r2
0�n/n0,

r = ρ/r0, Z = z/k0r2
0 , (2)

where r0 is the characteristic beam radius. The dimensionless
two-component propagating equations are then
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Here, we define the optical power and the statistical beam
width as

p j = 2π

∫ ∞

0
r|q j |2dr, w j = 2π

∫ ∞

0
r3|q j |2dr/p j . (4)

The stationary solutions of the scalar vortex soliton and
GVVS in the forms of q j = ϕ j (r)exp(il jφ + ib jZ ) are sought
by Newton’s iterative method [33]. We perform numerical

simulations for the scalar vortex soliton and GVVS us-
ing the split-step Fourier method. The initial multiplicative
perturbation [1 + τcos(4φ)] is added only into the vortex
component, where τ is the perturbation degree. The intrin-
sic instability of the higher-order vortex will be unveiled
during propagation, even though the initial perturbation is
random noise. But an appropriate initial perturbation, e.g.,
cos(4φ) in simulation and the one induced by the wire cross
in experiment, just accelerates the breaking process of the
vortex soliton during propagation. Here, the vector norm
deviation (VND) is applied to quantitatively depict the dis-
tortion degree of the vortical intensity distribution at any
propagation distance I(Z) from the initial one I(0), which is
expressed as

VND(Z ) = ‖I (Z ) − I (0)‖
‖I (0)‖ . (5)

The double bar in Eq. (5) stands for the vector norm, namely,
the square root of the sum of squares of each intensity ele-
ment.

The top row in Fig. 6 shows the dynamical evolutions
of the scalar vortex soliton in a lead glass rod with radius
r = 40. After propagating a relatively short distance of Z =
15, the input vortex without perturbation (τ = 0) can tem-
porarily preserve its ring-shaped profile without appreciable
deformation (VND = 5%). This dynamics is consistent with
that observed in Fig. 2(f), where the azimuthal instability is
just in the initial stage of growth. By contrast, a perturba-
tion with τ = 2% can quickly lead to vortex decay (VND =
62%) within the same propagation distance, just as that what
was experimentally observed in Fig. 2(i). The bottom row
in Fig. 6 shows the output composite spots of the GVVS
with beam width ratio σ = 0.65 and power ratio η = 0.4.
Due to the presence of the Gaussian soliton, the higher-order
vortex can survive over a considerably longer distance without
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FIG. 7. The vortical beam widths (a) and VND (b) of the perturbed GVVB with P = 0.8Pc and P = 1.2Pc. (c) The vortical beam width
and VND of the perturbed GVVB with σ = 0.65 and η = 0.7.

any azimuthal breakup, whether in the unperturbed case or
the perturbed case. It can be seen from Fig. 6(b) that the
vortical VND in the unperturbed GVVS approaches zero,
while the vortical VND in the perturbed GVVS oscillates
within a low level and will not increase during the whole
propagation.

Then we investigate the oscillating behaviors of the vortical
beam width and VND in the perturbed GVVB. Figure 7(a)
shows the normalized vortical beam widths wv/w0v in the
GVVB with P = 0.8Pc and P = 1.2Pc. As expected, when
the total power is less than the critical power, i.e., P = 0.8 Pc

shown by the red line, the vortical beam width will first
increase and then decrease. On the contrary, when the total
power is larger than the critical power, i.e., P = 1.2 Pc shown
by the dashed blue line, the vortical beam width will first
decrease and then increase. As shown in Fig. 7(b), the
oscillating frequency of VND is the same as that of the
vortical beam width. Specifically, when the vortical beam
width oscillates back to its initial size, the VND approaches
zero value correspondingly; this case indicates the preserving
of the vortical ring profile in the GVVB. Analogous behavior
can be seen in Fig. 7(c), where the vortical beam width
and VND oscillate synchronously. When the power ratio
in the GVVB exceeds the critical value in the GVVS, the
vortical annulus in the GVVB can be preserved during the
propagation. In fact, such a conclusion was confirmed by
performing a lot of numerical propagations for the GVVB
with different input beam width ratios.

IV. CONCLUSION

We have experimentally and numerically presented the
stabilizing process of the GVVS, formed by one charge-10
vortex soliton copropagating with the other orthogonally po-
larized Gaussian beam, in thermal nonlocal nonlinear media
with a circular cross section. The coupling with the Gaussian
soliton circumvents the azimuthal breakup of the charge-10
vortex into four focused fragments that can occur when the
perturbed vortex soliton propagates alone. Our experimental
results show that the stabilized charge-10 vortex can maintain
its vortex characteristics during propagation, i.e., the annular
shape and the topological charge. The annular shape of the
vortex component in the GVVB can also be preserved dur-
ing propagation. We expect such a report on a higher-order
vortex soliton in lead glass may stimulate further research
on more complicated vector solitons, such as higher-order
cylindrical-vector solitons and Poincaré solitons with polar-
ization singularities in nonlocal media.
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