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Direct measurement of the relative Fresnel (Goos-Hänchen) phase by polarization tomography
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In this work, we measure the relative Fresnel (Goos-Hänchen) phase, which is acquired after beam propagation
through a two-phase ellipsometric system under total internal reflection, by using polarization tomography.
This approach presents a direct measurement which provides a more powerful and complete description of the
polarization state. In this sense, the relative phase can be obtained through the polarization-state reconstruction.
The experimental data confirm the simulated intensity profiles and allow us to access information about the
amplitude and relative phase of the polarization state instead of measuring phase effects.
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I. INTRODUCTION

Studies on deviations from the Snell’s law prediction have
received considerable attention since Goos and Hänchen’s
observations [1,2] and Artman’s theoretical predictions [3].
While some researchers were using their best efforts to mea-
sure this very tiny beam displacement [4], other researchers
investigated these optical beam shifts theoretically [5–13],
improving community knowledge about the effect amplifica-
tion. It is worth mentioning that deepening of the topic led
to the discovery of new phenomena such as the asymmetric
Goos-Hänchen (GH) shift [14], angular GH shift [15–18],
composite GH shift [19–21], GH shift for partially coher-
ent light beams [22], GH shift in the Floquet scattering of
Dirac fermions [23], GH shift in physical systems such as
the optomechanical cavity and metal-clad waveguide struc-
ture [24,25], and so on. To focus on the principal challenge of
beam-shift amplification, new physical systems were investi-
gated by using the physical properties of multiple reflections,
weak measurements, Bloch surface wave excitation, sym-
metrical metal-cladding waveguides, and medium absorption,
among others [1,19,22,26–31].

Following the main idea of exploring new systems, recent
studies demonstrated that propagation of a linearly polarized
light composed of transverse electric (TE) and transverse
magnetic (TM) components at the dielectric-air interface un-
der total reflection leads to a relative Fresnel Goos-Hänchen
[F(GH)] phase between the orthogonal states which produces
power oscillations [32–34]. To explore this relative phase,
some researchers use the main idea behind the ellipsometry
technique [35–41], i.e., the optical phase difference provided
by the polarization-sensitive response of the physical system
to change the linearly polarized beam into a reflected ellipti-
cally polarized beam upon the reflection condition. In general,
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investigations of lateral beam shifts due to the GH phase are
done through measurements of the location of the beam’s
intensity peak [21], photoemission electron microscopy im-
ages [42], and weak measurements with compensation of the
relative F(GH) phase by using zero-order half- (HWP) and
quarter- (QWP) wave plates [19,26–28]. It is worth mention-
ing that the direct measure of the GH phase was done only for
microwave optics and quantum systems [43,44].

In our contribution, the main idea is to determine this
F(GH) relative phase by applying the polarization tomography
to the output beam emerging from the complex GH ellip-
sometric system composed of a dielectric medium with real
refractive index n, as proposed in [32]. The main advantages
of this approach are the determination of the relative F(GH)
phase, instead of beam displacement, and the possibility to
investigate other degrees of freedom of the electromagnetic
field [45]. To the best of our knowledge, polarization to-
mography has not been used before in this context. The use
of polarization tomography allows us to access this relative
phase between orthogonal waves without any kind of inter-
ference measurement, which was not possible at one time
because states polarized in linearly independent directions do
not interfere in interferometry. It is important to mention that
our approach is a classical counterpart of quantum tomog-
raphy [46]. The approach is possible due to the similarity
between the mathematical structure of the quantum states and
the degrees of freedom of the electromagnetic field since both
can be described by complex vector spaces. For example, in
classical optics, any polarization vector can be described as
a complex superposition of circularly polarized light, similar
to the spin of a quantum particle. In this scenario, many
works have studied quantum systems with the degrees of
freedom of an intense laser beam [47–50], and in some works
the state is completely characterized by performing quantum
state tomography in an all-classical optical setup [50,51].
In our work, we use this approach to reconstruct the laser-
beam polarization via tomography by using an optical circuit.
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Therefore, the direct measurement of the relative F(GH) phase
can be performed for any physical system, independent of the
geometrical layout, by acquiring the output intensities of the
tomography optical circuit.

This paper is organized as follows. In Sec. II, we present a
basic description of the F(GH) relative phase together with
a brief introduction to the quantum tomography technique
which will be employed in the relative phase investigation. In
particular, the analogy between optics and quantum mechan-
ics is applied to optical beams upon reflection to determine the
F(GH) relative phase in Sec. III. In the sequence, the quantum
tomography not only reconstructs the quantum state but also
confirms the F(GH) relative phase predictions in Sec. IV.
In addition, we present theoretical and experimental beam
intensities for beams upon reflection which can be observed in
an implementation of polarization tomography to estimate the
relative F(GH) phase. Finally, we conclude our contribution
with the main results and future perspectives in Sec. V.

II. THEORETICAL APPROACH

In what follows, we present the physical system and the
theoretical approach required to describe the relative F(GH)
phase acquired by beam propagation through a complex GH
ellipsometric system [32].

A. The relative Fresnel (GH) phase

For our proposal, after propagation in free space, the in-
coming beam encounters the polarizer Pπ/4, which selects the
incident polarization state with an angle π/4, i.e., the linearly
polarized beam composed of TE and TM components,

E inc(r) =
[

Ex(r)
Ey(r)

]
= E (r)

[
1
1

]
, (1)

where

E (r) = E0√
1 + i z/zR

exp

[
− x

2 + y
2

w
2

0 (1 + i z/zR )

]
(2)

and zR = πw2
0/λ. Here, w0 is the beam waist size, and λ is

the wavelength. The incoming beam E inc(r) hits the dielectric
structures composed of N (= 1, 2, 3, 4) barium borosilicate
(BK7) (n = 1.5195 at λ = 532 nm) blocks at an incidence
angle θ which respects the relations sin θ = n sin ψ and ϕ =
π/4 + ψ , with ψ being the angle of the refracted beam and
ϕ being the angle of incidence at the down dielectric-air in-
terface. AB and BC are the left and right and lower and upper
dielectric interfaces [see Fig. 1(a)].

Under total internal reflection, the F(GH) phase appears
in the Fresnel coefficient when n sin ϕ � 1, i.e., for the angle
θ � −5.847◦ (ϕ � 41.156◦). For these conditions, the Fresnel
transmission coefficients for TE and TM waves are given by

Tσ =
[

4 aσ cos θ cos ψ

(aσ cos θ + cos ψ )2

]N

exp[ i �σ ], (3)

FIG. 1. Physical system. In (a), the planar view of the BK7 block
shows the geometrical system in which θ is the angle of incidence,
ψ is the angle of the refracted beam, and ϕ is the angle of incidence
at the down dielectric-air interface. In (b), the free incoming beam is
mixed by the polarizer (Pπ/4) located before the dielectric structure.
Here, three incidence-angle values of 4◦, 20◦, and 45◦ are employed
to increase the number of reflection Nref and the acquired F(GH)
phase. After state preparation, the elliptical polarized light goes to
the quantum tomography system in (c) composed of a quarter-wave
plate (QWP), a half-wave plate (HWP), and a polarized beam splitter
(PBS).

in which σ = {TE, TM}, {aTE, aTM} = {1/n, n}, and

�σ = −2 Nref arctan

[
aσ

√
n2 sin2 ϕ − 1

cos ϕ

]
(4)

is the F(GH) phase for TE and TM components. For the same
BK7 block dimensions as in Ref. [34]

( 91.5 ) mm︸ ︷︷ ︸
BC

× ( 20.0 ) mm︸ ︷︷ ︸
AB

× ( 14.0 ) mm,

we assume Nref = 2, 4, 6 is the number of internal reflec-
tions for the chosen angles θ = 4◦, 20◦, 45◦, as illustrated in
Fig. 1(b). It is worth mentioning that the geometrical phase,
also known as the Snell phase φSnell, provided by the continu-
ity conditions at each air-dielectric (dielectric-air) interface,
is the same for TE and TM waves [32,34]. Due to the fact
that the first-order contribution of the GH-phase expansion
leads to beam-displacement terms xσ which can be neglected
in comparison with the first-order contribution of the Snell
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phase xSnell, the state preparation provided the output beam

E tra (r) ≈ E ( x − xSnell, y, z ) exp [i �Snell]

×
[|TTM| exp [i �TM]

|TTE| exp [i �TE]

]
. (5)

Because we are interested in the relative F(GH) phase, we can
neglect the Snell term in our calculation. After a few algebraic
calculations, we can simplify the above expression to obtain

E tra (r) ≈
[

1
τ exp [i �F(GH)]

]
, (6)

with

τ =
∣∣∣ TTE

TTM

∣∣∣ =
(

n cos θ + cos ψ

cos θ + n cos ψ

)2N

(7)

and

�F(GH) = �TE − �TM = 2Nref arctan

[ √
n2 sin2 ϕ − 1

n sin ϕ tan ϕ

]
,

(8)
which is the relative phase between TE and TM components.
References [32,34] used a second polarizer to mix the TE and
TM waves with an angle π/4 in order to observe oscillations
in the power of the transmitted beam. In our contribution,
we replace the polarizer by a quantum tomography technique
which is applied to the outgoing beam emerging from the
state preparation in order to reconstruct the quantum state and
to determine the relative F(GH) acquired after propagation
through the dielectric structure.

B. Polarization tomography

In order to characterize all prepared polarization states
shown in Fig. 1(b), we use the optical circuit sketched in
Fig. 1(c) to perform the polarization tomography and recon-
struct the polarization state in the density-matrix formalism,
which can be completely described by the Stokes parameters
Si [46],

ρ = 1

2

3∑
i=1

Siσ̂i , (9)

where i = 0, 1, 2, 3 are associated with the polarization
modes and σ̂i are the Pauli matrices. The parameters Si can
be obtained by a specific pair of outcome projective measure-
ments as follows: S0 = PH + PV , S1 = PD − PA, S2 = PR −
PL, and S3 = PH − PV . P is the probability of the state being
projective in specific bases labeled the {H,V } (or {TE, TM})
basis, diagonal basis {D, A}, and circular basis {R, L}.

It is important to mention that we are exploring the simi-
larity between the mathematical structure of the polarization
state of the electromagnetic field and the quantum state vector.
In this sense, we have adopted the quantum mechanics for-
malism to describe the polarization state of a classical beam
and its tomography. In this scenario, the probabilities P from
Stokes parameters Si are associated with the laser-beam nor-
malized intensities Iα/IT and Iβ/IT [Fig. 1(c)], where α and β

correspond to the {H, D, R} and {V, A, L} bases, respectively,
and IT = Iα + Iβ .

TABLE I. Theoretical prediction for the outgoing beam E tra (r)
which emerges from the state-preparation stages for different inci-
dence angles and dielectric blocks configurations.

θ (deg) N E tra (r)

4 1 [1, (0.00309 − 0.99942 j)]
2 [1, (−0.99884 − 0.00618 j)]
3 [1, (−0.00927 + 0.99825 j)]
4 [1, (0.99764 + 0.01235 j)]

20 1 [1, (−0.97570 + 0.13638 j)]
2 [1, (0.93339 − 0.26613 j)]
3 [1, (−0.87441 + 0.38696 j)]
4 [1, (0.80039 − 0.49680 j)]

45 1 [1, (0.57673 + 0.70636 j)]
2 [1, (−0.16632 + 0.81476 j)]
3 [1, (−0.67144 + 0.35242 j)]
4 [1, (−0.63618 − 0.27103 j)]

In Fig. 1(c), we present the optical tomography block.
The S0 or S3 parameters can be obtained by performing pro-
jective measurements in the {H,V } basis using a PBS. In
the same way, the PBS associated with the half-wave plate
(HWP22.5◦ ) performs projective measurements in the diagonal
basis {D, A} in order to obtain the S1 parameter. Finally, the
sequence of a quarter-wave plate (QWP0◦ ) with HWP22.5◦ and
the PBS correspond to the right- and left-handed circular po-
larization basis {R, L}. Therefore, we can compute all Stokes
parameters Si measuring the output intensities (Iα, Iβ) in order
to reconstruct the density matrix presented in Eq. (9).

III. THE RELATIVE (FRESNEL) GH-PHASE
PREDICTIONS

After passing through the state-preparation stage, the out-
going beam E tra (r) will be a source of systems for the
quantum state tomography, as described in Sec. II B. By
applying the polarization tomography to this source, we are
able to determine the quantum state, i.e., to obtain a complete
description of the polarization state based on the amplitude
and relative F(GH) phase. Note that this will provide the
same result predicted by the analogy between optics and
quantum mechanics in Eqs. (7) and (8). In Table I, we show
the predictions from Eq. (6) for incidence angles equal to
θ = 4◦, 20◦, 45◦ and N = 1, 2, 3, 4.

Our analytical expression for the relative F(GH) phase,
Eq. (8), leads to the theoretical predictions presented in the
third column of Table II for the same conditions as in Table I.
In the next section we describe how to obtain the relative
F(GH) phase by applying the quantum tomography to the
quantum states, i.e., the outgoing beams E tra (r) emerging
from the state preparation.

IV. SIMULATED AND EXPERIMENTAL RESULTS

In this section, we present the theoretical and experimental
results of the optical tomography process [Fig. 1(c)] for the
input polarization states presented in Table I.

013515-3



CARVALHO, CRUZ, AND BALTHAZAR PHYSICAL REVIEW A 105, 013515 (2022)

TABLE II. Theoretical prediction for the relative F(GH) phase
�F(GH) for beam propagation under total reflection. The third column
provides results for Eq. (8), and the last column presents the quantum
tomography results.

θ (deg) N �F(GH) �F(GH),tomo

4 1 4.7155 4.7155
2 9.4310 9.4310
3 14.1465 14.1465
4 18.8619 18.8619

20 1 3.0027 3.0027
2 6.0054 6.0054
3 9.0081 9.0081
4 12.0109 12.0109

45 1 0.8861 0.8861
2 1.7722 1.7722
3 2.6582 2.6582
4 3.5443 3.5443

A. Simulation of the polarization tomography and phase
estimation

First, in order to exemplify, we present the simulated output
intensities (Fig. 2) for θ = 4◦ and one block (N = 1) consid-
ering the experimental setup in Fig. 1. Columns Pα and Pβ

correspond to the output normalized intensities for all bases,
Pα = Iα/(Iα + Iβ ) and Pβ = Iβ/(Iα + Iβ ), and column N is
the number of blocks in the physical system. The columns
labeled PH and PV are related to the measurements in the
{H,V } (or {TE, TM}) basis. In this case, the tomography
circuit is reduced to a PBS. Note that for a different number
of blocks N , the output intensities are very similar, which
happens because the state polarization of the laser beam E tra

can be considered to be practically circularly polarized for
N = 1 and 3 and diagonally polarized for N = 2 and 4, as
shown in Table I. However, when tomography measurements
are performed in the diagonal basis {D, A}, i.e., with a PBS
coupled with HWP22.5◦ , as shown in Fig. 1(c), the behavior

1

2

3

4

N PH PV PD PA PR PL

0.5003 0.4997 0.5015 0.4985 0.0000 1.0000

0.5006 0.4994 0.0000 1.0000 0.4969 0.5031

0.5009 0.4991 0.4954 0.5046 1.0000 0.0000

0.5011 0.4989 1.0000 0.0000 0.5062 0.4938

FIG. 2. Simulated output hot-color images for the optical tomog-
raphy circuit.

is different; as we can see in the PD and PA columns the
output normalized intensities are off for N = 2 and 4, respec-
tively. This occurs because the state corresponding to N = 2
has antidiagonal polarization (PD = 0.0000 and PA = 1.0000)
and the state corresponding to N = 4 has diagonal polariza-
tion (PD = 1.0000 and PA = 0.0000), exactly as we expected.
When the laser beam is circularly polarized (N = 1 and 3),
the output normalized intensities are close to 0.5000, also
as we expected. In the same way, the PR and PL columns
correspond to the measures in the circular basis {R, L}, which
is performed by adding QWP0◦ to the previous description. In
this sense, we use all optical devices presented in Fig. 1(c). For
circular polarization (N = 1 and 3), the intensities’ outputs
are PR = 0.0000 and PL = 1.0000 (PR = 1.0000 and PL =
0.0000) for right (left) circular polarization. For diagonal po-
larization (N = 2 and 4), the output normalized intensities are
close to 0.5000.

Now, Pα and Pβ can be used to evaluate the Stokes param-
eters Si [46]. For example, for the state after one block (N =
1), we obtain S0 = 0.5003 + 0.4997, S1 = 0.5015 − 0.4985,
S2 = 0.000 − 1.000, and S3 = 0.5003 − 0.4997. Therefore,
we can compute the density matrix ρ, Eq. (9), to obtain

ρsim =
(

0.5003 0.0015 + 0.5000 j

0.0015 − 0.5000 j 0.4997

)
. (10)

As we expected, this is a pure state since ρ is Hermitian,
ρ2 = ρ, and tr(ρ2) = 1. Consequently, we can recover the
state using ρ = |Etra〉 〈Etra| in order to obtain the simulated
polarization state in the vector formalism, given by |Etra〉sim =
[0.7073, (0.0021 − 0.7069 j)] for θ = 4◦ and N = 1. This
state is exactly the same as presented in Table I with one single
difference: here, the vector is normalized. The F(GH) phase
evaluated for this state, �F(GH),tomo = 4.7155, corresponds to
theoretical prediction, as shown in Table II.

By performing the polarization tomography for all states
presented in Table I, we obtain all corresponding output in-
tensities. In this sense, we can calculate the Stokes parameters
and recover all states presented in Table I. So the F(GH) phase
was calculated for different angles θ and different numbers of
blocks N , as shown in Table II.

As can be observed, all values �F(GH),tomo presented are in
excellent agreement with the theoretical predictions. Conse-
quently, we show that polarization tomography is an effective
technique to evaluate the Goos-Hänchen phase for any dielec-
tric structure since we do not need to specify the geometrical
layout.

B. Experimental results for the F(GH) relative phase
by polarization tomography

In this section, we present the experimental results ob-
tained for the optical setup sketched in Fig. 1. A diode-pump
solid-state (DPSS) laser beam (532 nm and 0.4 μW) that is
diagonally polarized is used as an incident polarized input
state on the BK7 block (n = 1.5195 at λ = 532 nm). The
experiment is performed using one (N = 1), two (N = 2), and
three blocks (N = 3) in sequence [Fig. 1(b)] and the polar-
ization tomography system [Fig. 1(c)] to obtain the output
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FIG. 3. Experimental output hot-color images for the optical to-
mography circuit.

intensities, which are obtained by recording them with a CCD
camera.

Figure 3 shows the experimental output normalized inten-
sities (Pα and Pβ) of the tomography for the preselected basis,
θ = 4◦, and one block (N = 1), which should be contrasted
with the simulated results presented in Fig. 2. As we can see,
all experimental intensities are in very good agreement with
the simulated results (see Fig. 3). Just a slight difference can
be noticed, which occurs because of the errors in the optical
devices. For example, the PBS has a visibility around 98% for
the 532-nm vertical polarized laser beam. It is also important
to highlight that the intensities decrease when we add BK7
blocks (N) to the experimental setup, which occurs mainly due
to the coating losses in each reflection and transmission. Note
that the intensity decrease does not affect our results because
the intensities must be normalized to determine the density
matrix.

As in the previous section, we use Pα and Pβ to evaluate
the Stokes parameters Si [46]. For the state after one block
(N = 1), we obtain S0 = 0.5003 + 0.4997, S1 = 0.4788 −
0.5212, S2 = 0.0009 − 0.9910, and S3 = 0.5003 − 0.4997.
Therefore, we can compute the density matrix ρ, Eq.(9), to
obtain

ρexp =
(

0.5003 −0.0212 + 0.4910 j

−0.0212 − 0.4910 j 0.4997

)
.

(11)
Comparing the density matrices in Eqs. (10) and (11), we

see that they are similar. The diagonals of both matrices are
equal, and the antidiagonals have small differences in the
second and third decimal places. Accordingly, we obtain the
polarization state |Etra〉exp = [0.7073, (−0.0299 − 0.6942 j)],
which is similar to the previous polarized state |Etra〉sim. The
F(GH) phase evaluated for this state, �

exp
F(GH),tomo = 4.6693,

corresponds to the experimental result, which has an error of
0.98% compared to the simulated value. Table III shows the
experimental results for different angles of incidence θ and
different numbers of blocks N .

In all present results, the relative F(GH) phases obtained
experimentally �

exp
F(GH),tomo are in very good agreement with

the theoretical prediction �theo
F(GH),tomo. The last column of Ta-

TABLE III. Theoretical and experimental prediction for the rela-
tive F(GH) phase �F(GH) for beam propagation under total reflection.
The third column provides theoretical results for polarization to-
mography, the fourth column presents the experimental tomography
results, and the last column illustrates the percent error.

θ (deg) N �theo
F(GH),tomo �

exp
F(GH),tomo Error (%)

4 1 4.7155 4.6693 0.98
2 9.4310 9.3238 1.14
3 14.1465 14.1498 0.02

20 1 3.0027 2.9656 1.24
2 6.0054 5.9341 1.19
3 9.0081 8.8196 2.09

45 1 0.8861 0.8621 2.71
2 1.7722 1.7081 3.62
3 2.6582 2.7096 1.93

ble III reveals small deviations between the theoretical and
experimental values of the relative F(GH) phases. These devi-
ations are typical in the optical experimental setups.

V. CONCLUSIONS

In conclusion, we investigated the direct measurement of
the relative F(GH) phase by applying a complete and more
powerful tool, polarization tomography. The intensity pro-
files generated by the experimental tomography optical circuit
showed that all information concerning the polarization state
can be accessed. Furthermore, all simulated and experimental
results are in excellent agreement with the theoretical predic-
tions.

To the best of our knowledge, polarization tomography has
not been used before in this context for the relative F(GH)
phase determination. This approach offers the advantage of
providing a complete description of the optical beam (am-
plitude and relative phase) through a simple optical system
which reconstructs the polarization state. As a consequence,
this technique is of great importance to estimate the relative
phase as well as the weak measurement of quantum mechanics
was essential in the GH shift measurement.

It is worth noting that the tomography process can also
be applied to other degrees of freedom of the electromag-
netic field, such as the transverse mode (Hermite or Laguerre
beams) and path. In this scenario, application of the tomogra-
phy process to this research area involving optical beam shifts
opens possibilities for future investigations.
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