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Theory of thin-vapor-layer linear-optical properties: The case of quenching of atomic polarization
upon collisions of atoms with dielectric walls
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Hot alkali metal vapors enclosed in submicron spectroscopic cells provide an ideal system for fundamental
studies of the atom-wall and atom-light interactions at the nanoscale. Here, we propose an approach for
calculating the eigenmodes of a thin vapor layer beyond the limitations of the first-order perturbation theory
in optical density for the case of quenching of atomic polarization upon collisions of atoms with dielectric walls.
We show that higher-order optical density corrections lead to a remarkable density-dependent blueshift and
deformation of the spectral line shapes of reflection, transmission, and absorption. We also demonstrate that the
eigenmodes of the thin vapor layer can be calculated independently of the choice of optical boundary conditions.
This greatly extends the applicability of the constructed theory for the development of miniature atomic sensors.
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I. INTRODUCTION

Recently, there has been a growing interest in funda-
mental and applied studies on light interaction with isolated
atoms, since the processes occurring in such systems are
the most accessible to theoretical description. Newly devel-
oped methods for cooling and trapping atoms have allowed
us to realize (with a high degree of approximation) an
ideal atomic system that does not interact with anything.
Unfortunately, these techniques remain expensive and cum-
bersome, and the time during which light can interact with
such systems is substantially limited [1]. A much cheaper
and more available alternative is hot atomic vapors, which
can be enclosed in miniature spectroscopic cells and used
continuously for extended periods of time [2,3]. Studying
the optical properties of thin vapor layers (TVLs) is highly
relevant due to a number of important applications, such
as practical implementation of atomic sensors, magnetome-
ters, and methods for frequency stabilization of lasers, as
well as the possibility to conduct fundamental research into
the nature of interaction of atoms with dielectric surfaces,
detailed studies of collision processes in atomic ensembles,
and effects leading to the shift and broadening of spectral
lines [4–9].

The manifestation of Doppler-free structures in the spectra
of light reflection from the interface of dielectric medium
and atomic vapor was first demonstrated by Cojan [10] and
was followed by the series of remarkable experiments with
sodium vapor [11,12]. In particular, Cojan pointed out the
inconsistency of the conventional dispersion theory, based on
the local relationship between the field and the induced polar-
ization in the gaseous medium, when describing the observed
phenomenon. Following Cojan’s ideas, the exact solution to
the problem of light reflection from a semi-infinite layer of
resonant gas was subsequently obtained by Schuurmans [13].
As was noted by Cojan and Schuurmans, the main reason

leading to the narrowing of spectral lines is the transient pro-
cess of establishing polarization after the collision of an atom
with a wall. Indeed, regardless of the nature of atom-surface
interactions, immediately after the collision, the atom “sees”
a driven field with different detuning compared to the one
possessed before the collision due to the thermal motion. In
a dilute gas, the mean-free path of an atom without coherence
loss may become greater than the wavelength of the inci-
dent light. Consequently, the strong influence of the spatial
dispersion induced by both the thermal motion of atoms and
boundary presence leads to the formation of the sub-Doppler
structure in reflection spectra.

Further studies of resonant reflection [also known as se-
lective reflection (SR)] of light from the boundary of a
gaseous medium also included the processes of nonlinear na-
ture [14,15]. Besides, SR can be used to develop methods for
narrowing the line of laser generation [16], in high-resolution
studies [17], and in detailed consideration of the dynamics of
atom collisions with a dielectric wall. Moreover, a number
of publications consider the influence of higher-order effects
in vapor density [18], antireflection coatings [19], and the
Lorentz-Lorenz field correction [20]. In Ref. [21] the para-
doxical blueshift of the resonant frequency was studied in
the reflection spectrum (hereinafter referred to as “blueshift”);
it was revealed that the blueshift is sensitive to the concen-
tration of atomic vapors. This phenomenon was previously
prescribed to the transient polarization aspect in [13,20], how-
ever, without explaining in detail its origin.

Brand new prospects appeared after the theoretical pre-
diction of the possibility to enhance the optical response of
a resonant vapor spatially confined between two dielectric
media in a layer with a thickness of the order of the incident
wavelength [22,23] and practical implementation of miniature
vapor cells containing vapors of alkali metals [2]. The works
cited subsequently gave rise to several remarkable studies
of the Paschen-Back and related effects on the hyperfine
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structure of alkali metals [24–27], atom-surface interactions
at the nanoscale [4,28,29], interactions of the resonant atomic
ensemble with the plasmonic structures [30,31], and other
applications [5,6,32,33]. Nevertheless, the underlying theo-
retical model [22] had such drawbacks as the exclusion of
light reflection from the rear gas-dielectric interface and the
limitation by the first order of the perturbation theory (PT) in
vapor density. The first challenge was tackled in [34], where
the authors took into account the interplay between the field
confined inside the Fabry-Pérot (FP) resonator and selective
contribution from the vapor. This revisited approach has been
used in numerous studies aimed at interpreting experimental
observations, while remaining limited to only the first order of
PT.

As can be seen, research in the field of spectroscopy of thin
layers of hot atomic vapors in the previous twenty years has
been actively expanding to newly applied and fundamental
fields. However, the theoretical description is still incomplete
for various physical processes, which occur during the res-
onant interaction of light with vapor spatially limited at the
nanoscale. The existing models describe qualitatively the op-
tical response of a highly rarefied gaseous medium, although
the underlying approximations can lead to significant discrep-
ancy between theory and experiment. From this point of view,
in addition to experimental studies, theoretical works intended
to clarify, expand, and revise already existing models are also
of great interest. The purpose of our work is to construct the
universal solutions to the TVL problem beyond the scope of
the first-order PT and to study the effect of these higher-order
contributions on the line shape, width, shift of the maxima,
and other features of the reflection, transmission, and absorp-
tion spectra of the TVL spatially confined between transparent
dielectric media.

The paper is organized as follows: Section II describes
the underlying assumptions of our model, considered geom-
etry, and the Maxwell-Bloch set of equations along with the
boundary conditions that fully describe the self-consistent
TVL problem. In Sec. III we introduce the iterative PT ap-
proach that serves to find the eigenmodes of the TVL in the
prescribed order with respect to the optical density of atomic
vapor. The calculation results of reflectivity, transmittivity,
and absorptivity of a TVL and their dependence on the system
parameters are given in Sec. IV. Finally, in Sec. V, we dis-
cuss the peculiarities associated with the higher-order vapor
density corrections for the cases of specular and quenching
atom-wall collisions and focus our attention on the blueshift
phenomenon arising in the higher-order optical density solu-
tions.

II. THEORETICAL BACKGROUND

Consider the resonant light interaction with the atomic
vapor spatially confined between two transparent dielectric
media that are taken to be semi-infinite. Inclusion of the ef-
fects connected with the presence of the outer boundaries of
these media is trivial and will not be treated here. In Fig. 1 we
schematically represent the one-dimensional (1D) geometry
of the considered problem, where l denotes the thickness of
the gas layer, while n1 and n2 stand for the refractive indices
of the surrounding media.

FIG. 1. Schematic illustration of the reflection and transmission
of light through a TVL confined between two dielectric media in the
region 0 � x � l .

(i) The vapor layer consists of two-level atoms with ω0

being the transition frequency between the ground and excited
states.

(ii) The normally incident laser radiation could be consid-
ered as a linearly polarized plane monochromatic electromag-
netic wave with a frequency ω varying in the spectral vicinity
of the resonant frequency, i.e., |ω − ω0|/ω � 1. Hence, the
use of the rotating-wave approximation is justified.

(iii) We restrict ourselves to the linear regime of interac-
tions in which the incident power is so low that it could not
saturate the resonant transition. Moreover, we do not take into
account the optical-pumping effect.

Finally, throughout our consideration, we treat the above
problem using the semiclassical approach. In the following
section we introduce the exact form of the Maxwell-Bloch set
of equations in the weak driven field limit that fully takes into
account the effect of strong spatial dispersion [35,36].

A. Maxwell-Bloch system of equations
in the linear regime of interactions

We begin by writing down the wave equation obtained
from the microscopic Maxwell’s equations in nonmagnetic
media in the absence of free charges and current using the
Gaussian convention

�E = 1

c2

∂2

∂t2
(E + 4πP), (1)

where E and P are electric field and polarization vectors,
respectively, and c is the speed of light. In accordance with
the considered 1D problem, the above equation reduces to a
scalar,

d2E (x)

dx2
+ k2E (x) = −4πk2P(x), (2)
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where k = 2π/λ. In the above equation we expressed field
and polarization within the gaseous medium in the following
form neglecting nonlinear-optical processes:

E (x, t ) = 1
2 E (x) exp(−iωt ) + c.c., (3)

P(x, t ) = 1
2 P(x) exp(−iωt ) + c.c. (4)

In the density matrix formalism for a two-level system, the
macroscopic polarization P(x) could be expressed in terms
of the off-diagonal density matrix element ρ21(x, υ, t ) =
ρ21(x, υ ) exp(−iωt ) as

P(x) = 2Nd
∫ +∞

−∞
f (υ )ρ21(x, υ )dυ, (5)

where d denotes the transition dipole moment, f (υ ) stands for
the 1D velocity distribution of atoms inside the gas layer, and
υ being the projection of atomic velocity onto the x axis. The
most reasonable assumption for f (υ ) at room temperatures is
the Maxwell-Boltzmann distribution function [37,38], which
we use in further calculations,

f (υ ) = (
√

πυT )−1 exp
(−υ2/υ2

T

)
, (6)

where υT = √
2kBT/M denotes the most probable thermal

velocity.
The density matrix

ρ̂ =
(

ρ11(x, υ ) ρ12(x, υ )
ρ21(x, υ ) ρ22(x, υ )

)
(7)

satisfies the Liouville–von Neumann equation

ih̄
d

dt
ρ̂ = [Ĥ0 + V̂ , ρ̂] − ih̄

2
[	̂, ρ̂]+; (8)

here [â, b̂] = âb̂ − b̂â and [â, b̂]+ = âb̂ + b̂â denote commu-
tator and anticommutator, respectively, ρ11,22(x, υ ) describes
the population of the ground and excited states (diagonal
elements of the density matrix satisfy the normalization con-
ditions ρ11 + ρ22 = 1), 	̂ is the relaxation matrix, Ĥ0 is the
Hamiltonian of the undisturbed system, and V̂ = −d̂E (x) (d̂
is the dipole moment operator). Taking into account that

d

dt
ρ21(x, υ, t ) =

(
∂

∂t
+ υ

∂

∂x

)
ρ21(x, υ ) exp (−iωt ),

from Eq. (8) we obtain the equation of motion for the off-
diagonal density matrix element

υ
∂ρ21(x, υ )

∂x
+ (γ + i�)ρ21(x, υ ) = id

2h̄
E (x), (9)

where � = ω0 − ω and γ denotes the homogeneous width of
the spectral line, i.e., the sum of natural and collisional widths.
Equations (2), (5), (6), and (9) form a self-consistent set of
equations governing the dynamics of the consideration system
in the linear regime of interactions.

B. Dimensionless variables

Before proceeding to the solution of the above system of
integro-differential equations, for the sake of simplicity we

rewrite them in a convenient form by introducing the dimen-
sionless variables:

m = 2
√

πNd2

h̄kυT
, (10a)

ξ = kx, (10b)

ν = υ/υT , (10c)

	 = γ /kυT , (10d)

 = �/kυT , (10e)

η = 	 − i, (10f)

and

σ (ξ, ν) = 2h̄kυT

id
ρ21(ξ, ν). (10g)

With the following choice of dimensionless variables, the
Maxwell-Bloch system of equations that fully accounts for the
nonlocal optical response can be written as

d2E (ξ )

dξ 2
+ E (ξ ) = −2im

∫ +∞

−∞
σ (ξ, ν) exp(−ν2)dν, (11)

ν
∂σ (ξ, ν)

∂ξ
+ ησ (ξ, ν) = E (ξ ). (12)

In order to consider accurately the structure of the field inside
the gas layer, the set of Eqs. (11) and (12) should be solved
self-consistently with the particular choice of boundary con-
ditions for the field and off-diagonal element of the density
matrix at two gas-dielectric medium interfaces situated at
ξ = 0 and ξ = kl = φ.

C. Boundary conditions

In accordance with the geometry of the problem, the inci-
dent, reflected, and transmitted fields could be written in the
following way:

Ein exp(in1ξ ), Er exp(−in1ξ ), Et exp[in2(ξ − φ)],

respectively. Then, the continuity conditions at glass-vapor
interfaces impose that

Ein + Er = E (0), (13a)

in1(Ein − Er ) = E ′(0), (13b)

Et = E (φ), (13c)

in2Et = E ′(φ), (13d)

where (′) stands for the derivative with respect to ξ . Basi-
cally, the above boundary conditions serve to single out the
unique solutions for the field within the vapor layer. The
form of Eqs. (13) is dictated by the continuity of the tangen-
tial components of the electric and magnetic fields at both
vapor boundaries. The choice of the appropriate boundary
conditions for σ (ξ, ν) depends on the nature of atom-wall
collisions. At the highest level of generality, the polarization
of the atoms that leave the surface with any particular velocity
is related to the polarizations of the atoms arriving at the
surface with all different velocities in the ensemble. In lieu of
the comprehensive theoretical as well as experimental results
on this complicated problem it is common to consider two
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limiting cases of the interactions of atoms with the surface
of a dielectric material: specular reflection of atoms with the
polarization preserved and diffuse scattering of atoms with
the polarization quenching. A rigorous theory of TVL linear-
optical properties for the case of specular atom-wall collisions
was presented in our previous paper [36], where we showed
that the given set of Eqs. (11) and (12) can be solved explic-
itly by means of Fourier series expansion of the field inside
the gaseous medium. Here we consider another limiting case
of atom-dielectric surface interactions in which the electron
excitation and thus the induced polarization are lost upon the
collision. This assumption is based on the numerous studies
on the alkali-metal atom interactions with the surface of the
dielectric material (see, for example, Refs. [39,40]). At room
temperatures, these collisions are usually governed by the
adsorption and desorption processes, in which the angular
distribution of atoms outgoing from the dielectric interface
may be approximated using Knudsen cosine or related laws.
Formally, in the framework of the considered problem we
could write

σ (ξ = 0, ν > 0) = 0 (14a)

and

σ (ξ = φ, ν < 0) = 0 (14b)

for the polarization at the first and second boundaries, re-
spectively. Boundary conditions (14a) and (14b) complete the
formulation of the considered problem.

III. METHODS

In this section we derive step by step the universal solu-
tion of the self-consistent system of equations for the field
and polarization inside the gaseous medium. First of all, we
demonstrate that the initial system of two equations for E (ξ )
and σ (ξ, ν) [see Eqs. (11) and (12)] in the linear regime
of interactions along with the diffuse boundary conditions
Eqs. (14a) and (14b) could be converted to one integro-
differential equation of the Fredholm type. Then, we introduce
in details the iterative PT method allowing one to compute the
eigenmodes of the TVL seminumerically in any order of PT
with respect to the atomic number density. Finally, by impos-
ing the continuity conditions [see Eq. (13)], we write down
the exact expressions for the reflection and transmission of a
TVL. In the course of our consideration, we rely on a rigorous
mathematical method for solving differential equations on
the interval of continuity of the coefficients with boundary
conditions given in different regions of space, described in
detail in Ref. [41].

A. Self-consistent field equation

The general solution of Eq. (12) reads as

σ (ξ, ν) = exp (−ηξ/ν)

[
C + ν−1

∫ ξ

0
E (ξ ′) exp (ηξ ′/ν)dξ ′

]
,

(15)

where the arbitrary constant C is to be determined from the
boundary conditions Eqs. (14a) and (14b). The particular

solutions take different forms for atoms moving in opposite
directions with velocities ν > 0 and ν < 0:

σ (ξ, ν > 0) = ν−1
∫ ξ

0
E (ξ ′) exp [η(ξ ′ − ξ )/ν]dξ ′ (16)

and

σ (ξ, ν < 0) = ν−1
∫ ξ

φ

E (ξ ′) exp [η(ξ ′ − ξ )/ν]dξ ′, (17)

respectively. It is important to emphasize that in the above
equations we do not make any assumptions regarding the
structure of the field inside the gaseous medium.

Now, we could write down Eq. (11) in the following form:

d2E (ξ )

dξ 2
+ E (ξ ) = −2im

[∫ 0

−∞
σ (ξ, ν < 0) exp(−ν2)dν

+
∫ ∞

0
σ (ξ, ν > 0) exp(−ν2)dν

]
. (18)

Now, by combining Eqs. (16)–(18) together, we get

d2E (ξ )

dξ 2
+ E (ξ ) = m

[∫ 0

−∞

∫ ξ

φ

E (ξ ′)K (ξ − ξ ′, ν)dξ ′dν

+
∫ ∞

0

∫ ξ

0
E (ξ ′)K (ξ − ξ ′, ν)dξ ′dν

]
,

(19)

where we have introduced the integral kernel

K (ξ, ν) = −2i
exp (−ν2−ηξ/ν)

ν
. (20)

Finally, taking into account that

K (|ξ − ξ ′|, ν) =
{

K (ξ − ξ ′, ν), ξ � ξ ′,
K (ξ ′ − ξ, ν), ξ < ξ ′,, (21)

we can rewrite the obtained equation in the following compact
way:

d2E (ξ )

dξ 2
+ E (ξ ) = m

∫ ∞

0

∫ φ

0
E (ξ ′)K (|ξ − ξ ′|, ν)dξ ′dν.

(22)

From Eq. (22) we can directly see that we are dealing
with a self-consistent field problem. Equations of this type
were studied extensively in the past. For instance, in the case
of a thick gas layer (i.e., for φ → ∞) the obtained integro-
differential equation was solved via the Fourier transform
method and the Wiener-Hopf technique for the specular and
quenching boundary conditions, respectively [13]. The exact
solution for the case of quenching collisions is still absent and
the extension of the Wiener-Hopf method to the case of a finite
layer thickness seems too cumbersome [42]. At the same time,
the existing solutions of this problem are limited only to the
first order of PT, and their generalization to higher orders of
magnitude in optical density remains unclear [22,23,34]. In
what follows we are focused on the construction of the uni-
versal solution for the TVL problem for the case of quenching
boundary conditions in the framework of the higher-order PT
and on studying the effects arising from these higher-order
contributions.
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B. Converting the integro-differential field equation
to an integral equation

We start our consideration by defining two linearly inde-
pendent solutions of Eq. (22). Let E (ξ ) be the solution of
the above self-consistent equation. It can be easily verified
that E (φ − ξ ) is another linearly independent solution. As the
vapor slice with plane-parallel boundaries possesses mirror
symmetry with respect to the plane going through the center
of the gaseous medium ξ = φ/2, it is convenient to use a set of
linearly independent solutions which have definite properties
with respect to reflection in this plane, namely, the even and
odd solutions of Eq. (22). For an even (symmetric) solution
the boundary conditions correspond to equality of values of
the function itself and opposite signs of its derivative on the
edges of the interval, and vice versa for an odd (antisymmet-
ric) solution—to the opposite signs of the function itself and
equality of its derivatives on the edges of the interval. Then,
the solution of the left-hand side of Eq. (22),

d2E0(ξ )

dξ 2
+ E0(ξ ) = 0, (23)

could be written as

E0(ξ ) = c1 cos (ξ − φ/2) + c2 sin (ξ − φ/2). (24)

Following the standard procedure, we construct the system of
equations for the variative constants c1 and c2:[

cos (ξ − φ/2) sin (ξ − φ/2)
− sin (ξ − φ/2) cos (ξ − φ/2)

][
c1

′(ξ )
c2

′(ξ )

]

=
[

0
m

∫ ∞
0

∫ φ

0 E (ξ ′)K (|ξ − ξ ′|, ν)dξ ′dν

]
. (25)

Assuming the right-hand side of Eq. (22) to be known, its
solution could be formally written in terms of the Green’s
function with the use of Eq. (25) as

E (ξ ) = C1 cos(ξ − φ/2) + C2 sin(ξ − φ/2) + m
∫ ∞

0
dν

×
∫ ξ

φ/2
sin (ξ − ξ ′)dξ ′

∫ φ

0
E (ξ ′′)K (|ξ ′ − ξ ′′|, ν)dξ ′′,

(26)

where C1 and C2 are arbitrary constants determined by the
choice of linearly independent solutions. Requiring the sym-
metry conditions for the even solution introduced above, we
obtain C2 = 0, while C1 can be chosen arbitrarily. Therefore,
for the even branch of Eq. (26) one could write down

Ee(ξ ) = cos(ξ − φ/2) + m
∫ ∞

0
dν

∫ ξ

φ/2
sin (ξ − ξ ′)dξ ′

×
∫ φ

0
Ee(ξ ′′)K (|ξ ′ − ξ ′′|, ν)dξ ′′, (27)

where we set C1 = 1. Similarly, for an odd solution by choos-
ing C1 = 0 and C2 = 1 we obtain

Eo(ξ ) = sin(ξ − φ/2) + m
∫ ∞

0
dν

∫ ξ

φ/2
sin (ξ − ξ ′)dξ ′

×
∫ φ

0
Eo(ξ ′′)K (|ξ ′ − ξ ′′|, ν)dξ ′′. (28)

C. Iterative PT method

Equations (27) and (28) could be solved iteratively by
means of the series expansion of the field with respect to the
optical density m. First of all, we represent the even and odd
solutions as the following perturbation series:

Ee/o(ξ ) = E (0)
e/o(ξ ) + mE (1)

e/o(ξ ) + m2E (2)
e/o(ξ ) + · · · , (29)

where the superscript denotes the order of PT. After that, we
substitute the form of the fields (29) into Eqs. (27) and (28),
and equate the terms at the same powers of m. From Eqs. (27)–
(29) one could directly find the recurrent equation

E (n)
e/o(ξ ) =

∫ ∞

0
dν

∫ ξ

φ/2
dξ ′ sin (ξ − ξ ′)

×
∫ φ

0
E (n−1)

e/o (ξ ′′)K (|ξ ′ − ξ ′′|, ν)dξ ′′. (30)

It is worth noting that the convergence of Eq. (29) is guaran-
teed by the smallness of the optical density parameter, which
is usually of the order m = 2

√
πNd2/h̄kυT � 1 under typical

experimental conditions with alkali metal vapors.

D. Reflectivity and transmittivity of the TVL

Equations (27)–(30) allow us to find the solution of the
initial set of Maxwell-Bloch equations for a field in the region
of space 0 � ξ � φ up to the prescribed order of PT. Now,
in order to calculate the reflection and transmission coeffi-
cients of the TVL one has to imply the dielectric boundary
conditions [see Eq. (13)] on the obtained solution. Setting the
amplitude of the incident wave to be unit, we can rewrite the
above continuity conditions in the following way:

1 + r = aEe(0) + bEo(0), (31a)

in1(1 − r) = a (dEe/dξ )|ξ=0 + b (dEo/dξ )|ξ=0, (31b)

t = aEe(φ) + bEo(φ), (31c)

in2t = a (dEe/dξ )|ξ=φ + b (dEo/dξ )|ξ=φ, (31d)

where r and t are the amplitude reflection and transmission
coefficients, respectively, while a and b are the coefficients of
the linear set of equations. Taking into account the symmetry
relations of the even and odd fields and their derivatives at
the boundaries below we write down the exact solution of the
set of Eqs. (31) with respect to r and t calculated up to the
prescribed nth order of PT in atomic number density,

r = (n1 − n2)(I1I4 + I2I3) + 2i(n1n2I1I2 + I3I4)

(n1 + n2)(I1I4 + I2I3) + 2i(n1n2I1I2 − I3I4)
, (32)

t = 2n1(I1I4 − I2I3)

(n1 + n2)(I1I4 + I2I3) + 2i(n1n2I1I2 − I3I4)
, (33)

where we introduced for convenience

I1 = Ee|ξ=0 = Ee|ξ=φ, I2 = Eo|ξ=0 = −Eo|ξ=φ,

I3 = ∂

∂ξ
Ee|ξ=0 = − ∂

∂ξ
Ee|ξ=φ,

I4 = ∂

∂ξ
Eo|ξ=0 = ∂

∂ξ
Eo|ξ=φ. (34)
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Finally, in accordance with the described PT approach,
Eqs. (32)–(34) could be calculated with the accuracy up to
the prescribed order n with respect to the optical density. In
this case, the above terms have the following structure:

I (n)
1 = [

E (0)
e + mE (1)

e + m2E (2)
e + · · · + mnE (n)

e

]
ξ=0,

I (n)
2 = [

E (0)
o + mE (1)

o + m2E (2)
o + · · · + mnE (n)

o

]
ξ=0,

I (n)
3 = ∂

∂ξ

[
E (0)

e + mE (1)
e + m2E (2)

e + · · · + mnE (n)
e

]
ξ=0,

I (n)
4 = ∂

∂ξ

[
E (0)

o + mE (1)
o + m2E (2)

o + · · · + mnE (n)
o

]
ξ=0.

Equations (32)–(34) are completely general and allow us to
calculate the reflectivity and transmittivity of the TVL sur-
rounded by dielectric media with refractive indices n1 and n2

in the prescribed order of the PT. The particular form of the
terms I (n)

1 − −I (n)
4 in the zeroth, first, and second orders of PT

is discussed in detail in the following sections.

IV. RESULTS

In this section we proceed to the calculation of the reflectiv-
ity, transmittivity, and absorptivity of the TVL following the
PT approach introduced in the previous section. At the first
stage of the consideration, we search for two linearly indepen-
dent field solutions which can be computed with the accuracy
determined by the prescribed order of PT using Eq. (30). It
is important to underline that the eigenmodes of the TVL
calculated via this procedure are the unique field solutions
which are valid for any environment of the gas layer. In this
work we consider the case of a dielectric environment and to
this end, on the second stage of our calculations we apply the
continuity conditions (31) allowing us to directly compute the
reflectivity and transmittivity of the TVL confined between
two dielectric media [see Eqs. (32)–(34)].

A. Zeroth- and first-order results

We begin with the step-by-step derivation of the first-order
PT solution of the TVL problem. To find an even field solu-
tion, we substitute an even zero solution E (0)

e = cos(ξ − φ/2)
into Eq. (30):

E (1)
e (ξ ) =

∫ ∞

0
dν

∫ ξ

φ/2
sin (ξ − ξ ′)dξ ′

×
∫ φ

0
cos(ξ ′′ − φ/2)K (|ξ ′ − ξ ′′|, ν)dξ ′′. (35)

Spatial integration over ξ ′, ξ ′′ in Eq. (35) could be done ana-
lytically; here we present only the result of these calculations:

E (1)
e (ξ ) = −2i

∫ ∞

0
dν

η

η2 + ν2
e−ν2

{
(ξ − φ/2) sin

(
ξ − φ

2

)

+ ν2

η2 + ν2

[
e− ξη

ν + e
η(ξ−φ)

ν − 2e− ηφ

2ν cos

(
ξ − φ

2

)]

×
[
ν sin (φ/2)

η
− cos (φ/2)

]}
. (36)

A similar solution could be obtained for the odd branch in
the first order of PT by substituting E (0)

o = sin(ξ − φ/2) into
Eq. (30):

E (1)
o (ξ )

= 2i
∫ ∞

0
dν

η

η2 + ν2
e−ν2

{
(ξ − φ/2) cos

(
ξ − φ

2

)

− sin

(
ξ − φ

2

)
− ν2

η2 + ν2

[
e− ξη

ν − e
η(ξ−φ)

ν + 2e− ηφ

2ν η

× sin

(
ξ − φ

2

)/
ν

][
ν cos (φ/2)

η
+ sin (φ/2)

]}
.

(37)

In the above equations velocity integration (i.e., the inte-
gration over dimensionless parameter ν = υ/υT ) has to be
performed numerically. Before this, we define the fields and
corresponding derivatives at the boundaries of the layer in
accordance with Eq. (34). This could simply be done by
evaluating even and odd field solutions [see Eqs. (36) and
(37)] and their ξ derivatives at ξ = 0. The exact form of terms
I (1)
1 , I (1)

2 and I (1)
3 , I (1)

4 is presented in the Appendix. The first
terms in Eqs. (A1)–(A4) correspond to the solution for the
field in vacuum. By setting m = 0 in the given expressions
I (1)
1 − −I (1)

4 , and then substituting them into Eqs. (32) and
(33), one may directly obtain the well-known expressions for
the reflectivity and transmittivity of the empty FP resonator:

R0 = |r0|2 =
∣∣∣∣ i(n1 − n2) cos φ + (n1n2 − 1) sin φ

i(n1 + n2) cos φ + (n1n2 + 1) sin φ

∣∣∣∣
2

, (38)

T0 = |t0|2 = 1 − R0. (39)

This zero solution with respect to the density of atomic
vapor leads to a λ/2-periodic dependence of reflection and
transmission on the thickness of the gap between dielectric
media. In the left panel of Fig. 2 we plot R0 and T0 as
a function of dimensionless thickness φ = 2π l/λ, while in
the right panel we present the numerical calculation of the
reflection, transmission, and absorption of the TVL versus
the dimensionless detuning  = �/kυT at the corresponding
thicknesses. The absorption spectra were calculated using the
energy conservation law

R + T + A = 1, (40)

where R = |r|2 and T = |t |2. While calculating spectra in the
right panel of Fig. 2 we kept only the zeroth- and first-order
terms with respect to m in Eqs. (32) and (33). The obtained
spectra indicate the presence of purely sub-Doppler structures
in TVL spectra.

Indeed, as was first demonstrated in Ref. [22] (there the
FP effect was not accounted for due to the assumed presence
of an antireflection coating on the rear window) the greatest
narrowing of spectral lines occurs at a half-integer thicknesses
of the gas layer with respect to the wavelength of the in-
cident light. It was also shown that the spectral line shape
of SR from and transmission through the TVL experience a
λ-periodic dependence on the gas layer thickness in contrast to
the ordinary λ/2-periodic oscillations that result from the FP
cavity effect. Similar effects were previously observed exper-
imentally in the work of Dicke in the radio-frequency domain
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FIG. 2. Left panel: Reflectivity and transmittivity of the empty FP resonator against the gap thickness between two transparent dielectric
media with n1 = n2 = 1.5. Right panel: Reflection, transmission, and absorption spectra of the vapor layer sandwiched between dielectric
media at various thicknesses of the gas layer: from λ/8 to λ/2 with the step λ/8 (from top to bottom) for γ /kυT = 0.01, m = 0.002. The
horizontal dashed (in reflection) and solid (in transmission) black lines correspond to the spectra of the empty FP resonator with the thickness
indicated on the left panel. The error of the calculations is of the order of m2 (details of the calculations are highlighted in the text).

[43]. Spectra of reflection and transmission of the TVL
obtained within the scope of first-order PT were later de-
scribed in many works as the manifestation of the transient
nature of atomic polarization induced by the atom-wall col-
lisions. In Ref. [34] it was pointed out that in the first-order
vapor density solution, the mixing of the selective contribution
of atomic vapor with the FP cavity effect leads to zero reflec-
tion from the TVL at l = (2n + 1)λ/2, which is consistent
with the result presented in Fig. 2. In Fig. 3 we illustrate the
also mentioned above λ-periodic dependence of spectra on the
gas layer thickness. It is important to highlight that with the
increase in the layer thickness, the sub-Doppler features start
to be masked under the broad Doppler spectral line contour
arising due to the absorption inside the vapor. In fact, for
thicknesses equal to an integer number of wavelengths, the
phase mixing of the contributions coming from the different
parts of the cavity result in the Doppler-broadened spectral
line contour [43]. To illustrate this, in Fig. 4 we present the
comparison of spectral line contours in transmission for l =
λ/2 and l = λ. Indeed, at l = λ we observe a purely Doppler
spectral line contour in contrast to the sharp sub-Doppler

feature at the half-wave thickness. These circumstances un-
derlie the selection of the most attractive range of vapor layer
thicknesses l ∼ λ/2 in the context of the considered problem.
For more details on spectral peculiarities obtained with the
first-order PT solution in optics see [22,23,34].

We also would like to note here that in the first order
of PT at any thickness the absorptivity of the vapor layer
manifests an even spectral line contour with respect to the
atomic transition frequency with the maximum occurring at
zero detuning (see Fig. 2). This fact could be also verified
analytically by substituting the first-order expressions for r
and t [see Eqs. (32), (33), and (A1)–(A4)] into the relation
Eq. (40). In what follows we demonstrate that the observed
symmetry in the absorption spectral line shape is, in fact, the
artifact of the first-order PT solution.

B. Second order of PT

An undoubted advantage of the first-order solution pre-
sented in many works is the relative simplicity of calculating
the reflectance and transmittance of the TVL. However, the
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FIG. 3. Reflectivity (left column) and transmittivity (right col-
umn) of the vapor layer at various thicknesses calculated for
γ /kυT = 0.01, m = 0.002, and n1 = n2 = 1.5 in the first order of
PT. The observed pattern underlines the λ periodicity of the sub-
Doppler contribution resulting from the vapor. The horizontal dashed
(in reflection) and dot-dashed (in transmission) black lines corre-
spond to the spectra of the empty FP resonator. The error of the
calculations is of the order of m2.

first-order approximation does not correctly account for the
effects of light absorption inside the layer and the blueshift
of the resonant frequency. Below we present the second-order
solution of the TVL problem for the case of quenching atom-
wall collisions. For this purpose, we substitute the obtained
first-order field solutions [see Eqs. (36) and (37)] into the
iterative equation (26):

E (2)
e/o(ξ ) =

∫ ∞

0
dν

∫ ξ

φ/2
dξ ′ sin (ξ − ξ ′)

∫ φ

0
E (1)

e/0

× (ξ ′′)K (|ξ ′ − ξ ′′|, ν)dξ ′′. (41)

Similarly, the spatial integration can be performed ana-
lytically; however the structure of the solution is more
complicated. In fact, the final solution in the second order
could be obtained by means of two-dimensional velocity in-
tegration. In Fig. 5 we present the comparison of the spectral
line shape of reflection, transmission, and absorption calcu-
lated up to the first and second orders of the PT. At first
glance, we can see that the second-order contributions with
respect to m lead to the change in the amplitude of the sub-
Doppler structure, deformation of the spectral line contours,
and to the noticeable blueshift. At l = λ/2 in reflection we
observe a weak sub-Doppler resonance purely resulting from
the second-order correction in vapor density. Moreover, in
this particular case, the transmission and absorption spectra
do not exhibit a symmetrical profile of the spectral line (in
contrast to the calculations performed in the first order of
PT), but undergo a blueshift with respect to the atomic tran-

FIG. 4. Transmittivity of the TVL for two vapor layer thick-
nesses: l = λ/2 (blue solid line) and l = λ (red dashed line)
calculated in the first order of PT for γ /kυT = 0.01, m = 0.002, and
n1 = n2 = 1.5. In both cases transmission of the empty FP resonator
is 100%. The error of the calculations is of the order of m2.

sition frequency. In fact, the blueshift manifests itself in all
the transmission and absorption spectra presented in Fig. 5,
whereas its value is found to be a complicated function of the
number density, thickness, and the width of the spectral line.
It is also important to emphasize that the discrepancy between
the calculations in the first and second orders of PT becomes
more noticeable with an increase in the thickness of the gas
layer, i.e., with the increasing influence of the absorption
effect. Finally, we could see from above that the second-order
correction may significantly modify the spectral line shape of
selective reflection, transmission, and absorption. This effect
could become especially noticeable on experiments at the
moderate concentrations of atomic vapor confined inside the
spectroscopic nanocell with the thickness l ∼ λ/2 when the
widths of the spectra reach their minima of the order of γ .

V. DISCUSSION AND CONCLUSION

Linear-optical properties of ultrathin layers of rarefied
atomic vapors turn out to be very sensitive to the variation
of vapor density and to the nature of atom-wall interactions.
We have revealed that even in the low vapor concentration
limit m = 2

√
πNd2/h̄kυT � 1 higher-order effects in optical

density become significant. In the framework of this research
we have introduced the general approach for constructing the
eigenmodes of the TVL beyond the limits of the first-order PT
for the case of quenching atom-wall collisions. In particular,
it allowed us to demonstrate that the second-order optical
density corrections lead to the noticeable deformation of spec-
tral line shapes, to a significant change in the amplitude of
the Doppler-free contours, and result in the peculiar blueshift
of the resonance frequency comparable to the homogeneous
width of the spectral lines (see Fig. 5). These results are espe-
cially relevant for the implementation of miniaturized atomic
sensors based on hot atomic vapor, which usually requires
precise control of spectral linewidths and the resonance fre-
quency shifts. It is also worth noting that the presented PT
approach allows to determine unique solutions for the field
inside the vapor layer regardless of the optical properties of
the surrounding media. Indeed, the eigenmodes of the TVL
can be calculated using Eqs. (29) and (30) without addi-
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FIG. 5. Comparison of reflection, transmission, and absorption spectra of the TVL sandwiched between two transparent dielectric media
with n1 = n2 = 1.5 calculated up to the first (blue dashed curves) and second (red solid curves) orders of PT in the vicinity of the atomic
transition frequency. The calculations were performed using Eqs. (35), (42), (32), and (33) expanded to the second order in m. We took the
following parameters for our computations: γ /kυT = 0.01, m = 0.002. Note that contrary to all previous graphs in these spectra detuning is
divided by homogeneous width γ rather than Doppler width.

tional assumptions about the field structure within the layer,
which are usually associated with the imposition of dielectric
boundary conditions at the initial stage of the calculations.
This achievement of the proposed approach is promising in
the development of devices based on the resonant interaction
of light with plasmonic nanostructures surrounded by alkali
metal vapors [7,31], and prospective in the implementation of
gas cells with temperature-tunable parameters [44,45].

Ii is important to point out the similarities and differ-
ences appearing in the TVL spectra in the case of quenching
atom-wall interactions considered in this paper and under the
assumption of specular atom-wall collisions, for which a rig-
orous solution of the self-consistent field problem was already
found [36]. First of all, for both types of boundary condi-
tions it has been demonstrated that higher-order corrections
to the optical density lead to a significant deformation of the
spectral line shape of the Doppler-free structures. The most
remarkable feature of the spectra obtained for the specular
boundary conditions is the appearance of a large Lorentzian
contribution to the reflection in the vicinity of the resonant fre-
quency, most noticeable at layer thicknesses l = (2n + 1)λ/2,
where n is an integer. To our understanding, this peculiarity
arises due to the accumulation of polarization induced by
the external field by velocity groups of atoms bouncing be-
tween two closely spaced dielectric walls without quenching
of electron excitation. This argument is also supported by the

sharp decrease in the amplitude of the Lorentzian spectral line
contour contribution with increasing gas layer thickness, and
by the absence of the similar effect in the case of quenching
atom-wall collisions.

Another notable feature of the TVL spectra calculated be-
yond the scope of the first-order PT is the presence of the large
blueshift for both models of atom-wall interactions. This shift
of the purely electromagnetic nature was previously studied
in the case of an optically thick gas layer (see, for exam-
ple, [13,20]), where it was attributed to the above-mentioned
transient process of establishing polarization followed by the
atom-wall collisions. A more detailed examination of this
effect showed that the blueshift in reflection from a semi-
infinite vapor layer is largely determined by the interference
process of contributions from two classes of atoms: “arriv-
ing” and “departing” from the glass-vapor interface [35]. To
accurately consider the dependence of the blueshift on the
concentration of atomic vapors and other parameters of the
system, the Maxwell-Bloch set of equations in the medium
should be solved self-consistently. Under the assumption of
specular atom-wall collisions we found the following linear
proportionality of the blueshift in reflection spectra for the
most interesting case of half-integer layer thickness

�s(l = λ/2) = 3.54m, (42)
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where m � 	 is limited by the self-broadening effect in
the strong spatial dispersion domain 	 = γ /kυT = 0.01 � 1,
and subscript s indicates that the universal proportionality
constant was found for the case of specular boundary con-
ditions.

In the case of quenching collisions, the analysis of the
blueshift in the reflection proves to be more difficult, since
the Doppler-free structures in the reflection are no longer ex-
hibiting even behavior with respect to the frequency detuning
(see Fig. 5). In fact, the shift of the resonance frequency is a
well-defined parameter only for an even spectral line contour
with one maximum. In Sec. IV A, we pointed out a remark-
able feature of the spectral line shapes of absorption bands
calculated in the first-order of PT; namely, such spectral line
contours are even with respect to the resonance transition with
the maximum at  = 0 for any thickness of the gas layer. This
circumstance turns out to be useful in studying the effect of
higher orders on the density-dependent shift of spectral lines
at different thicknesses of the gas layer. Below we provide the
obtained dependencies of the blueshift in absorption on the
optical density of atomic vapor for two vapor layer thicknesses
l = λ/2 and l = 3λ/4 at which the blueshift is large enough,
while the spectral linewidth remains sub-Doppler. The calcu-
lations performed in the second order of PT show that these
dependencies can be approximated with a sufficient accuracy
by linear functions (the error of these calculations is of the
order of m3),

�q(l = λ/2) = 0.56m, (43)

�q(l = 3λ/4) = 1.21m, (44)

where subscript q stands for quenching atom-wall collisions.
It can be directly seen that the blueshift of the resonance
frequency has values comparable to the homogeneous width
of the spectral lines (	 = 0.01) for two considered models

of atom-wall interactions. This result is especially important
with respect to the experiment and practical applications,
since it implies that this blueshift phenomenon should be
taken into account in any attempts of studying a wide class
of effects leading to the deformation of spectral line shape
and shift of the resonance frequency. A detailed study of the
structure of the second-order corrections shows that such large
values of the blueshift arise from a remarkable term propor-
tional to η−1, which was absent in the first-order solution.

In conclusion, we would like to emphasize that the re-
sults obtained in this paper are an important step toward a
fundamental understanding of the emergence and interplay of
numerous processes of atom-wall and atom-light interactions
at the nanoscale, which prevail in nanocells filled with hot
atomic vapor. Needless to say, the constructed theory does
not exhaust the whole variety of these complex processes.
However, we have consistently demonstrated that the spectra
of reflection, transmission, and absorption of TVLs turn out to
be significantly dependent on the higher-order optical density
effects, which have not previously been taken into account for
the case of quenching atomic-wall collisions. Speaking about
the prospects in the field of ultrathin vapor cell spectroscopy,
it is of great interest to construct a rigorous solution to the
TVL problem with diffuse boundary conditions (similar to
the one we obtained earlier for the case of specular boundary
conditions [36] and another one obtained by Schuurmans for
the thick gas layer case earlier [13]). By analogy with the
problem of the anomalous skin effect [46], such a solution
can be obtained via the Wiener-Hopf method repeatedly used
to solve similar physical problems (see, for example, [42]).
An exact solution to this problem will allow us to further in-
vestigate the complex dependence of the shift and broadening
of the spectral lines of the TVL reflection and transmission on
the system parameters.

APPENDIX: FIRST ORDER OF PT

In the first order of PT, the exact expressions for I1 − −I4 read as

I (1)
1 = cos

(
φ

2

)
− imφ sin

(
φ

2

) ∫ ∞

0
dν

ηe−ν2

η2 + ν2
− 2im

∫ ∞

0
dν

ν2e−ν2

(η2 + ν2)2 e− φη

ν

[
1 + e

φη

ν − 2e
φη

2ν cos

(
φ

2

)]

×
[
ν sin

(
φ

2

)
− cos

(
φ

2

)
η

]
, (A1)

I (1)
2 = − sin

(
φ

2

)
− imφ cos

(
φ

2

) ∫ ∞

0
dν

ηe−ν2

η2 + ν2
+ 2im

∫ ∞

0
dν

e−ν2

(η2 + ν2)2

×
{
−ν3 cos

(
φ

2

)
+ sin

(
φ

2

)
η3 + e− φη

2ν νη(ν sin φ + η − η cos φ) + e− φη

ν ν2

[
ν cos

(
φ

2

)
+ sin

(
φ

2

)
η

]}
, (A2)

I (1)
3 = sin

(
φ

2

)
+ imφ cos

(
φ

2

) ∫ ∞

0
dν

ηe−ν2

η2 + ν2
+ 2im

∫ ∞

0
dν

e−ν2

(η2 + ν2)2

{
−ν cos

(
φ

2

)
η2 + e− φη

ν νη

×
[
−ν sin

(
φ

2

)
+ cos η

]
− e− φη

2ν ν2(ν[−1 + cos φ] + η sin φ) + sin

(
φ

2

)
η
(
2ν2 + η2)}, (A3)

I (1)
4 = cos

(
φ

2

)
− imφ sin

(
φ

2

) ∫ ∞

0
dν

ηe−ν2

η2 + ν2
+ 2im

∫ ∞

0
dν

νηe−ν2

(η2 + ν2)2 e− φη

ν

[
1 + e

φη

ν − 2e
φη

2ν cos

(
φ

2

)]

×
[
ν cos

(
φ

2

)
+ η sin

(
φ

2

)]
. (A4)
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The structure of Eqs. (A1)–(A4) is the following: The
first terms are independent of the atomic number density and
come from the solution for the field in a vacuum; in other
words, they represent the zero-order optical density solution.
Together these terms in expressions above result in the usual
λ/2-periodic dependence of the reflectivity and transmittivity
on the layer thickness arising due to the FP effect. The middle
terms in the above expressions originate from the steady-
state polarization component and give rise to a wide Doppler
spectral line contour. At first glance it is peculiar that these
particular terms are proportional not only to atomic number
density, but also to the gas layer thickness φ. In fact, this result
is just the first term of the series expansion of the conventional
exponential absorption pattern and consequently this limits
the largest gas layer thickness accessible in the first order

of PT. The most interesting part of expressions (A1)–(A4) is
the last integral terms, which result from the transient behav-
ior of the polarization followed by the atom-wall collisions.
In these terms, the dependence on φ is already included in
the exponential terms inside the integral kernel. This feature
leads to a λ-periodic spectral dependence of reflectivity and
transmittivity on the layer thickness (see Fig. 3). Moreover,
it is this particular contribution that leads to the formation
of a Doppler-free structure in the spectra. The explicit form
of the above expressions gives us the visual representation of
the emerging spectral structures. In fact, after substitution of
Eqs. (A1)–(A4) in Eqs. (32) and (33), the spectral contours
of reflection, transmission, and absorption are formed due to
the natural mixing of the FP, Doppler, and the sub-Doppler
contributions.
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