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The synchronization of spatial modes in the formation of multimode solitons can be considered as the
transverse analog of mode locking. In this process, the inherent Kerr nonlinearity in the fiber core binds different
spatial fiber modes together. However, compared to their temporal counterparts, the binding mechanism in
multimode solitons is rather weak and susceptible to perturbation. In order to mitigate this effect, the propagation
in multimode fibers with noninstantaneous Kerr media (NKM) is theoretically investigated. Our study focuses
on the dynamics of intermodal energy transfer for the two cases of weak and strong walk-off. Both the
moment method and numerical simulations of a multimode expansion of the nonlinear Schrödinger equation
are employed. Scenarios of pure, hybrid, and varying NKM are investigated. For pure NKM, it is found that for
weak walk-off, higher order spatial modes are accelerated in the time domain when their energy is transferred
to lower order modes, that is, an effect that has previously been discussed as self-cleaning. In the hybrid case,
when an additional instantaneous Kerr effect is present, this results in an enhancement of intermodal nonlinear
coupling, leading to prominent oscillating evolutions of the derivatives of energy and pulse center. For varying
NKM, the nonlinear refractive index and the proportion of noninstantaneous Kerr nonlinearity may both vary
with pulse width. In this case, energy transfer and temporal shift are essentially determined by the magnitude of
nonlinear response time of NKM. Significant temporal self-splitting at the trailing edge is observed for the lowest
order mode provided only that the response time is large enough and irrespective of strong or weak walk-off.
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I. INTRODUCTION

Solitons in multimode optical fibers have been studied for
more than 40 years [1]. Compared to their counterparts in
single-mode fibers, stable propagation of multimode solitons
is substantially more difficult to maintain given the ad-
verse intermodal walk-off and cross-phase modulation (XPM)
effects. As a result, these transverse effects may easily in-
terfere with the careful balance between dispersion and
nonlinearity required for stable propagation of the temporal
soliton. Hasegawa already showed that multimode solitons
require significantly higher peak powers for their support
compared to single-mode soliton. This requirement was ex-
plained by the creation of a deeper spatial potential well
necessary to confine multimode wave packets [1]. Subsequent
theoretical analysis showed that XPM plays an important
role in the formation of multimode solitons as it fosters lo-
calization of spatiotemporal wave packets [2,3]. While this
pioneering work already predicted the existence of multi-
mode solitons, experimental evidence did not appear until
2013 [4]. In the latter experiments, spatiotemporal solitonic
wave packets were observed in multimode fibers, which
were designed to support a controlled number of trans-
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verse modes. Compared to the propagation of single-mode
solitons, numerical modeling of multimode solitons is signifi-
cantly more complicated because of the rich spatiotemporal
effects in multimode fibers. As one such example, self-
imaging has been reported for transverse fields when the
respective self-imaging period is smaller than the dispersion
length LD [5,6]. Spatial self-cleaning is another effect that
may appear in the multimode-soliton scenario, with an ir-
reversible transfer of energy from high-order spatial modes
into the fundamental one [7]. The Kerr nonlinearity has
been discussed as one possible explanation for self-cleaning
[8], yet stimulated Raman scattering [9] or stimulated
Brillouin scattering [10] have also been discussed as possible
drivers behind the self-cleaning. In particular, Raman scatter-
ing in combination with the Kerr effect can be understood as
a hybrid Kerr nonlinearity, consisting of an instantaneous and
a delayed response. Regardless of the exact mechanism, the
initial energy distribution among the transverse modes con-
tracts into the fundamental mode, which leads to a decrease
of beam diameter. In the case of Raman-assisted transfer, it
has been recently argued that the soliton self-frequency shift
contributes to a group velocity match between higher order
and lower order modes [11]. Another approach toward under-
standing the dynamics of the multimode system is rooted in
thermodynamics and nonlinear dynamics. To this end, one as-
sumes that the fundamental spatial mode acts as an attractor of
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the multimode system. In this picture, high-order modes then
experience a thermalization that irreversibly evolves toward
the attractor state, i.e., the lowest order mode [12,13].

Apart from the aspect of energy transfer, temporal dynam-
ics also require some scrutiny. When energy flows from higher
order to lower order modes, soliton fission may take place
due to the rapidly increased soliton order in the lower order
modes [14]. Additionally, intermodal group delay may serve
to cause a temporal breakup between different modes [15].
Controlling the differential group delay, solitons may trap or
repel each other, depending on the intensity of walk-off effects
[16]. Higher order modes can also be trapped in the temporal
potential well created by lower order modes when the walk-off
is relatively weak.

While multimode solitons in instantaneous Kerr media
have been studied intensively, noninstantaneous Kerr media
(NKM) offer some potential to effectively increase the non-
linearity and mitigate the rather pronounced phase-matching
issues. In silica fibers, the noninstantaneous contribution
stems from Raman scattering and is caused by atomic
vibration. A recent study showed that Raman-induced tem-
poral delay can be enhanced in multimode fibers [17] even
though Raman scattering only contributes a small part to
the nonlinearity, i.e., 18% in silica. Stronger effects can be
observed in photonic crystal fibers that were filled with a
Raman-active gas, giving rise to pronounced modulation
effects in the spectral and temporal domain [18]. Finally,
exploiting the reorientational Kerr effect in molecular liquids
like CS2 [19,20] leads to giant nonlinearities, yet at the ex-
pense of time constants that are orders of magnitude beyond
those of electronic Kerr nonlinearities. In contrast to the role
of the Raman effect in silica, the noninstantaneous Kerr non-
linearity in molecular liquids now prevails in the dynamics.
Previously, localized noninstantaneous solitons have been re-
ported in a pure NKM (i.e., lacking any istantaneous effect)
when the input pulse duration is much shorter than molecular
relaxation time [21]. Strictly speaking, the noninstantaneous
soliton reported in Ref. [21] has to be taken with a grain of
salt as the reported soliton solution is only an approximate
result. Recent studies showed that pure NKM solitons differ
from the usual hyperbolic secant shape [22] and localized
solutions rather appear for Airy or Pearcey input pulse shapes
[23,24]. When both instantaneous and noninstantaneous non-
linearities participate, the resulting solitonic wave packet is
usually referred to as hybrid soliton [25]. Compared to the
instantaneous Kerr nonlinearity, the noninstantaneous soli-
tons often show different behavior in nonlinear interactions.
For example, modulation instability in NKM can be strongly
affected by nonlinear coupling between two copropagating
pulses [26,27]. Dispersive wave generation, four-wave mix-
ing (FWM) [28], soliton fission [29], and supercontinuum
generation [30] under noninstantaneous circumstances also
often display peculiar nonlinear dynamics. Moreover, to the
best of our knowledge, the dynamics of multimode soliton
propagation in NKM has not been studied yet.

In the following, the intermodal synchronization effects of
multimode solitons propagation in NKM are investigated in
detail by using the moment method [31,32]. The results are
then further verified by numerical simulations. Given that the
proportion of noninstantaneous Kerr nonlinearity and magni-

tude of response time in NKM can be varied, e.g., through
the choice of material, we study pure, hybrid, and varying
NKM by using a generalized nonlinear Schrördinger equation
(GNLSE). Going beyond previous work, we focus on energy
transfer and temporal shift along propagation when walk-off
effects are either strong or weak. The influence of instan-
taneous Kerr nonlinearity on energy transfer and temporal
shift is studied by varying the pure NKM to hybrid NKM.
Furthermore, a pulse width-dependent noninstantaneous Kerr
nonlinearity in varying NKM is also studied as an alternative
approach to this problem. To this end, two different response
times are studied in the simulation for comparison under
strong or weak walk-off.

II. THEORETICAL FRAMEWORK

The nonlinear propagation of multimode pulses in pure
NKM, involving both intermodal XPM and FWM, is
modeled by a multimode expansion of the well-known non-
linear Schrödinger equation, which has evolved to a standard
method for simulating nonlinear optical propagation in mul-
timode fibers [3,4,33,34]. In the following, we refer to this
equation as the multimode GNLSE. Here we adopt a slightly
simplified version [35], which assumes a slow variations of
noninstantaneous response and pulse envelope compared to
the cycle of the carrier wave. Moreover, frequency-dependent
mode functions are omitted to make our model more easily
tractable. After normalization, our model equation is written
as

∂up

∂ξ
= id0pup − d1p

∂up

∂τ
− i

d2p

2

∂2up

∂τ 2
+ iN2

s

×
∑
lmnp

f�mnpu�[R(τ ) ⊗ (umu∗
n )], (1)

where u(τ, ξ ) = A(τ, ξ )/
√

PN , A(τ, ξ ) is the electric-field
amplitude, and PN is the peak power used for normalization.
The latter equals to the peak power of the fundamental soliton
in the fundamental fiber mode. Subscripts �, m, n, and p ∈
{1, 2, 3}, referring to the involved three modes. All modes are
considered linearly polarized. To normalize the propagation
distance z, we define the dispersion length of the lowest order
mode as LD = T 2

0 /β21. Here T0 is the initial pulse width in the
three modes, and β21 is the group-velocity dispersion of the
lowest order mode. ξ = z/LD and τ = t/T0 are the normal-
ized propagation distance and time, respectively, and t is the
absolute time. The propagation constant of the pth mode can
be expanded as a Taylor series

βp(ω) = β0p + β1p(ω − ω0) + β2p(ω − ω0)2/2 + · · · , (2)

where β0p, β1p = (dβp/dω)|ω=ω0 and β2p =
(d2βp/dω2)|ω=ω0 specify the propagation constant, the group
delay, and its dispersion for the pth mode, respectively.
Additionally we define d0p = (β0p − β01)LD as the
differential propagation constant between the pth and the
fundamental mode. Here we neglect higher order dispersion
effects as most of the interesting dynamics appears on length
scales of a few LD and because our pulses are relatively
long, i.e., T � 100 fs. Based on an exact computation [36]
of propagation constants for a multimode fiber with 50 μm
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TABLE I. Overlap integrals between M1, M2 and M3

Modes Overlap integrals Value

M1, M2, M3 f1111, f2222, f3333 1, 3/4, 1/2
M1 ↔ M2 f1212, f2211, f1122, f2121 1/2, 1/2, 1/2, 1/2
M1 ↔ M3 f1313, f3311, f1133, f3131 1/4, 1/4, 1/4, 1/4
M2 ↔ M3 f2323, f3322, f2233, f3232 1/8, 1/8, 1/8, 1/8

core diameter and 0.02 index step, we determined d01 = 0,
d02 = −1, and d03 = −3 as a reasonable model assumption;
i.e., the phase mismatch between the modes grows with mode
number. In addition to the primary phase-mismatching effect,
we define differential group delay and also a group-velocity
dispersion mismatch for pth mode as d1p = (β1p − β11)LD/T0

and d2p = β2p/|β21|, respectively. As the importance of these
effects decreases with the order number, we neglect higher
order dispersion effect. We further neglect losses due to
scattering or bending losses as they play no important
role on the short propagation length we consider in the
following. We further assume d11 = 0 and d21 = −1; i.e.,
we chose the reference frame of the fundamental mode
and assume anomalous dispersion. Ns is the soliton order,
again normalized to the fundamental mode. We finally define
overlap integrals f�mnp. These factors govern the intermodal
nonlinear coupling. The value of f�mnp is derived from the
spatial field F (x, y) via

f�mnp = 1

AN

∫ ∞

−∞
F ∗

� FmFnF ∗
p . (3)

Here both AN and f1111 are set to unity. Since �, m, n, p may
vary from 1 to 3, there is a total of 81 overlap integrals in
total. However, most of them vanish and do not contribute to
intermodal nonlinear coupling [37,38]. Therefore, we restrict
ourselves to the 15 largest overlap integrals in this work;
see Table I. Here M1, M2, and M3 refer to the fundamen-
tal, second, and third modes, respectively. The symbol ⊗ in
Eq. (1) represents a convolution in the time domain. The
noninstantaneous Kerr nonlinearity is generally characterized
by a response function R(τ ). For NKM liquids like CS2,
R(τ ) is derived from the Debye-Stokes-Einstein relation as
a sum of harmonic oscillator function with individual ex-

ponential rise and decay functions. These three functions
represent the model molecular reorientation, librational re-
sponse, and intermolecular collision-induced variations [20].
While a compound model might provide a more complete
description of noninstantaneous effects, we decided to resort
to a simpler model that only includes Debye-type relaxation,
following up on Refs. [21,39]. The noninstantaneous response
function R(τ ) is generally written as R(τ ) = �(τ )h(τ ) with
h(τ ) = exp(−τ/T )/T , where T is the response time and
�(τ ) is the Heaviside function. In highly NKM, T � τ0,
where τ0 = 1 is the normalized pulse width. While our 1D+1
GNLSE does not include the space-time coupling like 2D+1
variants [40–43], resulting self-steepening effects appear neg-
ligible in our analysis of walk-off effects between fiber modes
at rather long pulse durations. Moreover, as our multimode
expansion only involves three modes, it is numerically much
less expensive than 2D+1 or even 3D+1 approaches and
therefore allows effective scanning of a much larger parameter
space in relatively short computation time.

For deeper understanding of the dynamics of intermodal
interaction, we employ the moment method to analyze the
evolution of energy and pulse center upon propagation. The
moment method is a semianalytic method, which provides
qualitative descriptions of nonlinear dynamics. This method
has been widely used in the study of temporal and spectral
shifts [31,32] in the single-mode case. For the opposite case
of multiple modes, energies of M1, M2, and M3 are written as

E�(ξ ) =
∫ ∞

−∞
|u�(ξ )|2dτ, (4)

with � = 1, 2, and 3, respectively. Accordingly, the energy
derivatives for the three modes can be calculated from Eq. (4)

dE�

dξ
=

∫ ∞

−∞

(
u∗

�

du�

dξ
+ u�

du∗
�

dξ

)
dτ. (5)

Substituting Eq. (1) and its conjugated equation into Eq. (5),
all differential terms in Eq. (5) on the right-hand side can now
be eliminated. Taking M1 as an example, the new expression
for the energy derivative containing Ns and f�mnp is then
written as

dE1

dξ
= iN2

s

∫ ∞

−∞
{( f2211u∗

1u2 − f2121u1u∗
2 )[R ⊗ (u2u∗

1 )] + ( f2121u∗
1u2 − f2211u1u∗

2 )[R ⊗ (u∗
2u1)]

+ ( f3311u∗
1u3 − f3131u1u∗

3 )[R ⊗ (u3u∗
1 )] + ( f3131u∗

1u3 − f3311u1u∗
3 )[R ⊗ (u∗

3u1)]}dτ. (6)

Equation (6) can be further simplified by only considering the fundamental soliton, i.e., Ns = 1. Substituting all values of f�mnp

listed in Table I into Eq. (6), we yield

dE1

dξ
= i

∫ ∞

−∞

{
u∗

1u2 − u1u∗
2

2
[R ⊗ (u∗

1u2 + u1u∗
2 )] + u∗

1u3 − u1u∗
3

4
[R ⊗ (u3u∗

1 + u1u∗
3 )]

}
dτ. (7)

In the same fashion, energy derivatives of M2 and M3 compute as

dE2

dξ
= i

∫ ∞

−∞

{
u∗

2u1 − u2u∗
1

2
[R ⊗ (u1u∗

2 + u2u∗
1 )] + u∗

2u3 − u2u∗
3

8
[R ⊗ (u3u∗

2 + u2u∗
3 )]

}
dτ (8)

and

dE3

dξ
= i

∫ ∞

−∞

{
u∗

3u1 − u3u∗
1

4
[R ⊗ (u1u∗

3 + u3u∗
1 )] + u2u∗

3 − u3u∗
2

8
[R ⊗ (u3u∗

2 + u2u∗
3 )]

}
dτ. (9)
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During propagation, the envelope functions of M1, M2, and
M3 are defined as F1(τ − τc1), F2(τ − τc2), and F3(τ − τ3),
where τc1, τc2, and τc3 are the centers of gravity of the re-
spective envelope function. While the input wave forms for
three modes are all hyperbolic secants, subsequent propaga-
tion gives rise to a deformation of their temporal profiles
because of intermodal interactions. Based on this considera-
tion, complex electric amplitudes u� are decomposed as

u�(τ, ξ ) = F� exp iϕ�, (10)

where the ϕ� are temporal phases of the individual modes.
Moreover, although the F� are only determined by peak power
and pulse width of each mode, the resulting ϕ� are slightly
more complicated to compute and spell out as

ϕ� = ϕ0� − 
�(τ − τc�) − C�(τ − τc�)2

2σ 2
�

, (11)

where ϕ0� is the respective initial phases. For simplicity, all of
the latter are set to zero. Moreover, 
� are frequency shifts, C�

are chirp coefficients, and σ� are the root-mean-square (rms)
pulse widths. The first-order derivatives for ξ with respect to
the latter three variables have been derived by the moment
method. Finally, we substitute the expanded complex func-
tions u into Eqs. (7)–(9), yielding

dE1

dξ
=

∫ ∞

−∞
(2ε12 + ε13)dτ, (12a)

dE2

dξ
=

∫ ∞

−∞

(
−2ε12 + 1

2
ε23

)
dτ, (12b)

dE3

dξ
= −

∫ ∞

−∞

(
ε13 + 1

2
ε23

)
dτ, (12c)

where ε12, ε13, and ε23 are nonlinear coupling variables writ-
ten as

ε12 = κ12F1(τ − τc1)F2(τ − τc2)sin(�ϕ12), (13a)

ε13 = κ13F1(τ − τc1)F3(τ − τc3)sin(�ϕ13), (13b)

ε23 = κ23F2(τ − τc2)F3(τ − τc3)sin(�ϕ23), (13c)

and �ϕ12 = ϕ1 − ϕ2, �ϕ13 = ϕ1 − ϕ3, and �ϕ23 = ϕ2 −
ϕ3 are phase differences between the individual modes, κ12 =
R ⊗ (F1F2cos�ϕ12), κ13 = R ⊗ (F1F3cos�ϕ13), and κ23 =
R ⊗ (F2F3cos�ϕ23) are convolution variables as a function
of time. From Eqs. (12a) to (12c), we immediately see that the
sign of energy derivative depends on the integral over ε, which
relates back to �ϕ. As an example, �ϕ12 can be written as

�ϕ12 =
2(τ − τc2) − 
1(τ − τc1)

+ C2(τ − τc2)2

2σ 2
2

− C1(τ − τc1)2

2σ 2
1

.
(14)

Equation (14) indicates that �ϕ12 relies on a multitude
of effects, including frequency shift, temporal shift, chirp
coefficient, and root-mean-square pulse width. Here, the
temporal shift play an important role because they affect all
four terms on the right-hand side of Eq. (14). We therefore
conducted a series of numerical simulations by considering
the four cases listed in Table II. With these simulations, we
systematically explore the role of phase mismatch effects and

TABLE II. Parameter sets used in individual simulation runs.
d12, phase mismatch (MM) between fundamental and second-order
mode. d13, same but for third-order mode. T , response time of non-
instantaneous Kerr medium (NKM).

d12 d13 T Comment

(i) 1 3 10 Strong MM, fast NKM
(ii) 1 3 100 Strong MM, slow NKM
(iii) 0.1 0.3 10 Weak MM, fast NKM
(iv) 0.1 0.3 100 Weak MM, slow NKM

walk-off on the one hand and that of the response time on
the other hand. Moreover, the ratio between d12 and d13 was
chosen as 1:3 as this was similar to what we expect in common
multimode fibers. According to these calculations, we further
chose d22 = −1.1 and d23 = −1.2, which are close but not
identical to d21.

III. SIMULATION RESULTS

We start our discussion of the simulation results with an
analysis of the energy transfer between the individual modes;
see Fig. 1. To this end, we depict the energy loss or gain
dE/dξ in the first row of Fig. 1 as well as the energy Ei

in the second one. The four cases in Table II are shown in
columns (i) to (iv) of Fig. 1. We seed the computation by
assuming identical energies in all three modes. In all our
computations, the energy in the fundamental mode tends to
grow at the expense of the higher-order modes. This effect
is well known as self-cleaning [7] and is most pronounced for
case (iii), i.e., weak intermode walk-off and a fast nonlinearity,
and it is weakest for case (ii) with exactly opposite choice of
parameters. In the latter case, group velocity differences as
well as the response time are an order of magnitude larger than
those in other three cases discussed. Therefore, case (ii) gives
rise to a prominent walk-off effect between the three modes,
effectively hampering energy exchange between the modes. In
the other cases, time constants of this energy transfer between
modes is mostly determined by the strength of the mismatch
and shows surprisingly little influence on the relaxation time
constant of the nonlinearity.

Apart from the energy transfer, temporal shifts are another
aspect that we are interested in. The amount of temporal shift
can be deduced from the position of pulse center, which is
written as

τc� =
∫ ∞
−∞ τ |u�|2dτ

E�

. (15)

Substituting Eqs. (1) and (4) into Eq. (15), and then using the
overlap integrals provided in Table I, we finally reach

dτc1

dξ
= d11 + d21
1 + 1

E1

∫ ∞

−∞

(
2ρM1

12 + ρM1
13

)
dτ, (16a)

dτc2

dξ
= d12 + d22
2 − 2

E2

∫ ∞

−∞

(
ρM2

12 − 1

4
ρM2

23

)
dτ,(16b)

dτc3

dξ
= d13 + d23
3 − 1

E3

∫ ∞

−∞

(
ρM3

13 + 1

2
ρM3

23

)
dτ, (16c)
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FIG. 1. Variations of energy derivative [top row (a1)–(d1)] and energy [bottom row (a2)–(d2)] with propagation distance ξ . Columns
(a)–(d) refer to cases (i)–(iv) in Table II. Red solid, green dashed, and blue dash-dotted curves represent M1, M2, and M3, respectively. In
the bottom row, curves represent analytic results. Hollow circle, solid circle, and plus sign represent numerical results for M1, M2, and M3,
respectively.

where the six nonlinear coupling variables are given by ρM�
jk =

(τ − τc�)ε jk . From Eqs. (16a) to (16c), one can see that the
pulse center is affected by both linear and nonlinear parts.
Considering dτc1/dξ, for example, the linear part is com-
posed of two terms, namely d11 and d21
1. Among these two
terms, only the latter one marginally influences the temporal
shift because of the small d21; the linear contribution mostly
stems from d11. The integral term in Eqs. (16a) to (16c)
describes nonlinear contributions to the timing between the
modes. In order to understand the resulting timing behavior,
we analytically evaluate the cases of strong and weak walk-
off as illustrated in Fig. 2. For the case of strong walk-off,
Figs. 2(a) and 2(b) show the evolution of ρ and τc, respec-
tively, while Figs. 2(c) and 2(d) show the behavior for weak

FIG. 2. Variations of nonlinear coupling variable ρ and pulse
center τc upon propagation along ξ = z/LD for modes M1, M2, and
M3. (a) ρ under strong walk-off (top, M1; middle, M2; and bottom,
M3). (b) τc, strong walk-off (top, M1; middle, M2; and bottom, M3).
(c) ρ, weak walk-off. (d) τc, weak walk-off. In panels (b) and (d), red
solid (M1), green dashed (M2), and blue dash-dotted (M3) curves
represent analytic results while red hollow circle (M1), green solid
circle (M2), and blue plus sign (M3) represent numerical results.

walk-off. As can be seen from Figs. 2(a) and 2(c), nonlinear
coupling terms ρM1

12 and ρM2
12 strongly dominate the dynamics;

i.e., there is predominant interaction between the fundamental
and the second mode. For the case of weak walk-off, there also
appears some sizable coupling between fundamental and third
modes, whereas coupling between the second and third modes
is always rather weak. Looking at the dominant coupling
terms ρM1

12 and ρM2
12 , one observes an initial short phase of

strongly correlated behavior, which only lasts for a few dis-
persion lengths for the strong walk-off scenario. In some sense
of speaking, the interaction between the modes switches from
predominantly nonlinear to linear, and this effect appears most
pronounced for interaction involving M3. For the opposite
case of weak walk-off, the correlation persists for about 15 LD,
which is seen to result in some synchronization between M1
and M2 in Fig. 2(d). Subsequently, the correlation vanishes,
with damped oscillations of ρM1

12 and ρM2
12 at a relative phase

difference of π/2. For the case of weak nonlinear coupling
[Fig. 2(b)], the modes propagate close to their linear group
velocity. While M3 propagates at the lowest speed, M1 is
also slightly decelerated due to nonlinear interaction. In the
case of strong nonlinear interaction in Fig. 2(d), M1 propa-
gates the slowest whereas M2 and M3 are accelerated relative
to their linear group velocity. Compared to Fig. 2(b), the
temporal spread of the pulse centers remains about a factor
4 smaller, and we will see in the following that these small
shifts appear due to a reshaping of the pulses in the individual
modes rather than the intermodal dispersion of group velocity.
The observed acceleration contrasts with the single-mode case
[22,25], where only pulse deceleration was observed. While
the nonlinear part also plays a negative role in dτc3/dξ , the
amplitude of ρ for M3 is smaller due to the larger d23. As a
consequence, the linear part dominates dτc3/dξ and the tem-
poral pulse is thus delayed. The excellent fit between analytic
and numerical results in Figs. 2(c) and 2(d) proves the validity
of our theory. Additional simulations show that the spectra
of all modes shift to the red. M1 generally shows the largest
spectral shift and M3 the smallest when walk-off is strong.
For weak walk-off, M2 and M3 red shift only during initial
propagation and subsequently start to blue shift again. In the
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FIG. 3. Pulse shaping effects in the time domain. Left column
(a1)–(a5), strong walk-off for ξ = z/LD 20 to 100, respectively. Right
column (b1)–(b5), same for weak walk-off. Red solid, green dashed,
and blue dash-dotted curves represent M1, M2, and M3, respectively.

latter case, red components of M2 and M3 are transferred
into M1, and only blue components remain during subsequent
propagation.

To further elucidate the dynamics of soliton acceleration,
temporal wave forms under strong and weak walk-off are
plotted at T = 10 for a range of propagation lengths in Fig. 3.
The left columns (a1) to (a5) in Fig. 3 represent the wave
forms under strong walk-off whereas the right columns (b1) to
(b5) in Fig. 3 depict the case of weak walk-off. In the former
case, M2 and M3 gradually fall behind M1, and all pulses are
broadened mostly due to group-velocity dispersion. The lead-
ing edge of M1 is prolonged, which is a characteristic soliton
feature in the presence of noninstantaneous Kerr nonlinearity
[25]. Wave forms of all modes show smooth profiles due to
the weak intermodal nonlinear interaction, and the temporal
overlap of the individual modes remains nearly constant from
ξ = 40 to 100, which explains the constant ρM1

12 and ρM2
12 in

this range [Fig. 2(a)]. In contrast, when walk-off effects are
weak [Fig. 3(b)], M1 travels at the nearly the same speed as
M2 and M3, which leads to near- perfect temporal overlap
during the entire propagation. In such a situation, pulse re-
shaping effects due to intermodal nonlinear coupling become
unavoidable. Reshaping appears most prominently due to the
energy transfer from M2 to the fundamental mode in a zone
that travels from τ ≈ 20 at z = 20LD to 80 at z = 100LD.
This transfer decelerates the center of gravity of the pulse in
the fundamental mode and splits the M2 pulse into two. The
stronger leading pulse therefore appears accelerated relative to
the propagation under strong walk-off in Fig. 3(a). A similar
yet weaker effect can also be seen for M3 and explains the
observed acceleration effects in Fig. 2(d).

IV. HYBRID NONINSTANTANEOUS KERR
NONLINEARITY

In optical materials with NKM, one always finds an in-
stantaneous optical Kerr nonlinearity that is typically caused
by the polarization of bound electrons [44]. Even for the

case of liquid CS2 with its massive noninstantaneous response
due to molecular reorientation, a concomitant instantaneous
response has been reported [25]. On the other hand, the instan-
taneous Kerr effect in optical glasses or crystalline materials
is also often accompanied by a Raman response, which can
be understood as a NKM, too. The ratio between the two
types of responses depends on the optical materials and un-
derlying physical mechanisms [30,45,46]. To include both
nonlinearities in our model, Eq. (1) is modified by introducing
a fractional variable fr , which describes the proportion of the
noninstantaneous Kerr nonlinearity. This hybrid multimode
GNLSE is written as

∂up

∂ξ
= id0pup − d1p

∂up

∂τ
− i

d2p

2

∂2up

∂τ 2
+ iN2

s

∑
lmnp

flmnp

×{(1 − fr )u�umu∗
n + fru�[R ⊗ umu∗

n]}, (17)

where d0p is the same as in Eq. (1), and (1 − fr ) is the propor-
tion of the instantaneous Kerr nonlinearity. It should be noted
that Eq. (17) strictly only holds for linear polarization, but can
be adapted to the case of circular polarization by inserting
an additional factor 2/3 in front of the (1 − fr ) term [35].
Depending on their degeneracy, the ulumu∗

n in Eq. (17) models
the entire suite of four-wave mixing processes including SPM,
XPM, as well as degenerate FWM effects between the three
modes. Adopting the same procedure as in the above section,
energy derivatives for M1, M2, and M3 are written as

dE1

dξ
=

∫ ∞

−∞
(2χ12 + χ13)dτ, (18a)

dE2

dξ
= −

∫ ∞

−∞

(
2χ12 − 1

2
χ23

)
dτ, (18b)

dE3

dξ
= −

∫ ∞

−∞

(
χ13 + 1

2
χ23

)
dτ, (18c)

where χ12, χ13, and χ23 are intermodal nonlinear cou-
pling variables for hybrid NKM. These variables can be
expanded to

χ12 = (1 − fr )εK
12 + frε12, (19a)

χ13 = (1 − fr )εK
13 + frε13, (19b)

χ23 = (1 − fr )εK
23 + frε23, (19c)

where the εK
�m are similar to the ε�m for the case of pure

NKM. These newly introduced variables spell out as

εK
12 = 1

2
F2

1 (τ − τc1)F2
2 (τ − τc2)sin(2�ϕ12), (20a)

εK
13 = 1

2
F2

1 (τ − τc1)F2
3 (τ − τc3)sin(2�ϕ13), (20b)

εK
23 = 1

2
F2

2 (τ − τc2)F2
3 (τ − τc3)sin(2�ϕ23). (20c)

Unlike pure NKM, the above three equations do not require
convolutions as they only take into account the instantaneous
Kerr effect. Since

∫ ∞
−∞ Rdτ = 1 and F� � 1 holds, we con-

clude that ε jk � εK
jk ; that is, the Kerr nonlinearity serves

to further enhance the magnitude of the nonlinear coupling
variables χ defined in Eqs. (19a)–(19c).
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FIG. 4. Evolutions of energy derivatives along propagation with
fast nonlinearity (T = 10). Top panel, strong walk-off. (a) M1,
(b) M2, and (c) M3. Bottom panel, weak walk-off. (d) M1, (e) M2,
and (f) M3. Note that energy derivatives in the top three panels are
more than 10 times smaller than in the bottom ones. All energy
derivatives are with arbitrary units.

To verify our expectations, we numerically solve
Eqs. (18a)–(18c), varying the NKM ratio fr from 0.5 to 1
and fixing T = 10. The simulation results are shown in Fig. 4,
again with the top and bottom three panels discussing the case
of strong and weak walk-off, respectively. In these panels,
we depict the derivatives dEm/dξ ; i.e., an energy gain of
the respective mode is shown in yellow to red colors, and
losses are indicated by blue shades. For the case of strong
walk-off [Figs. 4(a)–4(c)], an energy exchange between the
modes virtually only appears in an initial stage of propagation
z < 10LD. In the absence of an instantaneous contribution
( fr = 1), one observe a rapid energy equilibration between the
modes as already discussed in Fig. 1(a1). In this process, the
fundamental mode gains energy mostly at the expense of M2.
Transfer of energy from M3 plays a much lesser role and is
limited to an even earlier phase of the propagation. After the
energy flow reached its maximum at z ≈ 3LD, the exchange
steadily decreases until an equilibrium state is reached. The
dynamics of this process depends only weakly on fr , with
a tendency of a reduced energy exchange in the presence of
a strong instantaneous nonlinearity ( fr = 0.5). Moreover, in
the latter situation, one can also observe a periodic energy
exchange between M1 and M2 with a period of ≈2.5LD. This
tendency of relaxation-oscillation like equilibration strongly
increases for weak walk-off [Figs. 4(d)–4(f)] and fr � 0.7.
In this case, one can actually see an additional slower oscil-
lation frequency, which increases upon further propagation
along z. For the weak walk-off scenario, the relaxation oscilla-
tion behavior clearly dominates in the presence of a sizable in-
stantaneous nonlinearity. While the relaxation oscillation be-

FIG. 5. Evolutions of derivatives of pulse centers. All other pa-
rameters and panel layout identical to Fig. 4. All derivatives of pulse
centers are with arbitrary units.

havior is initially triggered by the weak walk-off, Eqs. (19a)–
(19c) take over for propagation beyond z = 10LD until an
equilibrium state is eventually reached at z > 80LD.

For the temporal shift in hybrid NKM, expressions similar
to Eqs. (16a), (16b), and (16c) can be derived:

dτc1

dξ
= d11 + d21
1 + 1

E1

∫ ∞

−∞

(
2χM1

12 + χM1
13

)
dτ, (21a)

dτc2

dξ
= d12 + d22
2 − 2

E2

∫ ∞

−∞

(
χM2

12 − 1

4
χM2

23

)
dτ, (21b)

dτc3

dξ
= d13 + d23
3 − 1

E3

∫ ∞

−∞

(
χM3

13 + 1

2
χM3

23

)
dτ, (21c)

where χM�
jk = (τ − τc�)χ jk . One can see that dτc�/dξ are

again composed of linear and nonlinear parts for hybrid NKM.
However, the nonlinear part is more involved than in pure
NKM, given the participation of the instantaneous Kerr non-
linearity. Therefore, we now resort to numerical simulations.
Pertinent simulation results of the derivatives of pulse cen-
ter positions dτc�/dξ are shown in Fig. 5. Acceleration is
shown in blue shades whereas deceleration is depicted in
yellow to red hues. Again, for the case of vanishing instan-
taneous contributions to the nonlinearity ( fr = 1), one can
compare Figs. 5(a)–5(c) to Fig. 2(b); i.e., the three modes
propagate essentially linearly after a short phase of nonlinear
interaction (z < 20LD). Reducing fr , i.e., increasing the in-
stantaneous contribution, an additional acceleration sets in for
M1, whereas M2 and M3 remain mostly unaffected but for a
general slight reduction of the overall acceleration due to the
nonlinearity. For weak walk-off [Figs. 5(d)–5(f)], tendencies
are similar, but rather strong acceleration and deceleration
effects appear with a strong influence of instantaneous effects

013516-7



MEI, STEINMEYER, YUAN, ZHOU, AND LONG PHYSICAL REVIEW A 105, 013516 (2022)

FIG. 6. Evolutions of (a) energy and (b) pulse center under strong
walk-off. Evolutions of (c) energy and (d) pulse center under weak
walk-off with fast nonlinearity (T = 10). Red (green, blue) solid,
red (green, blue) dashed, and red (green, blue) dash-dotted curves
represent fr = 1, 0.75 and 0.5 for M1 (M2, M3), respectively.

as a consequence of the previously discussed relaxation os-
cillations. In addition to the color map representations of
energy transfer and timing (Figs. 4 and 5, respectively), we
additionally plotted the evolution of modal energies Ej and
timing τc j as a function of normalized propagation distance ξ

for three exemplary values of fr ∈ {0.5, 0.75, 1}; see Fig. 6.
For the case of vanishing instantaneous contributions fr =
1, the solid lines in Figs. 6(a) and 6(c) correspond to the
cases already discussed in Figs. 1(a2) and 1(c2), respectively.
Comparing the dashed ( fr = 0.75) and dash-dotted ( fr = 0.5)
lines for the case of strong coupling in Fig. 6(a), one can
generally see that the instantaneous nonlinearity further in-
crease the energy transfer from M2 into M1. The situation is
more complicated for weak walk-off [Fig. 6(b)], but markedly
only affects the extreme case of fr = 0.5, which is again
explained by the previously discussed relaxation oscillations.
The timing of the pulse center is depicted in Figs. 6(b) and
6(d). Again, the solid lines in the latter plots correspond to
Figs. 2(b) and 2(d), respectively. For strong walk-off, the pulse
trajectories are essentially straight lines, and the fundamental
mode is accelerated with increasing instantaneous contribu-
tion to the nonlinearity whereas M2 experiences the opposite
effect. For fr = 0.5, one can see an additional accelerating
effect during propagation; i.e., the trajectory becomes curved.
The additional acceleration then stagnates for large values of
z. Subsequently, the pulse in the fundamental mode propa-
gates with constant velocity. This curving effect appears to be
similar in nature as previously reported interactions between
solitons and dispersive waves in the so-called event horizon
scenario in single-mode fibers [47]. For weak walk-off, the
tendency for trajectory curving further increases and also
heavily affects M2 [Fig. 6(d)]. In all these dynamics, M3
appears widely unaffected, as the predominant energy ex-
change is always between M1 and M2. Moreover, relaxation
oscillations only appear to marginally affect the timing of the
pulses, giving rise to some rather faint oscillations of τc2 in

Fig. 6(d). When fr is decreased from 1 to 0.75 and 0.5, the
amount of red shift is increased for M1, regardless of the walk-
off. For M2, the amount of red shift decreases with decreasing
fr if the walk-off is strong. However, when walk-off is weak,
M2 initially blue shifts but then shifts to the red at decreased
fr . For M3, the red shift remains almost unchanged for strong
walk-off, regardless of variation of fr . In contrast, the amount
of red shift is increased with decreased fr for weak walk-off.
As the reason for this somewhat nonuniform behavior, we find
that a decreased fr generally enhances energy transfer from
M2 and M3 to M1.

V. VARYING NONINSTANTANEOUS KERR
NONLINEARITY

Some recent studies suggest that the nonlinear refractive
index n2 of the NKM may change with pulse width dur-
ing propagation [20,48]. For short pulses in the femtosecond
range, bound electrons contribute significantly to n2, leading
to an instantaneous nonlinear response. For longer pulse in the
picosecond range, n2 may be dominated by noninstantaneous
nuclear nonlinearities, such as molecule libration and reorien-
tation. Following this model assumption for the pulse between
100 fs and 1 ps, n2 is then composed of both an instantaneous
and a noninstantaneous Kerr nonlinearity. Accordingly, n2 is
now written as [20]

n2 = n2e +
∫ ∞
−∞ I (τ )[R ⊗ I (τ )]dτ∫ ∞

−∞ I2(τ )dτ
, (22)

where n2e denotes the constant instantaneous nonlinearity.
The second term on the right-hand side represents the non-
instantaneous Kerr nonlinearity, which changes with pulse
width and is referred to as n2m. fr is now defined as fr (ξ ) =
n2m(ξ )/n2(ξ ) in the context of varying NKM. For varying
NKM, fr is not assumed constant but may vary upon propaga-
tion. Consequently, we have to modify Eq. (17) for describing
the varying noninstantaneous Kerr nonlinearity by adding an
extra n2(ξ ),

∂up

∂ξ
= id0pup − d1p

∂up

∂τ
− i

d2p

2

∂2up

∂τ 2
+ iN2

s n2(ξ )

×
∑
lmnp

f�mnp{(1 − fr )u�umu∗
n + fru�[R ⊗ umu∗

n]}.

(23)

Here, the value of n2m(ξ ) at ξ = 0 is calculated as 1.2 accord-
ing to Eq. (22), and we therefore let n2e(ξ = 0) = 0.2n2m(ξ =
0). The corresponding fr is calculated as 0.83, which is close
to the value of 0.85 that was assumed in Ref. [25]. In order to
solve Eq. (23), n2(ξ ) is normalized to n2(ξ = 0). Simulation
results are shown in Fig. 7, where τF denotes the full width at
half maximum. As we want to approach the problem from a
practical perspective, we have based the calculation of τF on
the assumption that the temporal pulse in the three modes can
be regarded as an entirety during propagation. Moreover, the
response time T may affect τF in the varying NKM scenario.
We therefore consider the two cases of T = 10 and 100 for
comparison. While Fig. 7 shows some quantitative differences
for the the evolution of τF, of the effective nonlinearity n2, and
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FIG. 7. Evolutions of (a) pulse width, (b) nonlinear refractive
index, and (c) fr along propagation. Blue solid, red dashed, yellow
dash-dotted, and violet dotted curves represent strong walk-off with
T = 10, strong walk-off with T = 100, weak walk-off with T = 10,
and weak walk-off with T = 100, respectively

of fr , there is nevertheless a common trend independent of T ,
and the strength of walk-off effects. Starting with τF = 1, the
pulse duration initially increases, which is accompanied by
an increase of n2 and fr . Due to the steadily increasing pulse
duration, the noninstantaneous contributions to the nonlinear-
ity become more effective and may increase by more of an
order of magnitude for T = 100. In this process, we observe
a transition from a typical hybrid nonlinearity to a nearly
pure NKM. The resulting effective growth of the nonlinearity
also effects the nonlinear coupling, and, in turn, further pulse
spreading is prevented and the pulse eventually even recom-
presses to shorter pulse duration. At the end of this process, a
balance is found at τF ≈ 5; i.e., a fairly stable spatiotemporal
wave packet has formed. Here the final pulse duration is only
marginally affected by the choice of T as long as T � τF,
but the stability of the wave packet appears to be strongly
affected by T .

For a more quantitative analysis on how the varying n2 and
fr influence energy transfer and temporal shifts, we numeri-
cally solve Eq. (23) together with Eq. (22). For comparison
two cases of a constant fr are considered, namely fr = 1 and
0.83 are considered. Simulation results for M1 are listed in
Table III. Here E1 and τc1 are resulting output energy and
nonlinearly induced temporal shift of M1 after propagation
to ξ = 100, respectively. For varying fr , one can easily see
that E1 and τc1 are maximized, no matter whether strong or
weak walk-off. This enhancement can be attributed to the
increased effective n2 during propagation, similar to what
we already discussed in Fig. 7. We therefore find that both
walk-off and Kerr nonlinearity affect the energy transfer and
temporal shifts, effectively enhancing intermodal nonlinear
coupling via the convolution integrals in Eq. (23). For varying
NKM, the convolution integrals only start to kick in once the
pulse has sufficiently lengthened and the n2 nonlinearity is
effectively increased. To further unveil the role of a vary-
ing n2 in intermodal nonlinear interaction, we analyze the

TABLE III. Comparisons of E1 and τc1 for different types of
nonlinearity and different time constants T of the noninstantaneous
nonlinearity. fr = 1 corresponds to a pure noninstantaneous non-
linearity and fr = 0.83 to a constant addition of a instantaneous
contribution. The varying case assumes a pulse-width-dependent
nonlinearity according to Eq. (23).

Strong walk-off Weak walk-off

fr 1 0.83 Varying 1 0.83 Varying

E1 T = 100 2.07 2.22 2.70 2.65 2.79 4.79
T = 10 2.68 2.71 3.67 4.68 4.58 5.70

τc1 T = 100 5.44 9.83 60.15 10.01 11.39 53.59
T = 10 39.41 42.04 174.40 50.07 67.55 178.50

accumulated nonlinear phase ϕN, which is also known as the
“B integral.” Here we define

ϕ�(ξ ) =
∫ ξ

0
n2(ξ ′)P�(ξ ′)dξ ′, (24)

where P�(ξ ) is the peak power in mode M�. Numerically
solving Eqs. (23) and (24), evolutions of ϕ� along propagation
for the three modes are shown in Fig. 8. Here it is striking
that nonlinear phase accumulation nearly exclusively affects
M1, which further seems to be rather independent of strong or
weak walk-off. However, the B integral doubles when the time
constant T increases by an order of magnitude. Moreover,
the effect on the higher order modes is weakest for weak
walk-off and low values of T and strongest for the opposite
scenario. Finally, to shed more light on the influence of
varying n2, both temporal and spectral characteristics of out-
put pulse after ξ = 100 are analyzed using cross-correlation
frequency-resolved optical gating (XFROG) spectrograms, as
was commonly used to explore the dynamics of nonlinear
propagation in single-mode fibers [49,50]. To this end, we

FIG. 8. Nonlinear phases of M1, M2, and M3 when (a) walk-off
is strong and T = 10; (b) walk-off is weak and T = 10; (c) walk-off
is strong and T = 100; and (d) walk-off is weak and T = 100. Red
solid, green dashed, and blue dash-dotted curves represent M1, M2,
and M3, respectively.
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FIG. 9. Temporal waveforms (blue solid curves) and chirp (red
dashed curves) under (a1) strong walk-off and T = 10, (a2) weak
walk-off and T = 10, (a3) strong walk-off and T = 10, and (a4)
weak walk-off, T = 100; (a2), (b2), (c2), and (d2) are corresponding
XFROG spectrograms.

define the XFROG trace

S(τ ′, ω) =
∣∣∣∣
∫ ∞

−∞
uout (τ )G(τ − τ ′)exp(iωτ )dτ

∣∣∣∣
2

, (25)

where τ ′ is a variable time delay. The gate pulse G(τ ) is
assumed to be Gaussian

G(τ ) = exp

[
− τ 2

2τ 2
0

]
. (26)

For practical purposes, we assumed τ0 = 2. Figure 9 depicts
the emerging soliton dynamics for all combinations of slow
and fast nonlinearity as well as strong and weak walk-off.
The general behavior is similar in all cases. The soliton ex-
periences a self-frequency shift due the noninstantaneous part
of the nonlinearity toward lower frequencies. The further the
soliton is shifted toward the infrared, the slower it propagates,
which then also leads to an increased anomalous dispersion

at the shifted center wavelength. Adiabatic reshaping of the
soliton causes some bleeding of energy into the temporal
continuum, which leads to the formation of a comet-like trail
advancing the soliton. When the nonlinearity is fast [Figs. 9(a)
and 9(b)], dispersive effects cause a massive transfer of en-
ergy into the continuum, and a second soliton forms in the
wake of the champion soliton. In the opposite case of a slow
nonlinearity [Figs. 9(c) and 9(d)], both the energy loss and
the self-frequency shift are mitigated. Pulse energy remains
localized around the soliton. Yet, some early stage of a pulse
breakup indicates that the temporal confinement will eventu-
ally break up upon further propagation.

VI. CONCLUSIONS

In this paper, intermodal synchronization effects of mul-
timode soliton propagation in NKM are studied analytically
and numerically. Unlike the behavior of single-mode solitons
in NKM, both temporal acceleration and deceleration effects
can be observed, leading to nonlinear coupling and formation
of a temporal bond between different spatial modes during
propagation. While these effects already appear in purely non-
instantaneous nonlinearity, the additional presence of a Kerr
nonlinearity can serve to further enhance this nonlinear cou-
pling mechanism. This case appears particularly interesting,
as the relative timing of solitons in different modes can be
affected by the nonlinear coupling. Similar to the suggested
switching schemes between dispersive wave and solitons,
this interaction could be exploited for photonic switching
schemes, with the additional advantage of avoiding exces-
sive dispersive stretching. Other potential applications are an
increased modal self-cleaning effect due to the noninstanta-
neous nonlinearity. Finally, these delayed nonlinearities also
exhibit a remarkable potential for stabilizing a soliton against
pulse breakup effects during the self-frequency shift. Practical
implementations range from glasses with their pronounced
Raman effect to hollow-core fibers that are filled with liquids
[51] like CS2. Compared with previous work on multimode
in instantaneous Kerr media, our study on noninstantaneous
nonlinearities therefore reveals a number of interesting find-
ings and possibilities, which may open other directions in
multimode nonlinear optics.
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