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Grating-induced slow-light enhancement of second-harmonic generation
in periodically poled crystals
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The effect of slow light on second-harmonic generation in a periodically poled χ (2) nonlinear medium is
investigated theoretically. A linear π phase-shifted grating is used to slow the group velocity of the fundamental
frequency, and the resulting field enhancement greatly increases the second-harmonic conversion efficiency.
A second linear grating at the input end ensures that all output is in the forward direction. We show that
almost 100% conversion efficiency can be achieved for continuous wave pumping at low intensities that generate
negligible conversion in the absence of the slow-light grating.
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I. INTRODUCTION

Second-harmonic generation (SHG) is a second-order non-
linear process induced by the χ (2) susceptibility tensor of a
material, typically a crystal, which converts an electromag-
netic wave of frequency ω into a wave at the second-harmonic
frequency 2ω [1,2]. Because of the small value of χ (2) of
common nonlinear materials either long device lengths or
high light intensities are required to achieve efficient SHG.

One option to reduce the pump intensity requirements is
to enhance the field intensity by enclosing a nonlinear crystal
within a Fabry-Pérot cavity which is resonant with either the
fundamental or second-harmonic frequency [3]. An experi-
mental demonstration showed that this method increased SHG
by 13% [4]. Another approach is to enhance the field intensity
by using a slow-light resonance: here the chromatic dispersion
of a strong, narrow-band resonance of either the material itself
or of an appropriate waveguide structure creates a strong re-
duction of group velocity. A light pulse entering such a device
experiences pulse compression and correspondingly produces
the field enhancement necessary for enhanced SHG.

There are many different approaches to generating slow
light, for example, using electromagnetically induced trans-
parency [5] or Brillouin scattering [6], but here we are
principally interested in slowing light with Bragg gratings.
A Bragg grating [7] consisting of a periodic modulation of
the refractive index reflects light within a certain frequency
band. At the edges of this reflection band the grating creates
strong chromatic dispersion and group velocity reduction, i.e.,
slow light that could be used for SHG enhancement. However,
strong group velocity dispersion (GVD) also leads to signifi-
cant pulse broadening in this case, thereby counteracting the
field enhancement.

This pulse broadening can largely by avoided by using
more complex, superstructure gratings. In particular, insert-
ing periodic phase shifts into a standard Bragg grating
[8], a so-called π -phase-shifted grating, opens up a narrow
transmission band within the stop band which permits the

generation of slow-light field enhancement with zero GVD
at its center [9]. The same effect can also be achieved by the
superposition of two Bragg gratings of similar but different
resonant wavelengths, a so-called moiré grating [10].

Another important factor affecting SHG conversion ef-
ficiency is phase matching between the fundamental and
second-harmonic waves: chromatic dispersion of the material
typically leads to dephasing and thus a periodic exchange of
energy between fundamental and harmonic wave instead of
a continuous increase of second-harmonic energy along the
propagation direction. Among the different techniques that
can be used to achieve phase matching, the most popular
approaches are to use either a birefringent nonlinear crystal
or to employ quasi-phase matching (QPM) [11]. This last
technique works by periodically modulating the sign of the
χ (2) susceptibility to compensate for the phase mismatch ac-
quired between the fundamental and harmonic wave during
propagation. Phase matching can also be achieved by tailoring
the dispersion of a linear grating [12–14].

For slow-light enhancement of SHG we therefore require
linear gratings in a χ (2) medium. While there have been theo-
retical studies of linear gratings with a quadratic nonlinearity
[15–18], it has traditionally been challenging to write linear
gratings in bulk χ (2) media [19,20]. However, progress has
been made in producing linear gratings with high index con-
trast in thin-film lithium niobate [21]. There has also been
recent demonstrations of producing π phase-shift gratings in
thin-film lithium niobate [22,23].

In this work we examine the continuous wave enhancement
of second-harmonic generation in a QPM device by including
a π -phase-shifted grating tuned to the fundamental wave fre-
quency such that this pump field experiences slowdown and
thus field enhancement. However, the superstructure grating
achieves the slow-light effect by coupling the fundamen-
tal wave into forward and backward modes which in turn
generates forward and backward second-harmonic modes. A
second linear Bragg grating is therefore added at the input end
of the device to reflect the backward second-harmonic mode
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FIG. 1. (a) Schematic of a periodically poled χ (2) medium show-
ing the poling period �. (b) Schematic of the two linear gratings: a
slow-light π -phase-shifted grating with Bragg period �1 and super-
structure period �S , and a reflection Bragg grating with period �2 at
the input end of the device.

and thus to ensure unidirectional forward propagating output
of the second harmonic. We demonstrate that a device of
this type is capable of generating considerably higher second-
harmonic conversion efficiency compared to a standard QPM
device at lower intensities, and we investigate the dependence
of the conversion efficiency on the device parameters.

II. THEORETICAL MODEL

Throughout this paper we consider a device fabricated
in thin film lithium niobate doped with magnesium oxide
(MgO:LiNbO3) to increase the optical damage threshold
[24]. The highest nonlinear χ (2) tensor component for
MgO:LiNbO3 is d33 = 25 pm/V at a wavelength of 1064 nm,
which we use in our analysis. The d33 component is accessed
by waves polarized vertically along the z-axis, and therefore
a z-cut thin film is required; light is propagating in the x
direction. The waveguide is periodically poled with period �

to ensure quasi-phase matching for SHG as shown in Fig. 1(a).
In addition to the periodic variation of the χ (2) nonlinearity,

we assume that a spatial profile of the waveguide’s linear
refractive index is written into the thin film after the poling
process of the form

n(x) = n̄ + δn[ f1(x)a1(x)aS (x) + f2(x)a2(x)], (1)

where n̄ is the effective refractive index and δn is the grating
strength. This linear grating modulation is composed of two
parts. The first part, given by the term f1(x)aS (x)a1(x), cre-

ates an apodized π -phase-shifted grating with a transmission
band centered at the wavelength λ1, which we refer to as the
slow-light grating. The second part is given by f2(x)a2(x) and
creates a Bragg reflector at the wavelength λ2 of the second
harmonic at the input end of the device; we refer to this
term as the reflection grating. Figure 1(b) shows a schematic
of these gratings. The slow-light grating is composed of an
apodization f1 which provides an overall amplitude profile,
a superstructure envelope aS which defines the π -phase-shift
positions, and a fundamental Bragg grating profile a1. The
apodization is chosen throughout the rest of this paper to have
a Gaussian profile of the form

f1(x) = exp[−αA(x − L/2)2/L2], (2)

where the center of the Gaussian is at L/2 and where αA

parametrizes the width of the Gaussian. In all the following
analyses we set αA = 16, which gives a full width at half
maximum of L/2

√
ln(2). The superstructure envelope and the

fundamental Bragg grating are given by

aS (x) = sgn

{
cos

[
π (2x − L)

�s
+ π

2

]}
, (3)

a1(x) = cos

(
2πx

�1
+ φ1

)
, (4)

respectively. Here φ1 is a constant phase term, and the funda-
mental Bragg period is given by �1 = λ1/(2n̄1) where n̄1 is
the effective refractive index at frequency ω, so that the Bragg
resonance is centered at the fundamental wavelength. The
phase of the superstructure envelope π (2z − L)/�s + π/2 is
chosen so that there is a π phase shift at the center of the
grating for any choice of superstructure period �s.

The reflection grating is defined by f2(x) which gives its
overall profile and a2(x) which creates a Bragg grating reso-
nant at the second harmonic. The latter is given by

a2(x) = cos

(
2πx

�2
+ φ2

)
, (5)

where φ2 is a constant phase term and the harmonic Bragg
period �2 = λ2/(2n̄2) which creates a Bragg resonance at λ2

and where n̄2 is the effective refractive index at frequency
2ω. The apodization functions fulfill the constraint f1(x) +
f2(x) � 1 to ensure that the overall magnitude of grating
modulation does not exceed the maximum δn that can be
fabricated. Since f1(x) is given by Eq. (2), we define the
reflection grating profile by

f2(x) =
{

1 − f1(x) if 0 � x � LR,

0 if x > LR,
(6)

where LR is the length of the grating. Figure 2 gives an exam-
ple of the slow-light grating apodization and of the reflection
grating profiles.

We model light propagating through our χ (2) medium with
linear refractive index profile (1) by using coupled mode the-
ory. We start with a linearly z-polarized electric field of the
form

Ez(x) = Eω(x) + E2ω(x), (7)

which is composed of an electric field Eω(x) for the funda-
mental mode and E2ω(x) for the second harmonic. The linear
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FIG. 2. Slow-light grating apodization f1 and reflection grating
profile f2 with parameters L = 10 mm, αA = 16, and LR = 1 mm.

gratings will couple forward- and backward-propagating
waves in both the fundamental and second harmonic, and so
we introduce the following ansatz for the fields:

Eω(x) = u1(x)ei(β1x−ωt ) + v1(x)e−i(β1x+ωt ) + c.c., (8)

E2ω(x) = u2(x)ei(β2x−2ωt ) + v2(x)e−i(β2x+2ωt ) + c.c. (9)

The forward and backward mode envelopes are given by u1

(u2) and v1 (v2), respectively, for the fundamental (harmonic)
field. The propagation constants are β1 = n̄1k1 β2 = n̄2k2

where k1 and k1 are the corresponding wave numbers for fre-
quencies ω and 2ω, respectively. Coupled mode equations can
be derived by substituting Eqs. (1) and (7) into the nonlinear
wave equation

∂2Ez

∂x2
− n2

c2

∂2Ez

∂t2
= μ0

∂2PNL

∂t2
, (10)

where the nonlinear polarization is given by

PNL = ε0χ
(2)(x)E2

z . (11)

Then by setting χ (2)(x) = χ (2)sgn[ sin(2πx/�)] and making
a rotating wave approximation, slowly varying the envelope
approximation, and neglecting small terms [25], the following
set of coupled mode equations can be derived:

∂u1

∂x
= ieiφ1κ1(x)v1 + κ3

n̄1
u∗

1u2,

∂v1

∂x
= −ie−iφ1κ1(x)u1 + κ3

n̄1
v∗

1v2,

∂u2

∂x
= ieiφ2κ2(x)v2 − κ3

n̄2
u2

1,

∂v2

∂x
= −ie−iφ2κ2(x)u2 − κ3

n̄2
v2

1, (12)

where we introduced the following coupling coefficients:

κ1(x) = πδn

λ1
f1(x)aS (x), (13)

κ2(x) = 2πδn

λ1
f2(x), (14)

κ3 = 4χ (2)

λ1
. (15)

III. NUMERICAL METHODS

The coupled mode equations (12) form a boundary value
problem with known and unknown boundary conditions on
both ends of the device. The fields have eight complex (16
real) boundary conditions, four at the start and four at the end
of the grating. The known boundary conditions at the start of
the grating are u1(0) = A and u2(0) = 0 where A is the initial
amplitude of the forward fundamental field, which is fixed by
the pump intensity, and the initial forward harmonic is zero.
At the end of the grating the known boundary conditions are
v1(L) = 0 and v2(L) = 0 ensuring that no light is coupled into
the gratings from the end of the structure. That leaves two
boundary conditions at both the start and end of the grating
that are unknown.

Such a first-order system of equations with only partially
known boundary conditions can be solved numerically by the
shooting method as described in detail by Ja [26]. First, we
express the unknown boundary conditions by

p(x) = [v1(0), v2(0), u1(L), u2(L)]

and express the fields by

y(z) = [u1(z), u2(z), v1(z), v2(x)].

Next an initial guess for p has to be made so that the fields
y(z, p) are now also a function of the unknown boundary
conditions. We then denote integrating the fields forward from
the start of the grating by y f (x, p) and integrating backwards
from the end of the grating by yb(z, p). Then for some point
x = m, where m can be arbitrarily chosen, finding the solution
to the coupled mode equations equates to solving the equation

g(p) = y f (m, p) − yb(m, p) = 0. (16)

There exist numerous methods to solving Eq. (16). Our
approach here is as follows. As g(p) is in general a complex
function we can define the quantity

L =
∑

i

|gi(pi )|2, (17)

and minimizing L to zero is equivalent to solving Eq. (16).
For this minimization we use the Nelder-Mead method [27].
Compared to many approaches of directly solving Eq. (16),
this has the advantage that it does not require calculating the
Jacobian and therefore the partial derivatives of g(p). In prac-
tice we have found that the convergence of the Nelder-Mead
method fails for high intensities if a poor initial choice of p
is made. Therefore to find solutions for higher intensities it
is necessary to first find a solution that converges at a lower
intensity and then incrementally increase the intensity up to
the desired value. At each increment the initial choice for
the unknown boundary conditions is then the p found at the
previous increment.

Our system has a number of free parameters: the super-
structure period �s, the two Bragg phases φ1 and φ2, the
length of the slow-light grating L, the length of the reflection
grating LR, the input intensity of the forward fundamental
mode I , and the grating strength δn.

The aim of our study is to maximize SHG, i.e., to maximize
the forward-propagating second-harmonic field u2(x = L) at
the device output. We are thus seeking to find the parameters
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FIG. 3. Group velocity of a Gaussian apodized π -phase-shifted
grating vs superstructure period �s. Parameters αA = 16, λ1 =
1064 nm, n̄ = 2.147, δn = 10−3, and L = 4 cm.

which achieve this aim by studying numerically the parame-
ter dependence of the solutions of Eq. (16) or, equivalently,
Eq. (17).

IV. GROUP VELOCITY AND INTENSITY ENHANCEMENT

The superstructure period �s is a key parameter as it
controls the bandwidth of the transmission band. A longer
�s leads to a narrower transmission band with a reduced
group velocity. Typically the group velocity is defined by
vg = ∂ω/∂β; however, the propagation constant β is modified
due to the presence of the π -phase-shifted grating and cannot
be directly calculated. It can be shown that the group velocity
can instead be defined by

vg = vp

∫ L
0 dx |u1|2 − |v1|2∫ L
0 dx |u1|2 + |v1|2

, (18)

which is expressed directly in terms of the forward- and
backward-propagating fundamental fields and where vp is the
phase velocity [9,28]. Figure 3 shows how the group velocity
slow-down factor defined by vp/vg varies with �s in a Gaus-
sian apodized π -phase-shifted grating. Lower group velocities
lead to greater slow-down factors and field enhancement,
which in turn allows for more efficient SHG as discussed
below.

V. RESULTS

To first demonstrate the effectiveness of the slow-light and
reflection gratings in enhancing second-harmonic generation,
Fig. 4(a) shows a simulation of the output powers for the four
propagating fields, i.e., at x = L for u1 and u2 and at x = 0 for
v1 and v2, when the superstructure period �s is varied. The
other parameters were fixed to φ1 = φ2 = 0, L = 4 cm, LR =
1 mm, I = 103 W/cm2, and δn = 10−3. As �s is increased we
find a corresponding increase of the second-harmonic gener-
ation. The maximum second-harmonic generation occurs at
�s = 5.3 mm which corresponds to a slow-down factor of
16.6 and a conversion efficiency of 67%, which is an enhance-
ment by a factor of 65.5 compared to the periodically poled
crystal without the linear gratings, as shown in Fig. 4(c).

FIG. 4. Output powers for fundamental and second-harmonic
fields vs superstructure period �s, where powers are normalized
to the input fundamental power, for (a) φ1 = 0 and (b) φ1 = π/4.
(c) Enhancement of SHG conversion efficiency compared to a pe-
riodically poled crystal without linear gratings. Other parameters
are λ1 = 1064 nm, L = 4 cm, LR = 1 mm, αA = 16, δn = 10−3,
n̄1 = 2.147, n̄2 = 2.223, χ (2) = 25 pm/V, and I = 103 W/cm2.

Once �s is past its optimum value we find that power
begins transferring to the backwards fundamental mode as
can be seen in Fig. 4(a). To understand this behavior, we note
that there are two channels by which the input power of u1

can be transferred to u2. It can be transferred directly via the
nonlinearity κ3 between the forward-propagating modes, or
by first coupling the forward into the backward fundamental
mode v1 by the slow-light grating via κ1, then into the back-
ward harmonic mode v2 by κ3, and then finally to the forward
harmonic mode u2 via the reflection grating κ2. However,
depending on the relative phases of fundamental and harmonic
fields, the same processes can also convert power back from
the harmonic to the fundamental mode.

Therefore, we next look at the affect of varying the
Bragg phases φ1 and φ2. Figure 5 shows a simulation of the
normalized output power of the forward second harmonic
when φ1 and φ2 are varied through 2π . The figure shows
that the interaction of the two linear gratings can create a
resonance or antiresonance depending on the values of φ1
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FIG. 5. (a) Normalized output power of the forward second-
harmonic field vs Bragg phases φ1 and φ2. (b) One-dimensional cuts
through (a) at φ1 = 0 and φ2 = 0, respectively. �s = 5.3 mm, other
parameters as in Fig. 4.

and φ2. This behavior is not seen if the reflection grating is
removed. We note that the condition

φ1 − φ2

2
= π

4
(19)

gives the optimum second-harmonic generation. In all the
simulations we have conducted Eq. (19) holds for any choice
of parameters. Similarly the condition

φ1 − φ2

2
= 3π

4
(20)

gives a minimum for SHG exiting the device, with all of the
power staying in the forward fundamental mode.

For such an optimized situation, φ1 = π/4 and φ2 = 0,
Fig. 4(b) shows the various field output powers vs �s. In
this case, the optimum forward second-harmonic conversion
efficiency is increased to 99% at �s = 5.8 mm corresponding
to a slow-down factor of 26.2.

Finally, Fig. 6 shows the forward second-harmonic field
intensities along the length of the device with the Bragg
phases set to (19) and (20), respectively. We can see that in
the case of Eq. (20) a strong resonator is formed between
the reflection grating and the slow-light grating, where high
second-harmonic intensities are generated close to the reflec-

FIG. 6. Comparison of power flow normalized to input power
across the device length for the forward second-harmonic mode, with
φ1 set to produce maximum and minimum conversion to the second
harmonic, respectively. Here �s = 5.78 mm, other parameters as in
Fig. 4(b).

tion grating. However, as the fields propagate along x, this
power is converted back into the fundamental wave, with
notable “steps” at the positions of the π phase shifts of the
slow-light grating, and therefore little second-harmonic output
is observed at the far end of the device. For phases fulfilling
Eq. (19), on the other hand, the second-harmonic intensity
builds up continuously along x and reaches its maximum at the
device end. Therefore, the relative phase difference between
the gratings has a strong affect on the overall efficiency of the
second-harmonic generation.

Another factor that affects the conversion efficiency is the
length of the waveguide. In a standard QPM device, the longer
the interaction length, the higher the conversion efficiency.
The same is true for our device, as can be seen from Fig. 7(a),
which shows the output fields as a function of device length.
The parameters used here are those which we found previ-
ously to optimize the conversion efficiency for a 4 cm device
with an input intensity of 103 W/cm2. The figure shows that
the conversion efficiency remains close to 100% down to a
device length of around 2.5 cm after which the efficiency starts
to decline; at 10 mm the efficiency is at 32%. Figure 7(b)
shows the enhancement of SHG efficiency compared to a
QPM device without the linear gratings. For a short, 10 mm
length device, the enhancement factor is 492, which is a sig-
nificant increase in enhancement over the 4 cm device. In a
simplified picture we can argue that for the chosen value of
�s the slow-down factor is 26.2 (cf. Fig. 3), and thus we may
expect an enhancement of the fundamental wave intensity by
the same factor. Since SHG scales with the square of the pump
field, the SHG enhancement by the slow-light effect should be
of the order of 600, which is comparable with the numerically
found value. Note, however, that this simplified argument
neglects depletion of the pump field and the additional field
enhancements due to the resonator effect between the reflec-
tion and slow-light grating as discussed above. Thus, while
the slow-light enhanced conversion efficiency converges to
close to 100% already at short device lengths, the conversion
efficiency of a simple QPM device still increases quadratically
with length, which explains the decay of the curve in Fig. 7(b)
for longer lengths L.
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FIG. 7. (a) Normalized output powers for fundamental and
second-harmonic modes vs device length L. (b) Corresponding en-
hancement of SHG efficiency compared to a QPM device without
linear gratings. (c) Output powers vs length of the reflection grating
LR. Here �s = 5.78 mm, other parameters as in Fig. 4(b).

The length of the reflection grating is also important for
increasing SHG conversion efficiency. Figure 7(c) shows how
varying the reflection grating length from 0 to 1 mm affects
the SHG. When the grating is removed, LR = 0, the second
harmonic is split almost evenly between the forward and
backward outputs. As the grating length is increased we see
the backward mode being converted into the forward mode.
Once the grating is sufficiently long to become a near-perfect
reflector, i.e., for LR � 1/κ2 = 0.17 mm, no backward har-
monic light is transmitted, and increasing LR further does not
contribute any further to increasing the conversion efficiency.

So far we assumed an input intensity of 103 W/cm2,
which in a 4 cm standard QPM device has a low conversion
efficiency and therefore is a good intensity to demonstrate
the performance of our device. However, the conversion ef-
ficiency is intensity dependent, and we next investigate over

FIG. 8. (a) Output powers for fundamental and second-harmonic
modes vs input intensity. (b) Corresponding SHG enhancement over
a standard QPM device. Here �s = 5.78 mm, other parameters as in
Fig. 4(b).

what range of input intensities our device remains effec-
tive. Figure 8(a) shows how the conversion efficiency varies
from an intensity of 10 W/cm2 to 105 W/cm2 for device
parameters which were optimized for an input intensity of
103 W/cm2. The figure shows that for the given parameters
the conversion efficiency is close to 100% for three orders of
magnitude from 10 W/cm3 to 105 W/cm5. Below 103 W/cm2

the conversion efficiency begins to decrease, reaching 25%
efficiency at 101 W/cm2, which is an enhancement factor of
2555 compared to a standard QPM device [see Fig. 8(b)]. This
is analogous to what we saw when varying the device length;
lower intensities have greater enhancement factors, whereas
higher intensities have greater conversion efficiency.

The grating refractive index modulation amplitude δn is
ultimately what determines the coupling strengths of the slow-
light grating and generates the enhancement. If we set δn = 0
we recover a standard QPM device and see no enhancement.
Figure 9(a) shows the effect of varying the grating strength
on the fundamental and harmonic output powers for an input
intensity of 103 W/cm2, and Fig. 9(b) shows the correspond-
ing increase in SHG efficiency compared to a standard QPM
device. At δn = 10−4 the slow-down factor is reduced to 1.01
resulting in almost zero SHG, and therefore the device is
behaving as a standard QPM device. As the grating strength
is increased we see a corresponding increase in SHG, which
reaches a maximum conversion efficiency at δn = 10−3. As
δn reaches 1.3 × 10−3 the SHG begins to decrease with a
corresponding increase in the backward fundamental mode.
This is the same behavior we saw when increasing �s. In both
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FIG. 9. (a) Output powers for fundamental and second-harmonic
modes vs grating strength δn. (b) Corresponding SHG enhancement
over a standard QPM device. �s = 5.78 mm, other parameters as in
Fig. 4(b).

cases as the parameter is increased, the field enhancement
increases, but if the field enhancement is increased beyond
an optimum for SHG, light is coupled into the backward
fundamental mode.

VI. CONCLUSION

In conclusion, we investigated the use of slow-light
gratings in a quasi-phase-matched device for enhancing
second-harmonic generation. A phase-shifted superstructure
grating creates a slow-light effect and leads to corresponding
field enhancement which in turn enhances SHG. Since the

superstructure grating couples the forward- and backward-
propagating waves of the fundamental pump field, SHG also
leads to forward- as well as backward-propagating harmonic
fields. We therefore added a second, short Bragg grating at
the start of the device to act as a reflector for the harmonic
field, thus ensuring that all harmonic output is in the forward
direction.

We found that for a given wavelength and input intensity
there is an optimum superstructure period and thus an op-
timum group velocity reduction to maximize the conversion
efficiency. The system also benefits from a resonator effect
formed between the slow-light and the reflection grating and
is therefore sensitive to the relative phase of the two gratings.

If the slow-light effect is too strong, for example, be-
cause of a long superstructure period, a large refractive index
modulation, or too high an input pump intensity, pump light
starts to be back-reflected by the system and exits through the
input port, thereby reducing the maximum achievable SHG
efficiency. However, we found that the device still exhibits
near-unity conversion efficiency for intensities spanning three
orders of magnitude.

Most importantly, for all the parameter regimes investi-
gated the slow-light device enhances significantly the SHG
conversion efficiency compared to a standard quasi-phase-
matched device without the slow-light grating. For the
realistic parameters of magnesium oxide doped thin film
lithium niobate, enhancements by factors of several hundreds
are predicted. Slow-light enhancement therefore allows for
SHG at much shorter device lengths or at much lower pump
intensities, which could have significant impact in low-power
applications such as in quantum technology.

All data supporting this study are openly available from the
University of Southampton repository at [29].
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