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Ghost imaging is a developing imaging technique that employs random masks to image a sample. Ghost
projection utilizes ghost-imaging concepts to perform the complementary procedure of projection of a desired
image. The key idea underpinning ghost projection is that any desired spatial distribution of radiant exposure
may be produced, up to an additive constant, by spatially uniformly illuminating a set of random masks in
succession. We explore three means of achieving ghost projection: (i) weighting each random mask, namely,
selecting its exposure time, according to its correlation with a desired image, (ii) selecting a subset of random
masks according to their correlation with a desired image, and (iii) numerically optimizing a projection for a
given set of random masks and desired image. The first two protocols are analytically tractable and conceptually
transparent. The third is more efficient but less amenable to closed-form analytical expressions. A comparison
with existing image-projection techniques is drawn and possible applications are discussed. These potential
applications include: (i) a data projector for matter and radiation fields for which no current data projectors exist,
(ii) a universal-mask approach to lithography, (iii) tomographic volumetric additive manufacturing, and (iv) a
ghost-projection photocopier.
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I. INTRODUCTION

Imaging, namely, the direct or indirect measurement of
a spatial distribution of radiation, has a long and diverse
history ranging from biological manifestations with the evo-
lution of the eye, to the first cameras in the early nineteenth
century [1]. Projection, namely, the creating of a known ra-
diation distribution, has a coupled yet distinct history [2].
Examples of image projection include human cave drawings,
which indirectly create a desired radiation distribution when
sunlight is reflected from them, as well as shadow forma-
tion using specified shapes, pinhole projectors and optical
projectors.

A common image-projection strategy is the serial approach
of projecting one resolution element at a time, for example,
via raster scanning a finely focused beam. This “one point
at a time” analog of scanning-probe imaging [3] corresponds
to the synthesis of a desired function, such as a specified
two-dimensional distribution of radiant exposure, via a linear
combination of localized Dirac-delta basis elements. Another
analogy, here, is creating a desired drawing on a sheet of paper
using a single pencil. Examples of this serial approach to
image projection include the creation of an analog television
image by raster scanning an electron beam impinging on a
fluorescent screen [4] and electron-beam lithography [5].

A complementary projection strategy is the parallel ap-
proach of projecting all resolution elements simultaneously.
This “all points at once” strategy has a close analog in the
lithographic printing of artworks and books by smearing paint
or ink over a pre-fabricated mask and then subsequently
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printing an entire artwork or page of text in a single shot.
Examples of this parallelized projection strategy include the
optical projection of images using a photographic slide or
optical data projector, analog optical photography, x-ray med-
ical radiography using photographic film or image plates, and
mask-based photolithography [6,7].

A third image-projection strategy creates a desired distri-
bution of radiant exposure in a serial manner using a set of
“extended brushes,” by having a series of structured basis
elements that are each significantly larger in spatial extent
than the resolution of the desired projection image. Here, each
structured basis element has detail that is finer in scale than
the diameter of each “extended brush” [8]. Extrapolating the
previous pencil-and-paper analogy, our third image-projection
strategy corresponds to writing using a sheaf of pencils, all of
which write in unison. One example of this third approach is
the multi-layer lithographic printing of artworks, with several
separate masks being used to create a series of overlapping im-
ages. Another example is the synthesis of a two-dimensional
distribution of radiant exposure by superposition of two-
dimensional Fourier harmonics [9] or other members of a
complete set of two-dimensional basis functions. In addi-
tion to the previously mentioned Fourier basis, for this third
image-projection approach, one could also employ a wavelet
basis [10], a Zernike-polynomial basis [11], a Hadamard basis
[12], a Huffman basis [8], or a random-function basis [13].
A three-dimensional example is the “tomography in reverse”
approach to volumetric manufacturing [14,15], which works
by illuminating a photoresist volume from a variety of angles.
Conceptually, the third approach to projection blends the se-
rial “one point at a time” nature of the first approach with the
“all points at once” concept of the second approach. Stated
differently, this third approach uses a weighted superposition

2469-9926/2022/105(1)/013512(29) 013512-1 ©2022 American Physical Society

https://orcid.org/0000-0003-4544-6527
https://orcid.org/0000-0002-7758-7140
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.013512&domain=pdf&date_stamp=2022-01-11
https://doi.org/10.1103/PhysRevA.105.013512


DAVID CEDDIA AND DAVID M. PAGANIN PHYSICAL REVIEW A 105, 013512 (2022)

FIG. 1. (a) Schematic of ghost imaging setup. (b) Schematic of ghost projection setup. (c) Illustration of ghost reconstruction technique.
If we allow the weights (mask exposure times) w1, w2, . . . to be both positive and negative, and perform the reconstruction computationally,
then we have ghost imaging. If we restrict the weights to be non-negative, however, and perform the reconstruction experimentally, then we
have ghost projection.

of nonlocalized basis elements, each of which cover at least
several resolution cells.

Two particularly topical imaging-related concepts are clas-
sical computational ghost imaging [16–19] and the closely
related field of random-mask compressive sensing [20,21].
Computational ghost imaging takes the correlation mea-
surement between a set of known random masks and a
desired subject using a single-pixel “bucket” detector, as
shown in Fig. 1(a). A spatially resolved image is then sub-
sequently computationally reconstructed [22]. Assuming a
known sparse basis, this reconstruction is efficiently achieved
through compressive sensing algorithms. Other reconstruction
approaches include matrix inversion [23] and iterative refine-
ment [24].

Borrowing from both fields, we propose the complemen-
tary process of ghost projection. In this, we employ the
random basis and correlation measurements from ghost imag-
ing and compressive sensing, but apply them in the reverse
direction of image projection [25]. Rather than building a
desired projection in an entirely serial pencil-beam manner by
projecting one resolution element at a time, or in an entirely
parallel manner via a single-shot exposure of a single mask,
ghost projection seeks to synthesize a desired distribution of
radiant exposure via a linear combination of spatially ex-
tended random masks, as shown in Fig. 1(b). The core concept
is that a desired image may be computationally expressed
as a weighted sum of illuminated spatially random masks
(ghost imaging), or experimentally expressed up to an addi-
tive constant via a non-negative weighted sum of illuminated
spatially random masks (ghost projection). See Fig. 1(c). The
ensemble of illuminated spatially random masks, which can
be represented in continuum terms as random basis functions

or discrete terms as a random-matrix basis, may be generated
by transversely scanning a single illuminated spatially random
mask [25].

While our primary interest and motivation is in the fun-
damental optical physics underpinning the ghost-projection
concept, several possible applications motivate this work.
(i) Ghost projection requires neither a specifically fabricated
mask nor a tightly transversely localized beam, but rather may
be performed using a single well-characterized transversely
scanned spatially random mask. Once it has been character-
ized, the spatially random mask is universal insofar as it is
able to write any desired distribution of radiant exposure, up
to both an additive offset and a limiting spatial resolution
that is dictated by the finest spatial features that are present
in the projected image of the mask. Such a random mask
might be employed in a lithographic setting using x-rays [26]
and gamma rays, together with electron [27], neutron [28],
or muon [29] radiation, as well as atomic [30], molecular
[31], and ion beams [32]. (ii) Ghost projection may be useful
for generalizing the concept of a spatial light modulator to
radiation and matter wave fields for which no current mask-
based technique exists to project an arbitrary image, or for
which existing data projectors have limited spatial resolution.
(iii) Tomographic volumetric additive manufacturing [14,15],
in which a radiation-sensitive three-dimensional resist is il-
luminated from a variety of angles in order to deposit a
desired position-dependent distribution of dose, may also ben-
efit from the ghost-projection concept. Again, it is in regimes
where high-resolution image projectors or generalized spatial
light modulators do not exist—such as, for example, in the
hard-x-ray or ion-beam domains—where the concept of ghost
projection might be especially useful.
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FIG. 2. Function-space visualization of the ghost-projection con-
cept. The red vectors (bold north pointing vectors) represent the
desired image and the surrounding black arrows indicate the
random-basis elements in the function space associated with the
random-matrix basis. (a) Weighting each random mask by its cor-
relation with a desired image and averaging. (b) Retaining only
random masks that are positively correlated with the desired image
and averaging. (c) Numerically optimized non-negative weights and
random masks that best reconstruct the desired image. (a), (b), and
(c) correspond to the ghost-projection schemes developed in Secs.
III, IV, and VII, respectively.

The paper is structured as follows. Section II summarizes
some key results on the use of random matrices as a basis,
with respect to which specified images may be decomposed.
Section III develops the direct ghost-projection analog of clas-
sical ghost imaging using a spatially random basis. Section IV
improves on this scheme, via what we term pseudocorrelation
filtered ghost projection. Pseudocorrelation filtered ghost pro-
jection is then examined under the influence of Poisson noise
in Sec. V. Section VI presents a color variant of ghost projec-
tion, whereby a specified energy spectrum may be deposited
within each resolution element. Section VII employs itera-
tive numerical refinement schemes to increase the efficacy
of ghost projection, thereby improving on the closed-form
analytical expressions developed in earlier sections, at the cost
of forsaking the conceptual clarity that is provided by such
closed-form solutions. An illustration and comparison of the
different approaches to ghost projection is presented in Fig. 2,
in which panels (a), (b), and (c) correspond to Secs. III, IV,
and VII, respectively. Further considerations on the influence
of two forms of noise are developed in Sec. VII: (i) the Poisson
noise associated with the finite number of imaging quanta and
(ii) the normally distributed exposure noise associated with
experimental uncertainty in the duration for which each ghost-
projection random mask is exposed. Section VIII discusses
some broader implications of our work, and makes several
suggestions for future research. Some concluding remarks are
made in Sec. IX.

II. RANDOM-MATRIX BASIS

Suppose we want to project a known image Ii j over a
specified planar surface. Here, I is a matrix, indexed by the
integers i j which range from [1, m] and [1, n], respectively.
This image projection can be performed in units of the number
of photons1 or other imaging quanta such as the number of
neutrons or ions etc. We can also work in terms of intensity

1In this paper, we employ the word “photon” to mean one detector
count of electromagnetic quanta.

or exposure time. To cover all of these cases, we will work
with Ii j expressed as a dimensionless transmission coefficient,
which can be multiplied by any choice of the number of
incoming photons (or other imaging quanta), illumination in-
tensity or exposure time to obtain the final units of interest.

We now wish to express this image as a linear combination
of “noise maps” or, synonymously, as a linear combination
of elements of a “random-matrix basis.” Every basis element
must be non-negative, and every weighting coefficient in the
linear combination must be positive. Let the non-negative
random-matrix basis be denoted by the tensor Ri jk , where k
indexes the set of basis members ranging from [1, N] and
i j indexes the matrix entries of each basis member. Our
random matrices model experimentally acquired spatially ran-
dom masks, at the resolution of the “speckles” in such random
masks. Examples of such spatially random masks, for the
x-ray and neutron domains respectively, are given in Pelliccia
et al. [33] and Kingston et al. [34]. Explicitly, R is also
a transmission coefficient, and is a random number deviate
drawn from the interval [0,1]. The elements of the random
tensor R can have any distribution within these bounds (e.g.,
uniform, Binomial, Gaussian, Poissonian, etc.) and all results
will be left in terms of the parameters of these distributions
(i.e., expectation value E[R], variance Var[R], etc.). We em-
ploy tensor notation with the Einstein summation convention
assumed, e.g., Ri jkI i j = ∑m

i=1

∑n
j=1 Ri jkI i j is the spatial inner

product between the kth random-matrix basis member and the
desired image. In this context, there is no meaning attached
to the subscript or superscript tensor indices (e.g., Ii j = I i j

or Ri jkI i j = Ri j
kIi j) and they are used to denote summation

only. Following Ceddia and Paganin [35], we can adapt the
orthogonality and completeness expressions to include our
nonzero centered basis which will now produce an additive
offset.

A. Orthogonality

We define our offset orthogonality relationship as the
appropriately normalized, spatial-product of two random ma-
trices,

lim
n,m→∞

1

nm Var[R]
Ri jkRi j

k′ = δkk′ + E[R]2

Var[R]
Jkk′

= 1

Var[R]

{
E[R]2 for k �= k′

E[R2] for k = k′ ,

(1)

where δkk′ is the Kronecker delta tensor, i.e., if k = k′, then
δkk = δk′k′ = 1, and if k �= k′, then δkk′ = 0, and J is a tensor
of all ones. The above expression is a standard orthogonality
relationship that is offset by E[R]2/(nm Var[R]), i.e.,

lim
n,m→∞

1

nm Var[R]

(
Ri jkRi j

k′ − E[R]2Jkk′
) = δkk′ . (2)

Recall that this is a random-matrix basis and instead of con-
sidering orthogonality in an absolute sense, we instead speak
of orthogonality in an expected sense, with allowable proba-
bilistic variations. In the above expression, we have an infinite
spatial random-matrix basis to ensure the expectation value
is reached. Supposing we had a finite spatial random-matrix
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basis set (which is always the case in practice), we would
anticipate probabilistic variations from the expected result.
This can be calculated explicitly via the variance with a finite
nm: (

1

nm Var[R]

)2

Var
[
Ri jkRi j

k′
]

= 1

nm Var[R]2

{
E[R2]

2 − E[R]4 for k �= k′,

Var[R2] for k = k′.
(3)

B. Completeness

We define our offset completeness relationship to be

lim
N→∞

1

N Var[R]
Ri jkR k

i′ j′ = δii′δ j j′ + E[R]2

Var[R]
Jii′Jj j′ , (4)

which can be written in the more conventional form:

lim
N→∞

1

N Var[R]

(
Ri jkR k

i′ j′ − E[R]2Ji jkJ k
i′ j′

) = δii′δ j j′ . (5)

Examining the variance of our offset completeness relation-
ship, which will give us an indication of the error we might
expect for a truncated sum, we have

1

N2 Var[R]2 Var
[
Ri jkR k

i′ j′
]

= 1

N Var[R]2 Var[Ri jRi′ j′ ]

= 1

N Var[R]2

{
Var[R1R2] for i j �= i′ j′,

Var[R2] for i j = i′ j′.
(6)

Here, Var[R1R2] is the variance of the product of two indepen-
dent deviates drawn from P(R).

III. PSEUDOCORRELATION WEIGHTED GHOST
PROJECTION WITH A RANDOM-MATRIX BASIS

A. Pseudocorrelation weighted ghost projection

Suppose we wish to project a desired image Ii j , up to an
additive constant, using a non-negative random-matrix basis
Ri jk weighted by non-negative coefficients. To do this, we can
mirror the procedure set out by ghost imaging [17,22,35,36].
That is, take our offset completeness relationship [Eq. (4)],
multiply by Ii′ j′ and sum over the primed indices:

lim
N→∞

1

N Var[R]
Ri jkR k

i′ j′ I i′ j′

= δii′δ j j′ I
i′ j′ + E[R]2

Var[R]
Jii′Jj j′ I

i′ j′ . (7)

Employing the simplifications

δii′δ j j′ I
i′ j′ = Ii j (8)

and

Jii′Jj j′ I
i′ j′ = Ji jnm E[I], (9)

we have

lim
N→∞

1

N Var[R]
Ri jkR k

i′ j′ I i′ j′ = Ii j + nm
E[R]2E[I]

Var[R]
Ji j . (10)

We call the following quantity our “exposure”:

tk ≡ 1

N Var[R]
Ri′ j′kI i′ j′ . (11)

The above expression is the ghost-projection construction
analogous to a “bucket measurement” from a ghost imaging
context. We then have the theoretical result that a desired
image can be exactly projected from a random-matrix basis
up to an additive constant, via

lim
N→∞

tkR k
i j = Ii j + nm

E[R]2E[I]

Var[R]
Ji j . (12)

In practice, we would truncate this infinite sum at some finite
N and thereby obtain a prescription for practically achievable
ghost projection Pi j of a desired image:

Pi j ≡ tkR k
i j ≈ Ii j + nm

E[R]2E[I]

Var[R]
Ji j . (13)

Note that Pi j denotes our ghost-projection scheme, throughout
this paper. We consequently adopt a different definition in
each section and, in some cases, subsections. Rather than
having a different variant of the symbol Pi j for every case,
we instead alert the reader to the context-dependent definition
of Pi j .

Examining the parameters that make up the additive
constant (E[R]2/Var[R])nmE[I], we see that this can be mini-
mized by picking a random-matrix basis that has a small E[R]
with a maximal Var[R]. Additionally, if Ii j has an additive con-
stant, removing this will reduce E[I] and reduce the additive
constant inherent in the projection scheme.

Turning to the random-matrix basis reconstruction noise
that arises from truncating the sum, we can quantify this by
the variance of the ghost projection:

Var[Pi j] = Var[tkR k
i j ]

= Var

[
1

N Var[R]
Ri jkRi′ j′kIi′ j′

]

= 1

N2 Var[R]2 Var[Ri jkRi′ j′kIi′ j′ ]

= 1

N Var[R]2 Var[Ri jR
i′ j′ Ii′ j′]. (14)

We can split the above sum into the dominant case of i′ j′ �= i j
and the subdominant case of i′ j′ = i j. Pursuing the dominant
case, we can ignore the subdominant case and subsequent
complication of covariances. That is,

Var[Ri jR
i′ j′ Ii′ j′] ≈ E[(Ri jR

i′ j′ Ii′ j′ )
2] − (E[Ri jR

i′ j′Ii′ j′ ])
2

≈ E[R2]E[(Ri′ j′Ii′ j′ )
2] − E[R]4(nmE[I])2

≈ E[R2]Var[R](nmE[I])2, (15)

where, in the second last line, we have employed

(RαβIαβ )2 = Jαβ (RαβIαβ )2 +
∑

αβ �=μν

Rαβ IαβRμνIμν, (16)

disregarded the first term as another subdominant contri-
bution, and then subsequently used the further simplifying
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approximation on the remaining term:∑
αβ �=μν

IαβIμν ≈ (nmE[I])2. (17)

Substituting the result expressed in Eq. (15) into the variance
of the ghost projection, we have

Var[Pi j] ≈ (nm E[R]E[I])2

N Var[R]
Ji j . (18)

B. Pseudocorrelation coefficient

In obtaining a ghost-projection protocol by following a
direct analog of ghost imaging, a weighting coefficient for
each basis member naturally arises that is proportional to its
correlation with the desired image to be projected (i.e., spatial
product of Ri jkI i j). However, this correlation contribution is
not the correctly normalized correlation coefficient, which
would take the form

C̃k = Ri jkI i j√
(RstkRst

k )(Ii′ j′ I i′ j′ )
. (19)

Note that the presence of the random matrix in the denomina-
tor of the correlation coefficient significantly complicates our
calculations and is beyond what naturally arises [cf. Eq. (11)].
Instead, we will normalize by the expected denominator, keep
the numerator unchanged, and call this the pseudocorrelation
value Ck :

Ck = Ri jkI i j

nm
√

E[R2]E[I2]
. (20)

The pseudocorrelation coefficient still captures much of the
desired characteristics of the correlation coefficient without
the complication of having to normalize by each particu-
lar random matrix. A drawback of the pseudocorrelation
coefficient is that it overly weights or prioritizes those
random-matrix basis members that have a high average value,
as opposed to a higher correlation with the desired image.
However, this is a mild drawback for our purposes, with the
reader being referred to Appendix A for further detail. It
is also worth repeating, in ghost imaging—which inspired
the approach to ghost projection developed in the present
section—the pseudocorrelation coefficient is directly analo-
gous to the ghost-imaging concept of a bucket measurement,
which is also an unnormalized correlation measurement.

We now briefly elaborate on the pseudocorrelation coeffi-
cient and state useful results for later use. We appeal to the
central limit theorem and assume Gaussian statistics for the
pseudocorrelation distribution:

P(Ck ) = 1√
2πVar[C]

exp

(−(Ck − E[C])2

2Var[C]

)
, (21)

where the expected pseudocorrelation value between a
random-matrix basis member and the desired image is

E[C] = E

[
Ri jkI i j

nm
√

E[R2]E[I2]

]

= E[R]Ji j I i j

nm
√

E[R2]E[I2]

= E[R]E[I]√
E[R2]E[I2]

, (22)

and the variance in the pseudocorrelation value is

Var[C] = Var

[
Ri jkI i j

nm
√

E[R2]E[I2]

]

= Var[R]Ji jI2
i j

(nm)2E[R2]E[I2]

= Var[R]

nm E[R2]
. (23)

C. Pseudocorrelation weighted ghost projection
signal-to-noise ratio (SNR)

We define a pixelwise signal-to-noise ratio (SNR) for the
truncated, pseudocorrelation-weighted ghost-projection case
that is free from external noise contributions, such as Poisson
noise, to be

SNRi j ≡
E[Pi j] − nm E[R]2E[I]

Var[R] Ji j√
Var[Pi j]

≈ Ii j
√

N Var[R]

nm E[R]E[I]
. (24)

This forms an upper bound for any experimental setup, in
which further sources of noise will be present. To obtain a
global SNR expression, we can take the root-mean-square
(RMS) value of the pixelwise SNR:

SNR ≡
√

1

nm
Ji jSNR2

i j

≈
√

E[I2]N Var[R]

nm E[R]E[I]
. (25)

Rearranging, we find an approximate noise-resolution uncer-
tainty principle [35,37,38] for ghost projection:

(SNR)2 × (nm)2 ≈ N
Var[R]E[I2]

E[R]2E[I]2
. (26)

This might be taken to suggest that we would want to use
as coarse a resolution as possible (or narrow a projection
window as possible), with the maximum number of basis
members. Recall though that this approximation is in the high-
to-moderate resolution window, and therefore breaks down
in the very-low-resolution limit. Furthermore, supposing we
have a desired SNR in mind, we can rearrange Eq. (26) to
make N the subject and determine an approximate value for
how large a basis set is required to achieve our desired SNR.
Hence

N ≈ SNR2 (nm)2 E[R]2E[I]2

Var[R]E[I2]
. (27)

D. A revised pseudocorrelation weighted ghost
projection scheme

Upon reviewing the expression for the variance of the naïve
ghost-projection protocol in Eq. (18) above, we see that it is
proportional to the expected value of the desired image that
we wish to project. To minimize this, we can seek a shifted
version of our image that preserves non-negative exposure
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FIG. 3. (a) The desired image we wish to project, Ii j . (b) The ghost projection obtained via Eq. (13), minus the expected offset of 2,400
using N = 13 046 012. An SNR of 1.60 was expected, with an SNR of 1.64 obtained in simulation. (c) The noise obtained in the ghost
projection, overlaid with the predicted noise distribution. (d) The revised desired image we wish to project, I ′

i j . (e) The ghost projection
obtained via Eq. (31), minus the expected offset of 228.6, also using N = 13 046 012. An SNR of 9.83 was predicted for which an SNR of
9.99 was obtained in simulation. (f) The noise obtained in the ghost projection, overlaid with the predicted noise distribution.

times tk [see Eq. (11)]. Supposing we introduce a shift to the
image, we can define a new image:

I ′
i j = Ii j − δJi j, (28)

that enforces

min[tk] = 0

= 1

N Var[R]
min[Ri′ j′kI ′i′ j′]

= 1

N Var[R]
min[Ri′ j′k (I i′ j′ − δJi′ j′ )]. (29)

From this, we can determine that the optimal offset is

δ = min[Ri′ j′kI i′ j′ ]/(RμνkJμν ), (30)

and we can define the shifted scheme

Pi j ≡ 1

N Var[R]
Ri′ j′k (I i′ j′ − δJi′ j′ )R k

i j

≈ I ′
i j + nm

E[R]2E[I ′]
Var[R]

Ji j . (31)

This shifted scheme preserves the results of Secs. III A and
III C regarding convergence and SNR, while performing better
than the previously defined pseudocorrelation weighted ghost
projection scheme. Note also that the shifted image may no
longer be strictly positive. This is acceptable insofar as any
negative component of the image simply falls below the addi-
tive constant and the overall projection remains physical.

E. Pseudocorrelation weighted ghost projection simulation

To illustrate the analytical work performed thus far, we
perform some simulations. Beginning with the target image

in Fig. 3(a), we numerically investigate how ghost projec-
tion performs in producing varying sized dots (both peaks
and troughs), increasingly refined high-contrast bands, two
sections of linear gradient and a sinusoidal section. The
random-matrix basis used has each matrix element uniformly
distributed in the real-number interval [0,1]. To obtain a
reasonable SNR in the pseudocorrelation weighted ghost pro-
jection scheme (Sec. III A), we need to use a significant
number of random-basis members, e.g., about 13 million to
obtain an SNR of 1.6 for a 40 × 40 image. Computationally
storing such a large number of random matrices is impractical.
We can instead use a statistical estimate of δ and continually
overwrite each random mask after adding its contribution to
the projection. To statistically estimate δ, we can approxi-
mate the denominator in Eq. (30) with its expected value
Ri jkJi j → nmE[R], and treat the numerator as being Gaussian
distributed. From there, we can say that the minimum pseudo-
correlation or exposure time would be a “1 in N” event or

s =
√

2 erf−1

(
N − 1

N

)
(32)

standard deviations below the expected value of the
numerator. Overall then, from a statistical perspective,

δ = E[I] − s

√
E[I2]Var[R]

nmE[R]2
. (33)

The number of random masks employed was N = 13 046 012,
which comes from Eq. (27) with an SNR of 1.60. In
simulation, the ghost projection achieved an SNR of 1.64, as
shown in Fig. 3(b). If we were to use the same basis set and
the revised scheme for performing the ghost projection [see
Fig. 3(d)], we can improve the situation to obtain a simulated
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SNR of 9.99 [see Fig. 3(e)], for which an SNR of 9.83 was
predicted using Eq. (25). Further, we can confirm that the
ghost projection converged to the desired image, pedestal,
and variance as expected, as evidenced by Figs. 3(c) and 3(f).

IV. PSEUDOCORRELATION FILTERED GHOST
PROJECTION WITH A RANDOM-MATRIX BASIS

A. Pseudocorrelation filtered ghost projection

The previous section developed a ghost-projection scheme
via the somewhat naïve protocol of weighting each random
matrix by its pseudocorrelation coefficient. To more effi-
ciently achieve a ghost projection of our desired image, we
might try and filter the basis set to leave only those members
that have a positive, or high degree of correlation with the
desired image [25]. Supposing we were to define a minimum
pseudocorrelation value Cmin and remove all basis members
with a pseudocorrelation value below this threshold, we might
then ask how this filtering changes the distribution of R′

i jk , as
compared to the unfiltered set Ri jk . Examining the expectation
value of the filtered basis set E[R′

i j] we can assume that if
Ii j is zero, then that pixel makes zero contribution to the
pseudocorrelation value and is, on average, unchanged by the
filtering. That is, E[R′

i j] = E[R] for Ii j = 0. From here, we
suggest the ansatz

E[R′
i j] = E[R]Ji j + Ii jγ . (34)

That is, the expected value of the filtered random-matrix basis
is linearly skewed at each pixel towards the desired value of
Ii j . To determine the scaling of this skewing, we can use the
expected pseudocorrelation value of the filtered set E[C′] as a
constraint

E[C′] = E

[
R′

i jkI i j

nm
√

E[R2]E[I2]

]

= E[R′
i j]I

i j

nm
√

E[R2]E[I2]

= 1

nm
√

E[R2]E[I2]
(E[R]Ji j + Ii jγ )I i j

= 1√
E[R2]E[I2]

(
E[R]E[I] + E[I2]γ

)
, (35)

where E[R′
i j] is the pixel-dependent expectation value of the

random-matrix basis of the filtered basis set. Recalling that

E[C] = E[R]E[I]/
√

E[R2]E[I2], this implies

γ = (E[C′] − E[C])
√

E[R2]/E[I2]. (36)

From the form of this constant, we may retrospectively un-
derstand the effect of filtering as skewing the random-matrix
basis towards the matrix Ii j by the average correlation amount
E[C′] − E[C] (where we might regard E[C] to be the zero-
correlation value despite it not necessarily being zero owing
to nonzero averages of E[R] and E[I]). Moreover, this skewing
towards Ii j is norm-adjusted, where we divide by the image
norm and multiply by the expected norm of the random-matrix
basis.

So, if we were to adopt the relatively simple ghost pro-
jection protocol of averaging over the pseudocorrelation
coefficient filtered random-matrix basis set, we would obtain

Pi j ≡ JkR′
i jk

γ N ′

≈ Ii j + E[R]

γ
Ji j

≈ Ii j + E[R]

E[C′] − E[C]

√
E[I2]

E[R2]
Ji j, (37)

where N ′ is the number of basis members in the filtered set.
The next quantity of interest is the amount of noise inherent
in a ghost projection obtained via this protocol, which is
quantified in the variance:

Var[Pi j] = 1

(γ N ′)2
Var[R′

i jkJk] = 1

γ 2N ′ Var[R′
i j]. (38)

From here, we need to determine Var[R′
i j], although, this

quantity has a complicated behavior in general. Supposing the
desired image to be projected were a single-pixel pin-hole,
or Dirac delta Ii j = δii′ j j′ , then the variance of the “switched
on” pixel would be proportional to the variance of the filtered
pseudocorrelation coefficient Var[R′

i′ j′] = E[R2]Var[C′] and
the variance of the “nonswitched on” pixels would remain un-
changed, i.e., Var[R′

i j] = Var[R]. Supposing the image is more
complicated and many pixels contribute to the pseudocorre-
lation coefficient, the variance of the filtered random-matrix
basis is largely unchanged, i.e., Var[R′

i j] ≈ Var[R] for all the
pixels. How Var[R′

i j] varies between these two cases is un-
known at this time and is left as a point of future work. For
the purposes of this paper, we assume the latter case owing to
its applicability to many foreseeable practical applications.

Turning to E[C′], we can easily numerically evaluate this
when given a random-matrix basis set, desired image, and
minimum pseudocorrelation cutoff. For optimization pur-
poses, however, having an analytical expression will be useful:

E[C′] =
∫ ∞

Cmin

CP(C)dC

=
√

2

πVar[C]

[
erfc

(
Cmin − E[C]√

2Var[C]

)]−1 ∫ ∞

Cmin

C exp

(
− (C − E[C])2

2Var[C]

)
dC

013512-7



DAVID CEDDIA AND DAVID M. PAGANIN PHYSICAL REVIEW A 105, 013512 (2022)

= E[C] +
√

2Var[C]

π

[
erfc

(
Cmin − E[C]√

2Var[C]

)]−1

exp

(
− (Cmin − E[C])2

2Var[C]

)
. (39)

B. Optimum pseudocorrelation cutoff

For fixed N , we might ask what is the optimum pseudocor-
relation cutoff that minimizes the noise (i.e., variance) of the
ghost projection. That is, for a fixed set of N random-matrix
basis members, we appeal to a statistical representation of the
expected filtered number N ′ as f N , where f is related to the
cumulative distribution function (CDF) via

f (Cmin) = 1 − CDF = 1

2
erfc

(
Cmin − E[C]√

2Var[C]

)
. (40)

Substituting this into the variance expression [Eq. (38)] in the
case that Var[R′

i j] ≈ Var[R], we have

Var[Pi j] ≈ Var[R]

γ 2 f N

= Var[R]

f N

E[I2]

E[R2]

1

(E[C′] − E[C])2
. (41)

Substituting in our analytical expression for E[C′] and letting

X ≡ Cmin − E[C]√
2Var[C]

, (42)

we are left with

Var[Pi j] = Var[R]E[I2]

E[R2]N

2π

Var[C]
f (X ) exp(2X 2). (43)

To find the optimum cutoff, we take the derivative of this
expression with respect to X and set it equal to zero in the
usual way. This yields a nonlinear algebraic equation to solve
for X and Cmin. Taking a 1-3 Padé approximant [39] for the
derivative then yields

X ≈ 3
√

π (4π − 7)

4(6π2 − 15π + 5)
≈ 0.433. (44)

Hence the optimum pseudocorrelation cutoff is

Cmin ≈ E[C] + 0.612
√

Var[C]. (45)

Therefore we would expect about 27% of the basis set N to
remain after filtration. Substituting our optimized value of X
into Var[Pi j], as well as our expression for Var[C], we have
the optimized ghost-projection variance:

Var[Pi j] = 2πnmE[I2]

N
f (X ) exp(2X 2)

≈ 0.393
2πnmE[I2]

N
. (46)

Note that the variance of a ghost projection, obtained in this
way, involves the term E[I2]. This term can be minimized by
zero centering our image, i.e., setting E[I] = 0. In doing this,
we might be concerned that elements of our desired image
are negative, however, similar to the revised pseudocorrelation
weighted ghost projection, since this dips below the additive
constant, it does not lead to nonphysical negative radiant ex-
posures.

C. Pseudocorrelation filtered ghost projection signal-to-noise
ratio (SNR)

For comparison with the pseudocorrelation weighted
ghost-projection case, we develop a noise-resolution uncer-
tainty principle for the filtered case. We define the pixelwise
SNRi j :

SNRi j ≡
E[Pi j] − E[R]

γ
Ji j√

Var[Pi j]

≈ Ii jγ
√

N ′
√

Var[R]

≈ Ii j

√
N ′ E[R2]√

Var[R]E[I2]
(E[C′] − E[C]), (47)

where we have assumed that the variance of the filtered
random basis is approximately unchanged by filtering, i.e.,
Var[R′

i j] ≈ Var[R], which typically occurs when a reasonable
number of pixels contribute to the pseudocorrelation coeffi-
cient. To obtain a global SNR, we take the RMS value of the
pixel SNR:

SNR ≡
√

1

nm
Ji jSNR2

i j

≈
√

E[I2]γ 2N ′

Var[R]

≈
√

E[I2]N ′

Var[R]
(E[C′] − E[C])

√
E[R2]

E[I2]

≈
√

N ′ E[R2]

Var[R]

√
Var[C]

2π

exp (−X 2)

f (X )
. (48)

Defining

ξ (Cmin) ≡
√

1

2π

exp (−X 2)

f (X )
(49)

and substituting in Var[C] = Var[R]
nm E[R2] , we have

SNR ≈
√

N ′

nm
ξ (Cmin). (50)

Rearranging, we find a noise-resolution uncertainty principle
for pseudocorrelation filtered ghost projection as

(SNR)2 × nm ≈ N ′ξ 2(Cmin). (51)

Substituting in N ′ = f (Cmin)N and evaluating ξ 2(Cmin) at
the optimum cutoff value [ξ (Cmin) ≈ 1.22], we obtain the
best-case, noise-resolution uncertainty principle for pseudo-
correlation filtered ghost projection:

(SNR)2 × nm ≈ N

2.47
. (52)
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Comparing this to the ghost projection obtained by weighting
each random-basis member according to its pseudocorrelation
coefficient [see Eq. (26)], observe that we have indeed ob-
tained a more favorable noise-resolution uncertainty product
by filtering and averaging. Most notable is the penalty for res-
olution. For the pseudocorrelation weighted case, SNR decays
linearly with nm. Conversely, in the pseudocorrelation filtered
case, SNR decays with the square root of nm.

D. Pseudocorrelation filtered ghost projection basis size estimate

Having calculated an SNR relationship for pseudocor-
relation filtered random-matrix ghost projection, we can
determine what size basis set we require to almost surely
represent any arbitrary image of a given resolution to a desired
SNR. Employing Eq. (52) in reverse, supposing we have a
desired SNR and resolution in mind, we can use this equation
to estimate the required size N of the random-matrix basis. For
example, suppose we want to perform a ghost projection to an
SNR of 5 at a resolution of 40 × 40, we would expect to be
able to obtain this from an unfiltered basis set of N ≈ 98 800
members.

We can improve this estimate for the required basis size by
considering the variance in N ′ as estimated by the binomial
distribution. That is, the probability that a random-matrix
basis member being kept is f and the probability that it is
discarded is (1 − f ). Given that the variance in a binomial
distribution is np(1 − p), where n is the number of trials and
p is the probability of success, we have a variance in N ′ of
N f (1 − f ). That is,

N ′ = f N ±
√

N f (1 − f ), (53)

to within one standard deviation. Taking a worst-case estimate
of s standard deviations below the mean, namely,

N ′ = f N − s
√

N f (1 − f ), (54)

this means that we have realized significantly fewer correlated
basis members than we would reasonably expect. Inverting
this result with the quadratic formula, we can estimate a larger

N such that any image can almost surely (to within an s sigma
event) be captured by an unfiltered basis set of size:

N = N ′

f
+ s

2 f

√
4(1 − f )N ′ + s2(1 − f )2 + s2(1 − f )

2 f

≈ N ′

f
+ s

√
(1 − f )N ′

f 2
. (55)

Here N ′ = SNR2 nm/ξ 2, and the approximation in moving
from the first to the second line comes from assuming N ′
to be the dominant parameter. Making this substitution and
evaluating at the optimum cutoff value Cmin while focusing on
dominant terms, we have

N ≈ SNR2 nm

f ξ 2
+ s SNR

f ξ

√
nm(1 − f )

≈ 2.47 nm SNR2 + 2.59 s
√

nm SNR. (56)

Appending to our previous example of a ghost projection at
SNR of 5 and resolution of 40 × 40, we might expect this
ghost projection to be achievable from a basis size of N ≈
98 800 members. Supposing we want to be 3-sigma (99%)
confident, then according to Eq. (56), we require an additional
1,554 basis members.

E. Realistic dwell time pseudocorrelation filtered
ghost projection

Supposing there is a minimum dwell time tmin that can ex-
perimentally be achieved, in the limit of many basis members
this may exclude us from using the exposure times prescribed
by the analytically optimum pseudocorrelation cutoff value. In
response, we could simply increase the analytical dwell times
to what is experimentally achievable and obtain an intensity-
dilated version of our desired image. An alternative is to use
a more restrictive condition during filtration of the random
basis, such that the dwell times tk = 1/(γ N ′) remain above
the minimum. To find the pseudocorrelation minimum, we can
use the statistical representations of N ′ = f N and γ to set up
an expression which can be solved for Cmin:

1

tminN
= f γ =

√
E[R2]

E[I2]

√
Var[C]

2π
exp

(
− (Cmin − E[C])2

2Var[C]

)
(57)

⇒ Cmin = E[C] +
[

2Var[C] ln

(
tminN

√
E[R2]

E[I2]

√
Var[C]

2π

)]1/2

. (58)

Now, for a given N , nm, tmin, E[R] and Var[R] we would we
expect an SNR of

SNR ≈
√

E[I2]γ

tminVar[R]
, (59)

where the approximate symbol appears owing to the use of the
assumption Var[R′

i j] ≈ Var[R].
To give an example of these results, suppose the minimum

exposure time that could be experimentally achieved is tmin =
1/200. If we had a basis set of size N = 100 000 with the

properties E[R] = 1/2 and Var[R] = 1/12, and a 40 × 40 res-
olution image with the property E[I2] = 0.5, then we would
expect to filter out 11.7% of basis members and achieve an
SNR of 4.54. For comparison, the optimum exposure time
would be 1/333 with 27.0% of basis members being filtered
out and would achieve an SNR of 5.03.

F. Pseudocorrelation filtered ghost projection simulation

Using the test image in Fig. 4(a), which is the same test
image as in the pseudocorrelation weighted case (see Fig. 3)
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FIG. 4. (a) The desired image we wish to project expressed in terms of a transmission coefficient. (b) The pseudocorrelation filtered ghost
projection obtained via the reconstruction outlined in Eq. (37), minus the expected offset of 34.54 for N ′ = 10 000 (which was filtered from a
basis with N = 37 247) and Cmin = E[C] + 0.612

√
Var[C]. (c) The noise obtained in the pseudocorrelation filtered ghost projection, overlaid

with the predicted noise distribution.

with altered contrast, we test the capabilities of the pseudo-
correlation filtered scheme. The random basis was generated
using deviates from a uniform distribution between [0,1].

From Fig. 4, we can observe that our analytic prediction for
the random-matrix scaling γ N ′ required to obtain the image I
and offset E[R]/γ of the ghost projection [see Eq. (37)] is
correct, as is the expected noise accurate to within reasonable
bounds, where the noise is characterized by the variance of
each pixel from the expected value Var[Pi j] ≈ Var[R]/(N ′γ 2).

Using a filtered basis set size N ′ = 10 000 at the
optimal pseudocorrelation cutoff condition Cmin = E[C] +
0.612

√
Var[C], we would expect this filtered basis set to come

from an unfiltered basis set of size N = 37 000 ± s 316, where
s is the number of standard deviations we desire for confidence
in our estimate. In the simulation, we needed to generate
N = 37 247 basis members to filter out our desired N ′ above
the cutoff value (within 1 standard deviation of the expected
value). Moreover, for these parameters, we expect an offset of
34.54 (so, “eating into” this by −1 still renders our projection
physical) and we expect a global SNR of 3.06 [see Eq. (52)]
for which an SNR of 3.16 was obtained in simulation.

For the same simulation conditions of N = 37 247, chang-
ing the cutoff value for the pseudocorrelation filter to (i) the
mean value Cmin = E[C] or (ii) the mean plus one standard de-
viation Cmin = E[C] + √

Var[C], respectively produced (i) an
SNR of 2.72 with N ′ = 18 703 [for which an SNR of 2.73 was
predicted by Eq. (50)] and (ii) an SNR of 2.88 with N ′ = 5844
(for which an SNR of 2.94 was predicted). This shows that
indeed, the “middle ground” of Cmin = E[C] + 0.612

√
Var[C]

strikes a balance between removing those random-basis mem-
bers that are weakly correlated or uncorrelated with our
desired image, while not being too “heavy handed” so as to
remove too many basis members such that the desired image,
which lays hidden in the average of the basis members, may
still yet emerge.

We have chosen a filtered basis set size of N ′ = 10 000
members, which came from the unfiltered basis set having
N = 37 247 members, with a resolution of n = m = 40 speck-
les, in the hope that these are illustrative for conditions that are
realistically achievable in a laboratory. Qualitatively exam-
ining the resolution results of our pseudocorrelation filtered
ghost projection scheme, Fig. 4(b), we can see a relatively
good result for the high-contrast bands in the lower left quad-
rant. There is a reasonable result for (i) the linear gradients

and sinusoidal pattern in the right half of the ghost projection,
as well as (ii) the two-, three-, and four-pixel dots in the
upper left quadrant. However, for the single-dot features, their
contrast in the ghost projection is somewhat susceptible to
noise in their neighboring pixels, especially if combined with
a case of particularly adverse noise in the pixel itself. As a
safer approach, single pixels can be isolated if enclosed in a
high-contrast band. Alternatively, one could use more basis
members to boost SNR and thus reduce the detrimental effect
of noise on such relatively small-scale objects.

V. PSEUDOCORRELATION FILTERED GHOST
PROJECTION WITH POISSON NOISE

A. Pseudocorrelation filtered ghost projection
with Poisson noise

Up to this point, we have considered our desired image in
terms of a transmission coefficient between [−1, 1], which
can be multiplied by the appropriate constant to obtain the
units of interest. In this section, we shift perspective to photon
counts, and model the associated shot noise with a Poisson
distribution [40,41]. For every λ photons that illuminate the
entrance surface of each pixel prior to attenuation by the
masks, Ii jλ photons are expected to contribute to the pro-
jection contrast. With these definitions in place, we write a
pseudocorrelation filtered ghost projection scheme with Pois-
son noise as

Pi j = JkP̂

(
λR′

i jk

γ N ′

)
, (60)

where P̂(X ) indicates that X is Poisson distributed, λ is the
number of photons incident on each pixel, R′ denotes the pseu-
docorrelation filtered random-matrix basis, γ is the scaling
factor that ensures we converge to Ii j , and N ′ is the number
of filtered basis members. Taking the expected value of this
scheme, we have

E[Pi j] = E

[
JkP̂

(
λR′

i jk

γ N ′

)]

= N ′E
[

P̂

(
λR′

i jk

γ N ′

)]

013512-10



GHOST PROJECTION PHYSICAL REVIEW A 105, 013512 (2022)

= λE[R′
i j]

γ

= λIi j + λE[R]

γ
Ji j . (61)

This projection scheme obtains a uniform offset of λE[R]/γ
photons, and a spatial distribution of λIi j photons which we
will call our desired image expressed in units of photon
counts. Moving onto the variance that we would expect in
such a scheme, we calculate this via

Var[Pi j] = Var

[
JkP̂

(
λR′

i jk

γ N ′

)]
(62)

= N ′Var

[
P̂

(
λR′

i jk

γ N ′

)]

= N ′E

[
P̂

(
λR′

i jk

γ N ′

)2]
− N ′E

[
P̂

(
λR′

i jk

γ N ′

)]2

.

Focusing on the left term of the final line of the above equa-
tion, we can expand this out explicitly. Letting

X (R′) = P̂
(
λR′

i jk/(γ N ′)
)

(63)

be the random variable of interest, this will have the probabil-
ity distribution P̂(X (R′))P(R′

i jk ):

E
[
P̂
(
R′

i jρ
)2] =

∫ ∞∑
X=0

X 2P̂(X (R′))P(R′
i j )dR′

i j

=
∫ ((

λR′
i jk

γ N ′

)2

+ λR′
i jk

γ N ′

)
P(R′

i j )dR′
i j

=
(

λ

γ N ′

)2

E
[
R′2

i j

] +
(

λ

γ N ′

)
E[R′

i j]. (64)

Substituting this result into our variance calculation and using
the fact that E[P̂(Y )] = Y , we can write

Var[Pi j] = λ2

γ 2N ′ E
[
R′2

i j

] + λ

γ
E[R′

i j] − λ2

γ 2N ′ E[R′
i j]

2

= λ2

γ 2N ′ Var[R′
i j] + λ

γ
E[R′

i j]

≈ λ

γ

(
λ

γ N ′ Var[R]Ji j + E[R′
i j]

)
. (65)

Above, we have used the approximation that Var[R′
i j] ≈

Var[R]Ji j in most cases of filtration. Further, in the case that γ

is small relative to E[R] (i.e., the average transmission value
of the random-matrix basis is much larger than the average
norm-adjusted correlation value, E[R] 
 γ , which implies
E[R′

i j] = E[R]Ji j + γ Ii j ≈ E[R]Ji j), the variance of a pseu-
docorrelation filtered ghost projection scheme with Poisson
noise will be dominated by the constant

Var[Pi j] ≈ λ

γ

(
λ

γ N ′ Var[R] + E[R]

)
Ji j . (66)

B. Pseudocorrelation filtered ghost projection
with Poisson noise SNR

Again adapting our previously defined pixelwise SNRi j ,
we can examine this metric in the case of pseudocorrelation
coefficient filtered ghost projection in the presence of Poisson
noise:

SNRi j ≡
E[Pi j] − λE[R]

γ
Ji j√

Var[Pi j]

≈
√

λγ Ii j√
λ

γ N ′ Var[R] + E[R]
. (67)

The global SNR is the RMS of the pixelwise SNR:

SNR ≡
√

1

nm
Ji jSNR2

i j

≈
√

N ′λγ 2E[I2]

λVar[R] + γ N ′E[R]
. (68)

Observe, in the denominator, the relative contributions due
to (i) the number of photons allocated to each pixel and (ii)
the number of filtered basis members. For a fixed number of
photons allocated to each pixel, there is an asymptotic limit
for the SNR, even if we had infinitely many basis members.
That is, for N ′ → ∞, we would still only expect an SNR of

SNR ∼
√

λγ E[I2]

E[R]
. (69)

Similarly, in the limit of an arbitrarily large number of photon
counts, for a fixed number of basis members, we asymptote to
the SNR result of the Poisson-noise-free case [cf. the second
line of Eq. (48)].

C. Optimum pseudocorrelation cutoff with Poisson noise

We extend our previous optimization of the pseudocorrela-
tion cutoff value to achieve the maximum SNR as a function
of (i) the number of photons per pixel and (ii) the number
of basis members available to realize the ghost projection.
In determining the optimum pseudocorrelation cutoff value
that maximizes SNR in the presence of Poisson noise, we can
prescribe a statistical representation to the number of filtered
random-matrix basis members, i.e., N ′ = f N , and the norm-
adjusted expected pseudocorrelation of the filtered basis:

γ =
√

Var[R]/(2πnmE[I2]) exp(−X 2)/ f (X ), (70)

where

X = Cmin − E[C]√
2Var[C]

and f (X ) = 1
2 erfc(X ).

Further, we can seek to maximize the square of the SNR
to remove the square-root from consideration. Making these
substitutions and changes, we have

SNR2 ≈ N ′λγ 2E[I2]

λVar[R] + γ N ′E[R]

≈ N

2πnm(exp(2X 2) + a exp(X 2)) f (X )
. (71)
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FIG. 5. (a) Plot of the number of standard deviations for the optimal pseudocorrelation cutoff Cmin = E[C] + √
2X

√
Var[C], as a function

of the scaled ratio of the number of basis members to the number of photons per pixel. The solid blue curve is obtained by numerical solution
of Eq. (73), with the dashed red curve given by the approximate analytic expression in Eq. (74). (b) A contour plot of SNR for a N = 40 000
random-matrix basis set, and a resolution of 40 × 40 projected image in the presence of Poisson noise. The solid red line is the

√
2X that gives

the optimal SNR, and the dashed red lines mark where the SNR falls to 95% of its optimal value.

Above, we have defined a new parameter

a ≡ N

λ

E[R]√
2πnmVar[R]E[I2]

, (72)

to denote the scaled ratio of (i) the number of random-matrix
basis members N , to (ii) the number of photons per pixel λ.
Differentiating Eq. (71) with respect to X and setting it to zero,
we obtain

−√
πX

(
a + 2eX 2)

erfc(X ) + ae−X 2 + 1 = 0. (73)

The result of numerically solving this equation for the
optimum pseudocorrelation cutoff value in the presence of
Poisson noise, over several orders of magnitude of a, is shown
in Fig. 5(a) (solid blue curve). We observe two main regimes:
a constant section and a linearly increasing section. Separating
these two regimes is a transition point where the number of
random-matrix basis members is approximately equal to the
number of photons per pixel, O(a) ≈ 100. That is, in the ap-
proximately constant section to the left of the transition point,
we are in a regime of more photons than basis members, and
the optimal pseudocorrelation cutoff point is approximately
the same as without Poisson noise. In other words, in this
regime, Poisson noise is a relatively insignificant contribution
to the noise and instead the dominant contribution comes
from the random-matrix basis representation. In the second
regime, defined by the approximately linear increase to the
right of the transition point, we are limited by the number of
photons. For this photon-dilute regime, we can afford to be
more selective with the photons we have and seek a higher
pseudocorrelation cutoff value. For example, if we were to
have approximately 100 more random-matrix basis members
than we have photons per pixel (a ≈ 100), then we can afford
to discard many of the basis members and instead allocate
those photons to basis members that are at least approximately
2.4 standard deviations above the average pseudocorrelation
value.

We can fit a simple analytical approximation to the
numerical solution for Eq. (73). This approximate so-
lution is taken to be a constant c1 that transitions to
c2 log10(a) + c3 via a sigmoid function S(log10(a), c4, c5) =

1/[1 + c4 exp(c5 log10(a))], giving
√

2X (a) ≈ c1S(log10(a), c4, c5)

+ (c2 log10(a) + c3)S(− log10(a), c4, c5). (74)

Here, the parameters c1 = 0.6510, c2 = 0.5310, c3 = 1.5188,
c4 = 1.3682, and c5 = 1.2847 were found via a gradient-
descent approach. The result of this analytical approximation
compared to the numerical solution is given as dashed red and
solid blue curves, respectively, in Fig. 5(a). For early experi-
mental implementations of ghost projection, we are likely to
be in the regime with more photons than basis members (left
of the transition point).

For an illustrative example of how these results may be
used and interpreted, suppose we have a basis set of 40 000
random matrices with which we wish to project a known
40 × 40 image. Deciding upon the number of photons, per
pixel, that we wish to allocate to create the contrast λIi j , we
can then calculate a. From this a, we can then determine
the number of standard deviations above the mean that the
optimum pseudocorrelation cutoff value is, via (i) numerically
solving Eq. (73), or (ii) using the analytical approximation,
Eq. (74). The SNR we expect from applying that filtering
and allocating uniform exposures to those basis members that
remain according to Eq. (60) is given by Eq. (68), or from a
more statistical perspective, Eq. (71). From the contour plot
of the latter equation in Fig. 5(b), we observe (i) the decline
in SNR with increasing a and (ii) the increase in the number
of standard deviations the optimal pseudocorrelation cutoff is
above the mean pseudocorrelation coefficient.

D. Pseudocorrelation filtered ghost projection
with Poisson noise simulation

We conclude this section with a numerical simulation to
illustrate some of its key analytical results. In particular, we
show that for our simulation the integrated result of uniform
exposures of the pseudocorrelation filtered basis set R′

i jk ,
subject to Poisson noise, converges as given by Eq. (61).
Further, we will numerically illustrate that the noise present
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FIG. 6. (a) The desired image we wish to project expressed in photon counts, minus the constant offset of λE[R]/γ = 18 774 photons.
(b) The optimized pseudocorrelation filtered ghost projection subject to Poisson noise, obtained via Eq. (60), minus the expected offset, using
N ′ = 16 317 (which was filtered from N = 100 000 basis members), achieving an SNR = 3.57 (SNR = 3.53 was predicted). (c) The noise
obtained in the pseudocorrelation filtered ghost projection subject to Poisson noise, overlaid with the predicted noise distribution given by
Eq. (71).

in this ghost projection, which has contributions from both
the random-basis reconstruction and from Poisson noise, is
accurately captured by Eq. (66). Finally, we would like to see
that the analytically calculated optimum minimum pseudo-
correlation coefficient indeed achieves an optimum SNR in
simulation, for a given number of photons per pixel λ and
unfiltered basis members N .

Our simulation employs the same test image that was pre-
viously used in the pseudocorrelation filtered ghost projection
case, namely, Fig. 4(a). When multiplied by λ = 1000, we
obtain our desired image expressed in terms of photon counts,
as seen in Fig. 6(a). The random basis is constructed of binary
random matrices, Ri jk ∈ {0, 1}, in which the values of zero
and one are equally likely.

Starting with N = 100 000 basis members, as a baseline,
let us in the first instance neglect Poisson noise considerations
and adopt the perspective of ghost projection via pseudocorre-
lation filtering (Sec. IV). That is, use

√
2X = 0.612 (which is

the optimum pseudocorrelation cutoff in the plentiful-photon
limit). With this, we filtered out 27 175 basis members. In-
cluding Poisson noise in the simulation, we obtained an SNR
of 3.44 which can be compared to a predicted SNR of 3.42.
Changing the cutoff value to reflect that there are a finite
number of photons which display Poisson noise (a = 1.40),
we can update

√
2X to be 0.985. With these conditions, start-

ing with N = 100 000 basis members yielded N ′ = 16 317
above the minimum pseudocorrelation cutoff value. Further,
the simulation yielded an SNR of 3.57 for which an SNR of
3.53 was predicted, as shown in Fig. 6. This amounts to a
3.2% improvement in SNR having accounted for the Poisson
noise in this case—although, we are still in a regime with
an a value on the order of unity, near the transition point.
Should we reduce the number of photons and keep the same
number of basis members, or increase the number of basis
members for a fixed number of photons (i.e., increase a), then
we would expect to see a greater level of relative improvement
in SNR, having accounted for using a finite number of photons
exhibiting Poisson noise.

VI. COLOR GHOST PROJECTION

Motivated by color ghost imaging [42], suppose we have
a random-matrix basis that is comprised of c color channels.

This could be achieved, for example, by illuminating a thin
or thick spatially random screen using white light emanating
from a sufficiently small source in order to create correlated
or uncorrelated superimposed speckle fields, respectively, for
a variety of different energy bands [43]. Employing this means
for generating speckle fields across independent energy chan-
nels, one could aspire to project a color image. That is, for
the sake of argument, we could construct the visible-light
three-channel color ghost projection scheme:

Pi jc = tkR k
i j c = tk

(
R k

i j r, R k
i j g, R k

i j b

)
, (75)

where c indexes the color channel and r, g, b denote the red,
green and blue (RGB) random-matrix color channels that
make up the random-matrix color mask. Here, we would like
to construct the color ghost-projection image:

Ii jc = (Ii jr, Ii jg, Ii jb). (76)

If we could isolate each illumination color channel, we
could simply perform three independent cases of monochro-
matic ghost projection, for which all of the results of the
preceding sections are applicable. Supposing, for the sake of
time or due to inherent constraints of the illumination source,
we illuminate the three color-channel masks all at once, then
how do we choose a global tk such that we achieve our
desired color image without erroneous dilation of the color
palette? Furthermore, there is the question of how we filter
our color random-matrix basis. Should we pick only those
members that are positively correlated in all color channels?
Assuming the correlation of each of three color channels is
independent, we would only expect ( 1

2 )3 = 1
8 of the overall

RGB color basis to be positively correlated with the desired
color ghost projection. Perhaps, for the sake of including more
basis members, it would be worth including a basis member
that is only slightly negatively correlated with one channel of
the required color image, if it is highly correlated in another
channel. Such considerations would be captured by a global
color pseudocorrelation coefficient. Indeed, even for the case
of independently filtered color channels, when we sum those
basis members, they will converge to the color image with
a scaling determined by the global color pseudocorrelation
value too.

Borrowing the ghost projection scheme from the pseudo-
correlation filtered case, which uses uniform dwell times, we
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can construct the color ghost projection

Pi jc = JkR k
i j c

N ′γ
. (77)

Here, γ is the appropriately normalized, expected correlation
of the color basis and N ′ is the number of basis members that
make it through the filtering process. This has advanced us to-
wards answering the question of what global tk is appropriate
to achieve an un-dilated color palette, although we still need
to determine the functional form of γ and decide between an
independently or globally filtered color basis for N ′.

A. Color pseudocorrelation coefficient

Consider the global color pseudocorrelation coefficient

Ck = Ri jkcI i jc

3nm
√

E[R2]E[I2]
, (78)

where we have again used three color channels (although this
is an arbitrary choice and may just as easily be any number of
color channels) and, in this case, E[R2] = Ri jkcRi jkc/(nmN3)
and E[I2] = Ii jcI i jc/(nm3). This coefficient will have the ex-
pected value

E[C] = E

[
Ri jkcI i jc

3nm
√

E[R2]E[I2]

]

= E[R]Ji jcI i jc

3nm
√

E[R2]E[I2]

= E[R]E[I]√
E[R2]E[I2]

. (79)

Further, it will have the variance

Var[C] = Var

[
Ri jkcI i jc

nm3
√

E[R2]E[I2]

]

= Var[R]Ji jcI2
i jc

(3nm)2E[R2]E[I2]

= Var[R]

3 nm E[R2]
. (80)

These results are very similar to the pseudocorrelation coeffi-
cient results for the noncolor case in Sec. III B, with the only
difference being to update the definitions of the expectation
results (i.e., E[I], E[I2], E[R], E[R2]) and reduce the variance
of the pseudocorrelation value by dividing by the number of
color channels.

From here we can substitute these updated definitions into
our definition of the appropriately normalized, expected cor-
relation of the color basis γ , i.e.,

γ = (E[C′] − E[C])

√
E[R2]

E[I2]
, (81)

where E[C′] is the average global color pseudocorrelation
coefficient of the filtered basis, E[C] is the zero reference
point of the global color pseudocorrelation coefficient and√

E[R2]/E[I2] is a norm-adjustment factor along the direction
Ii jc.

B. Independent versus global filtration of the color channels

Consider the two options of (i) independently filtering the
color basis based upon the pseudocorrelation coefficient of
each color channel or (ii) globally filtering the color basis
based upon the global color pseudocorrelation coefficient. For
each case, we will have a different number of basis elements
N ′ that remain, post filtration. Moreover, the average global
color pseudocorrelation coefficient post filtration will be dif-
ferent in each case. To decide between these two options, we
can compare their predicted SNR results.

If we were to employ the independently filtered method
and only include those basis members that have a greater-than-
average pseudocorrelation coefficient in all of their respective
channels, then we have already pointed out that we can expect
1
8 = 12.5% of the original basis set to remain post-filtration,
for an RGB color arrangement. Allowing for a global filtra-
tion, we can borrow from Sec. IV B and expect 27% of the
original basis set to remain post-filtration.

We now move onto concerns regarding the expected global
color pseudocorrelation of the filtered basis, namely, E[C′] −
E[C], in each case. For the independently filtered case, we can
infer an effective correlation based upon the result that f =
0.125 = (1/2)erfc(X ), where X = (Cmin − E[C])/

√
2Var[C],

which implies X ≈ 0.8134. For the globally filtered case, we
have the previously obtained result X ≈ 0.433. Substituting
in these estimates of X into the expression for the expected
global color pseudocorrelation value of the filtered basis, we
obtain

E[C′] − E[C] =
√

2Var[C]

π
[erfc(X )]−1 exp(−X 2)

=
√

2Var[R]

3 nmπE[R2]
[erfc(X )]−1 exp(−X 2), (82)

which, for the sake of comparison, if we define Var[R] = 1/12
and E[R2] = 1/3, gives the expected global color pseudocor-
relation for the independently filtered case as 0.823/

√
3nm

and the globally filtered case as 0.612/
√

3nm. Note, for the
independently filtered case, this assumes those members that
are selected belong to the upper 12.5% of the global members
in terms of color pseudocorrelation coefficient, which is not
necessarily the case. That is, just because we expect 12.5%
of basis members to be positively correlated in each channel,
it does not mean that they necessarily belong to the 12.5%
most-globally-correlated members—this estimate would form
a best-case scenario for the independently filtered case and we
may achieve less than this in practice.

Defining a color SNR as the RMS of the pixels and chan-
nels

SNR =
√

1

3nm
Ji jcSNR2

i jc, (83)

and making the substitution for each color channel that

SNR2
i jc ≈ I2

i jcγ
2N ′

Var[R]
, (84)
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FIG. 7. (a) Plot of the desired color image we wish to project, expressed as an attenuation coefficient. There are three independent color
channels c: red r, green g, and blue b [see Eqs. (75) and (76)]. (b) Reference grayscale desired image labeled with color distribution, where r
represents red, g is green, b is blue, y is yellow, c is cyan, black is black, white is white, and the arrows indicate smaller squares with the same
fill color. (c) Globally filtered color ghost projection with the constant offset of 35.77 subtracted, using N ′ = 10 680 filtered from N = 40 000
which achieved an SNR of 1.82. (d) Independently filtered color ghost projection with the constant offset of 31.77 subtracted, using N ′ = 4905
filtered from N = 40 000 which achieved an SNR of 1.38. (e) The random-basis reconstruction noise obtained in the globally filtered and
independently filtered color ghost projections, with Pi jc given by Eq. (75) and Ii jc given by Eq. (76).

where the approximation arises owing to Var[R′
i j] ≈ Var[R],

we obtain

SNR ≈
√

E[I2]γ 2N ′

Var[R]

≈
√

E[R2]N ′

Var[R]
(E[C′] − E[C]). (85)

Substituting in our results for the number of filtered basis
members and expected color pseudocorrelation coefficient for
each case yields an SNR-uncertainty relationship prediction
of SNR2 × 3nm ≈ 0.34N and SNR2 × 3nm ≈ 0.40N for the
independently and globally filtered basis set, respectively,
where we have again used Var[R] = 1

12 and E[R2] = 1
3 for

the sake of comparison. Based upon these results, we would
expect the SNR of the globally filtered basis set to be about
9% better than the independently filtered set.

C. Color ghost projection simulation

Consider the 40 × 40 resolution, test color image in
Fig. 7(a). We wish to color ghost project this using an in-
dependently and globally filtered color basis of size N =
40 000. The color basis consists of three channels that are each

populated with uniformly random values between 0 and 1. The
results are given in Figs. 7(b)–7(d).

In simulation, the global filtration selected 10 680 basis
members of the 40 000, where 10 800 was expected (i.e.,
27%). For the independently filtered basis set, 4905 members
were selected where 5000 was expected (i.e., 12.5%). The
predicted SNR of the globally filtered color ghost projection
was 1.82 [see Eq. (85)] and the simulated SNR was also 1.82.
For the independently filtered color ghost projection, if we
use Eq. (85) with the numerically calculated (E[C′] − E[C]),
then the SNR was predicted to be 1.39 (which is lower than
that predicted as our best-case scenario of 1.68, where the
independently filtered basis members were assumed to belong
to the top 12.5% pseudocorrelated values). The independently
filtered color ghost projection obtained an SNR of 1.38 in
simulation (which is to suggest Eq. (85) is reasonably accu-
rate, although our best-case assumption was askew). In these
simulation results, the globally filtered color ghost projection
scheme did 32% better than the independently filtered scheme.

VII. NUMERICALLY OPTIMIZED GHOST PROJECTION

In the analytical approaches adopted thus far, we have con-
sidered weighting the basis, and filtering the basis. A natural
progression is to consider weighting and filtering the basis
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at the same time. This is discussed in Appendix B, which
suggests only modest improvements that are offset by a sig-
nificant increase in analytical complexity. Instead of taking
this approach, we here investigate numerical optimization as
a more profitable line of inquiry.

A. Ghost projection with numerically derived weights

Given that we know a priori both the realized random-basis
set and the particular desired image to be ghost projected,
we now explore numerical optimization of the random-matrix
exposures. This illustrates the significant improvement in
ghost-projection SNR that is possible by using numerically
optimized weights, rather than the analytical weights of the
preceding sections. The analytical schemes of the preceding
sections are more physically and conceptually transparent
but less efficient. Conversely, the numerical-optimization
schemes of the present section are less conceptually transpar-
ent but more efficient.

For simplicity, to explore ghost projection with numer-
ically derived weights, we restrict ourselves to the zero-
averaged case of the desired image, where E[I] = 0. We
define the ghost projection scheme:

Pi j ≡ R k
i j wk → Ii j + P̄, (86)

where R k
i j is our particular random-matrix basis, and wk are

weights to be numerically optimized such that the above sum
approaches the image, plus an offset that is equal to the av-
erage P̄ = Ji jPi j/(nm) = N ′E[w]E[R]. We can render this in
a common form by vectorizing our random-matrix basis and
setting each member equal to the columns of the matrix M.
Further, we absorb P̄ into the left-hand side by subtracting the
average of each column:

M = [Ri j1 − Ri j1; Ri j2 − Ri j2; · · · ; Ri jN − Ri jN ]. (87)

With this, we can now express our ghost projection as

M 
w → 
I, (88)

where 
I is the vectorized version of our desired image. With
this definition of ghost projection via numerically derived
weights, the function to be optimized is

SNR =
√

E[I2]

Var[M 
w − 
I]
, (89)

namely, the RMS of a pixelwise SNRi j .

B. Ghost projection with numerically derived weights
simulation

We use non-negative least squares (NNLS) [23] to obtain
the weights that optimize SNR. That is, we seek the vector of
weights 
w corresponding to

arg min‖M 
w − 
I‖, (90)

subject to the constraint that wk � 0. Using the MATLAB

programming language NNLS routine lsqnonneg to per-
form numerically optimized ghost projection of our desired
image in Fig. 4(a), with a basis set of four different sizes
N ={0.5,1,1.5,2}nm, we see modest improvements for the

first three cases and a drastic improvement for the final case,
as shown in Fig. 8. For the first case, N = 0.5nm, Fig. 8(c)
shows (i) a somewhat linear relationship between the numer-
ically optimized nonzero weights and the pseudocorrelation
coefficient, as well as (ii) some filtering out of certain basis
members, many of which have Ck < 0, as indicated by the
row of zero weights along the horizontal axis. Conceptually,
this aligns well with our previously considered analytical
approaches of pseudocorrelation weighting and filtering. We
note, however, that the NNLS scheme includes some masks
with negative Ck , namely, masks that are anticorrelated with
the desired image, and which may be loosely considered as
“position-dependent erasers” that contribute to the ghost pro-
jection by suppressing rather than establishing correlations.
For the final case (N = 2nm), it seems that amongst the twice-
overcomplete basis set, an almost exact non-negative-weight
representation exists. As we progress from the first to the
final row of Fig. 8, we see from panels (c), (f), (i), and (j)
that the near-linear relationship between pseudocorrelation
coefficient and numerically optimized weighting coefficient
dissolves with increasing basis size. For a sufficiently large
number of members in our random ghost-projection basis,
there exist non-negative weights that can achieve a near-exact
representation or projection of our desired image, up to an
additive constant.

C. Ghost projection with Poisson noise

Suppose we have a ghost projection with numerically de-
rived weights that, in a noise-free environment, obtains a
near-perfect projection. In the present subsection, we study
how robust this reconstruction is against Poisson noise [40].
To model the effect of Poisson noise, consider the scheme

Pi j = JkP̂(λwkRi jk ). (91)

Here, P̂ denotes a quantity that is Poisson distributed, wk are
our numerically derived weights which correspond to random-
mask exposures, Ri jk is our random-matrix basis and λ is the
number of photons per pixel, per unit exposure (although,
since our weights are normalized to give one unit exposure of
the image in total, λ is really the number of photons per pixel).
Supposing we are in the limit that noise from the random-
matrix basis is insignificant, we model the degradation due to
the Poisson noise alone. Taking the expected value, we obtain

E[Pi j] = E[JkP̂(λwkRi jk )]

= λwkR k
i j

= λIi j + λP̄Ji j, (92)

where P̄ = Ji jPi j/(nm) = N ′E[w]E[R] for E[I] = 0, and we
have used the Poisson expectation value property E[P̂(X )] =
X . Moving onto the variance, we have

Var[Pi j] = Var[JkP̂(λwkRi jk )]

= λwkR k
i j

= λIi j + λP̄Ji j, (93)

where we have used the Poisson variance property
Var[P̂(X )] = X . For almost all cases of ghost projection, we
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FIG. 8. [(a), (d), (g), and (j)] NNLS ghost projections with N = {0.5, 1, 1.5, 2}nm, respectively. [(b), (e), (h), and (k)] Random-matrix
reconstruction noise present in their respective ghost projections, which achieved an SNR of 1.16, 1.47, 2.10, and 1.57 × 1012, respectively.
[(c), (f), (i), and (l)] Scatter plots of numerical weights against the normalized pseudocorrelation coefficient of that basis member. Note, each
row of the figure represents one realization of a stochastic process and these results will vary from run to run. Typically, roughly nm basis
members were given nonzero weighting coefficients in the NNLS optimization. The constant offset in the ghost projection increased with each
of the four cases N = {0.5, 1, 1.5, 2}nm, and had values of {10.6, 27.8, 60.2, 395.9}, respectively.
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FIG. 9. (a) Numerically optimized ghost projection with subsequently added Poisson noise, predicted SNR = 5.03 based on Eq. (96),
and simulated SNR = 5.06. The NNLS reconstruction SNR, in the absence of Poisson noise, was SNR = 1.36 × 1010 for N = 2.50 nm and
P̄ = 100.2. (b) A plot of the effect of Poisson noise, overlaid with the expected behavior based on Gaussian statistics and the variance result
of Eq. (94).

would expect Ii j to be much less than P̄, and we can approxi-
mate the variance by the constant result:

Var[Pi j] ≈ λP̄Ji j . (94)

Combining this into a pixelwise SNR, we have

SNRi j ≡ E[Pi j] − λP̄√
Var[Pi j]

≈
√

λ
Ii j√

P̄
. (95)

The RMS of the pixelwise SNR gives the global SNR:

SNR =
√

1

nm
Ji jSNR2

i j

≈
√

λE[I2]

P̄
≈

√
λE[I2]

E[w]E[R]N ′ . (96)

Above, we see that SNR decreases proportionally to the
square-root of the pedestal

√
P̄ or

√
E[w]E[R]N ′, and in-

creases with both the area-normalized image 2-norm E[I2]
and the number of photons, per pixel, used. Based upon the
above result, we can see how critical it is to minimize the
pedestal for the sake of minimizing the Poisson noise.

D. Ghost projection with Poisson noise simulation

Starting with N = 2.50nm uniformly distributed random
matrices, we use a NNLS solver to find an optimized weight-
ing scheme that minimizes the random-matrix reconstruction
noise. In Poisson-noise-free simulation, we obtained a weight-
ing scheme that produced an SNR of 1.36 × 1010 and a
pedestal of P̄ = 100.2. For λ = 5000, subsequently adding
Poisson noise to the reconstruction drastically degraded the
reconstruction SNR down to 5.06 in simulation, which com-
pared well with the predicted SNR of 5.03 based on Eq. (96),
see Fig. 9.

E. Ghost projection with exposure noise

Again consider a ghost projection with numerically de-
rived weights that, in a noise-free environment, obtains a
near-perfect projection. To model exposure noise, namely, the
fluctuations in exposure time that will be present in any exper-
imental realization of ghost projection, consider the scheme

Pi j = P̃(wk )R k
i j , (97)

where P̃ denotes a quantity that is normally distributed, so
that P̃(wk ) denotes a Gaussian for each exposure which has
an expectation value of the weight wk and a variance σ 2

w, and
R k

i j is our random-matrix basis. Supposing we are in the limit
that noise from the random-matrix-basis reconstruction and
Poisson noise are insignificant, we can isolate the degradation
due to exposure noise alone. Taking the expectation value of
the scheme, we achieve

E[Pi j] = E
[
P̃(wk )R k

i j

] = wkR k
i j = Ii j + P̄Ji j . (98)

The corresponding variance is

Var[Pi j] = Var
[
P̃(wk )R k

i j

] = σ 2
wN ′Var[R]Ji j . (99)

Note, this is the variance in the pixels for a single realization
of exposure noise in all weights. Despite having N ′ realiza-
tions of exposure noise, these impact all of the pixels and the
induced variance is dominated by that of summing random
deviates of the basis, N ′Var[R], which are then skewed by the
expected amount of E[P̃(wk )2] = σ 2

w. Note also that this ig-
nores perturbations from the pedestal, which do not impact the
desired contrast, hence we are assuming these perturbations
to be insignificant. Should we want the more general variance
of this quantity, then this would be σ 2

wN ′E[R2] (which would
correspond to the variance of many realizations of the set of
weights). Combining the above results into a pixel-wise SNR,
in this case, we have

SNRi j = Ii j√
N ′σ 2

wVar[R]
, (100)
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FIG. 10. (a) Ghost projection with a shutter-speed standard deviation of σw = 1/100 and a simulated SNR of 6.52, for which an SNR of
6.50 was predicted using Eq. (101). The NNLS reconstruction SNR, in the absence of Poisson noise, was 1.57 × 1012 and had a pedestal of
P̄ = 395.9. (b) A plot of the effect of exposure noise, overlaid with the expected behavior based on Gaussian statistics and the variance result
of Eq. (99).

leading to the global SNR:

SNR =
√

E[I2]

N ′σ 2
wVar[R]

. (101)

Hence minimizing the variance from our desired exposures wk

is essential for preserving a quality projection.

F. Ghost projection with exposure noise simulation

Suppose we start with a NNLS ghost projection which has
a Poisson-noise-free SNR of 1.57 × 1012 and a pedestal of
E[w]E[R]N ′ = 395.9. If we suggest that the weights realized
in a realistic experiment have σw = 1/1000, then the SNR
we would expect from Eq. (101) is 63.2. In simulation, we
obtained an SNR of 63.1. If we increase the exposure noise
to σw = 1/100, we obtain the results shown in Fig. 10, for
which the simulated SNR of 6.52 may be compared to the
predicted SNR of 6.50. From this assessment, so long as we
can keep the shutter-speed standard deviation on the order
of σw = 1/1000, we might expect exposure noise to be a
subdominant contribution when compared to the noise due
to a random-matrix basis representation sought with a small
pedestal and Poisson noise.

G. Ghost projection with both Poisson and exposure noise

Modeling the combined influence of Poisson and exposure
noise in the regime of a near-perfect random-basis representa-
tion, we have the scheme

Pi j = JkP̂(λP̃(wk )Ri jk ), (102)

where P̂ denotes a quantity that is Poisson distributed, P̃
denotes a quantity that is Gaussian distributed, wk are our
numerically derived weights which correspond to exposure,
Ri jk is our random-matrix basis and λ is the number of photons
per pixel. The expectation value of this scheme is

E[Pi j] = E[JkP̂(λP̃(wk )Ri jk )]

= JkE[λP̃(wk )Ri jk]

= λwkR k
i j

= λIi j + λP̄, (103)

where P̄ = Ji jPi j/(nm) = N ′E[w]E[R] is our pedestal for the
case E[I] = 0. Moving onto the variance, we can utilize our
previous working from the pseudocorrelation Poisson noise
case, in Sec. V A, as well as our working from the pure
exposure noise case, to yield

Var[Pi j] = Var[JkP̂(λP̃(wk )Ri jk )]

= N ′σ 2
wλ2Var[R] + N ′λE[w]E[R]. (104)

To the right of the equals sign, we can recognize that the first
term is the exposure noise contribution and the second term
is the Poisson noise contribution. Combining the above two
results into a pixelwise SNR relationship, we have

SNRi j = λIi j√
N ′σ 2

wλ2Var[R] + N ′λE[w]E[R]
. (105)

The RMS of the above expression gives the global SNR:

SNR =
√

λE[I2]

N ′σ 2
wλVar[R] + N ′E[w]E[R]

. (106)

In this expression, we see precisely the behavior we would
expect based on the analytical results obtained in the above
subsections. That is, for increasingly large λ (i.e., in the case
of many photons per pixel), we see the SNR asymptotically
approach that of the pure-exposure-noise case. Conversely,
if we are in the regime where the shutter-speed standard
deviation σw becomes increasingly small, we asymptotically
approach the SNR behavior of the pure-Poisson-noise case.

H. Ghost projection with both Poisson and exposure
noise simulation

Consider a N = 2.5nm uniformly random basis set and
corresponding numerically derived weights that obtains a
near-perfect random-basis projection, with a noise-free SNR
of 9.22 × 109 and pedestal of P̄ = 104.9. Choosing the num-
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FIG. 11. (a) Ghost projection with Poisson noise in the photon count for λ = 5 000, and a shutter-speed standard deviation of σw = 1/100
which produced an SNR of 3.92 in simulation, for which an SNR of 3.90 was predicted by Eq. (106). For these conditions, if it were Poisson
noise alone contaminating the projection, we would expect an SNR of 4.93. If it were exposure noise alone contaminating the projection,
we would expect an SNR of 6.50. This projection had a pedestal of P̄ = 104.9, which can be multiplied by λ to obtain the pedestal in units
of photon counts. (b) A plot of the combined effect of Poisson and exposure noise, overlaid with the expected behavior based on Gaussian
statistics and the variance result of Eq. (104).

ber of photons per pixel to be λ = 5 000 and the standard
deviation in the shutter-speed to be σw = 1/100, we can
perform a simulation to confirm the working of the previ-
ous subsection. Once both contributions of experimentally
motivated noise were added, an SNR of 3.92 was obtained
in simulation, for which an SNR of 3.90 was predicted us-
ing Eq. (106). For these conditions, if it were Poisson noise
alone contaminating the projection, we would expect an SNR
of 4.93. If it were exposure noise alone contaminating the
projection, we would expect an SNR of 6.50. The combined
result can be observed in Fig. 11.

I. Ghost projection with Poisson noise and numerically
derived weights

Within this section, we have first seen that by using nu-
merically optimized weights, an image can be projected using
random matrices to a near perfect reconstruction (supposing
the initial basis set is large enough, e.g., N > 2nm). We then
went on to examine the case of ghost projection with a near
perfect reconstruction, under the influence of Poisson noise.
In that, we saw the dominant cause of Poisson noise is the
pedestal, which deposits photons without contributing to the
desired contrast. Arising from these two observations is that
there exists a reconstruction which balances the random-basis
reconstruction noise with minimizing the pedestal and Pois-
son noise contribution. To find this balance, we can derive the
SNR for an imperfect random-basis reconstruction, under the
influence of Poisson noise, which can subsequently be numer-
ically optimized. The variance of an imperfect random-basis
reconstruction, under the influence of Poisson noise, is

Var[Pi j] = E
[{

P̂
(
wkR k

i j λ
) − λ(Ii j + P̄)

}2]
= E

[
P̂
(
wkR k

i j λ
)2] − 2λ(Ii j + P̄)

× E
[
P̂
(
wkR k

i j λ
)] + λ2(Ii j + P̄)2

= (
wkR k

i j λ
)2 + (

wkR k
i j λ

) − 2λ2(Ii j + P̄)

×wkR k
i j + λ2(Ii j + P̄)2

= λ2
(
wkR k

i j − (Ii j + P̄)
)2 + λwkR k

i j , (107)

where P̄ = Ji jwkR k
i j /(nm) = N ′E[w]E[R]. We recognize the

left-hand term as the variance contribution of the random-
basis reconstruction, scaled by the number of photons
squared. The right-hand term is the contribution due to Pois-
son noise, i.e., the more photons we allocate to create the
contrast, the more the second term decays in contribution.
This result still contains a pixelwise dependence, whereas we
seek an expression for the global variance of the ghost projec-
tion. To determine this, we can numerically approximate it by
taking the average of the above result. We can then use this in
a pixelwise SNR expression, which can then be transformed
into a global SNR by numerically taking the RMS.

J. Ghost projection with Poisson noise and numerically
derived weights simulation

In the context of ghost projection with Poisson noise and
numerically derived weights, we have two points of com-
parison: the lower-bound will be the numerically optimized
reconstruction which subsequently has Poisson noise added,
and the upper-bound will be the SNR obtainable from a con-
ventional, direct mask-based projection in the presence of
Poisson noise. Starting, for example, with a basis N = 5nm,
we can seek the weights that optimize the random-matrix
basis reconstruction of the desired image. This was done us-
ing MATLAB’s inbuilt NNLS solver, thereby obtaining a noise
free SNR of 4.58 × 109 and a pedestal of P̄ = 58.07. Once
Poisson noise was included, however, the SNR decayed to
6.49 where λ = 5000. The maximum attainable SNR, with
this number of photons and for this image, is

√
λ ≈ 70.71

(using a result derived later in Sec. VIII B). Employing a
gradient ascent (GA) algorithm to search for those weights
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FIG. 12. (a) Numerically optimized ghost projection with Poisson noise for λ = 5000, which produced an SNR of 7.90 in simulation and
had a pedestal of P̄ = 40.25 (which can be multiplied by λ to obtain the pedestal in units of photon counts). (b) The noise obtained in the
ghost projection subject to Poisson noise, overlaid with the predicted noise distribution, i.e., Gaussian statistics with a variance obtained by
spatially averaging Eq. (107). (c) Comparison of NNLS numerical weights which optimized the random-matrix reconstruction and the GA
weights which started from the NNLS weights and included Poisson noise in the numerical optimization.

that can optimally trade-off the pedestal’s Poisson noise
with excess SNR in the random-matrix basis reconstruction,
we obtained an SNR of 7.90 and a pedestal of P̄ = 40.25
[see Fig. 12(a)], which represents a 21.7% improvement in
SNR over that obtained from the weights derived from the
NNLS solver, but a reduction in SNR by a factor of 8.95
compared to the maximum possible. Note, this compari-
son of SNR improvement—in going from (i) NNLS-derived
weights that subsequently have Poisson noise added to (ii)
GA-derived weights including Poisson noise—is particular
to each random-matrix basis realization and desired image,
and is only illustrative of what general improvements can
be obtained. Further, the numerically obtained histogram in
Fig. 12(b) is consistent with the curve corresponding to the
average of Eq. (107). Finally, we can observe the differ-
ence in the numerically optimized weights obtained for the
Poisson-noise-free case (NNLS solver) and those obtained in
the presence of Poisson noise (GA solver), in Fig. 12(c). Inter-
estingly, there is next to no relationship between the two sets
of weights. Moreover, many basis members that were assigned
a zero weight in the Poisson-noise-free case (NNLS solver)
were assigned a non-negative weight when in the presence of
Poisson noise (GA solver).

VIII. DISCUSSION

A. Basis representations

Ghost projection synthesizes signals using a random basis,
and may therefore be viewed from this more general perspec-
tive. To this end, consider an nm-length vector 
I , where 
I
could just as easily be a reshaped matrix, or tensor. Further,
define M to be a matrix with vectorized basis members as
columns, and let 
w be a vector of weighting coefficients. We
then have the following list of vector representations.

(1) A orthonormal basis comprising nm members, where

w = MT 
I = M−1 
I , such that M 
w = 
I .

(2) A nonorthogonal basis with nm linearly independent
members (which could be transformed into a orthonormal
basis via e.g., the Gram-Schmidt process), with weights found
via 
w = (MTM )−1MT 
I such that M 
w = 
I .

(3) An overcomplete, nonorthogonal basis comprising
greater than nm basis members. Such a basis set will admit a
family of solutions of 
w = (MTM )−1MT 
I such that M 
w = 
I .

(4) An overcomplete, nonorthogonal basis where the
weights are the correlation coefficients between the basis
members and desired image, such as in the simplest forms
of ghost imaging [35]. That is, the weights in this case are


w = 1
NVar[R] (MT 
I − MT 
I ) such that M 
w ∼ 
I in the limit

of large N . Moreover, a finite set of nonorthogonal basis
members with correlation-coefficient weights can always be
transformed into the nonorthogonal projection weights via
(MTM )−1.

(5) A set of (nm + 1) basis members arranged according
to Appendix C, which details a proof for the existence of
non-negative weights and constitutes the minimum number
of members required to guarantee a non-negative solution.
Assuming the criterion for the arrangement of basis members
is met, the representation of 
I is unique. To find the weights in
this case, see the next item in this list.

(6) A twice-orthonormal basis comprising two orthonor-
mal sets, one being the negative (mirrored version) of the
other, where the weights are restricted to be non-negative
values wk � 0 ∀ k ∈ [1, 2nm]. In this construction, there will
exist a unique representation of the vector 
I . Finding the
weights in this case can be achieved by taking the projection
of 
I in one orthonormal basis set and then, for each negative
weight, switching that basis member for its mirrored coun-
terpart in the other set and removing the negative sign on that
weight. Interestingly, in the space of non-negative coefficients,
unique solutions exist in nm dimensions for nm + 1 basis
members and 2nm basis members. To find the weights in the
(nm + 1) case, in Appendix C, we detail how to decompose
the twice-orthonormal set in terms of the (nm + 1) basis. That
is, the weights of 
I in the (nm + 1) case are the following:
those obtained by taking an orthonormal projection, switch-
ing the negative weights for the negative basis member, and
multiplying these by the decomposition coefficients.

(7) A twice overcomplete basis comprising two sets of
nm nonorthogonal linearly independent basis vectors, where
one set is a mirrored version of the other and the weights
are restricted to non-negative values wk � 0 ∀ k ∈ [1, 2nm].
Since this construction can be transformed into the previous
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construction of this list, for this case too there will exist a
unique representation for 
I . The weights in this case can be
found by taking the nonorthogonal projection in one basis,
and switching those basis members which receive a negative
weight with those in the mirrored set.

(8) A more than twice overcomplete, nonorthogonal basis
comprising more than 2nm basis members, where the weights
are non-negative wk � 0 for all k. Note, each basis vector can
have a constant added to it, such that the entire basis set is
non-negative too. This will have the effect of reproducing the
image up to an additive constant or pedestal P̄, i.e., M 
w =

I + P̄ 
J . This representation has applications for cases which
require positive weights and positive basis members, and are
insensitive to an additive constant.

(9) An overcomplete, nonorthogonal basis where the
weights are asymmetrically skewed towards those basis mem-
bers that are correlated with the desired image. This could
be as in the first analytical case of this paper and linear
weights, or, as in the second analytical case, a step function
that filters out basis members and prescribes either zero or
uniform, positive value. More generally still, any weighting
scheme that displays appropriate asymmetry in the weights
should asymptotically converge to the desired image, up to an
additive constant, in the limit of a sufficiently large number of
basis members [25].

B. Comparison of direct projection and ghost projection

Conventional image projection illuminates a specifically
fabricated mask for an appropriate length of time. Such a
scheme, with the inclusion of Poisson noise, has the SNR
relationship:

SNRi j = λIi j/
√

λIi j = √
λIi j,

where λ is the number of photons per pixel in the illumination
beam, and Ii j is the desired image expressed as a transmission
coefficient between 0 and 1. This leads to the global SNR of√

λE[I]. Comparing to the ghost-projection case of

SNR ≈
√

λE[I2]

N ′E[w]E[R]
,

where I is here considered to be zero-centered, we concede
that it is unlikely that ghost projection will ever outperform
direct projection techniques. Similar conclusions have been
drawn in the context of classical ghost imaging [35,44–46].
This comparison between direct and ghost projection does
presuppose, however, that a purpose built mask for direct pro-
jection already exists, or is readily constructible. Moreover,
there are some regimes of electromagnetic radiation or matter-
wave fields where constructing such a specific mask can be
physically infeasible due to unacceptably high aspect ratios
and/or precision machining required to create the correct
attenuation of the transmitted field. Whilst ghost projection
may be suboptimal compared to direct projection when con-
sidering the deleterious effects of Poisson noise, it has the
advantage of being universally applicable for any desired im-
age, using any illuminating field for which a spatially random
mask is available.

Another advantage is that ghost projection is inherently
free from the need for proximity correction, associated with
the transverse redistribution of transmitted-beam energy upon
coherent propagation from the exit surface of the mask to
the projection plane [6,7,47]. In a ghost-projection setting,
propagation distance is relative to where one measures the
random-matrix basis, and not the position of the mask used to
generate the random-matrix basis. This means that if the sub-
strate being projected onto is placed in the same location as the
measuring plane of the random-matrix basis (speckle field), no
propagation effects need be accounted for. Indeed, propaga-
tion effects may be used advantageously to sharpen speckles
produced by a spatially random mask, via propagation-based
phase contrast [48–50].

C. Practical random masks

Here we offer several comments regarding the practicali-
ties of constructing random masks for ghost projection.

(1) A single spatially random master mask may be trans-
versely scanned, to create a random-mask ensemble for the
purposes of ghost projection [25]. Moreover, as pointed out
by K. S. Morgan, two or more consecutive simultaneously
illuminated independently transversely scanned known ran-
dom master masks may be employed.2 This exponentially
increases the number of known random masks that may
be generated using a very small number of known random
master masks. That is, we may image the master masks
independently and then computationally reconstruct the corre-
spondingly much larger data-base of possible random masks –
the experimental requirements scale linearly while the gain in
number of masks is exponential in the number of consecutive
master masks. For example, if a single random mask can be
scanned to 103 different transverse locations in each of two
orthogonal transverse directions, then (i) (103)2 = 106 differ-
ent random masks can be generated using one transversely
scanned random master mask, but (ii) (106)2 = 1012 different
masks can be generated using two consecutive independently
translatable random master masks with the same transverse
positioning capability. For ghost-projection schemes in which
basis-filtration is employed, using say 104 post-filtration ran-
dom masks, then for the example two-master-mask scheme
given above, it is feasible that 104/1012 = 0.000001% may
be retained, out of the set of all possible masks. Such extreme
filtration may assist with optimizing quality metrics such as
SNR and contrast-to-offset ratio.

(2) For speckle-field realizations of the spatially random
ghost-projection masks, K. S. Morgan has noted that there
is some flexibility in choosing the form of the mask spa-
tial power spectrum.3 It is likely that the manner in which
radial spatial power spectra decay, with high radial spatial fre-
quency, will influence ghost-projection quality metrics such
as SNR and spatial resolution. Power-law decays, associated
with random-fractal screens, may be more favorable than e.g.,
Gaussian-type decay, for the purposes of ghost-projection

2Private communication from Kaye S. Morgan (Monash University,
Australia) to the authors, on June 24, 2021.

3Ibid.
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FIG. 13. Ghost-photocopier schemes for ghost projection. (a) Two-step scheme. In step 1, a ghost-imaging experiment is performed, with
an unknown sample illuminated by a set of reproducible but otherwise unknown random masks {Ri jk}, to give an associated set of bucket
signals {Ck}. In step 2, the measured bucket signals are used to determine the illumination times {tk} for the ghost-projection step of the ghost
photocopier. (b) Single-step scheme, in which the time-dependent bucket signal from the ghost-imaging arm is used to determine the shutter
exposure time in the ghost-projection arm.

resolution. Some parallels may be drawn, here, with recent
work on the use of pink-noise speckle patterns in the context
of computational ghost imaging [51].

(3) D. Pelliccia and S. D. Findlay have noted that it would
be interesting to investigate the tolerance of ghost projection,
to inaccuracies in the transverse positioning of the illuminated
mask or masks.4

(4) For color ghost projection, a small polyenergetic
source can be used to illuminate a thick spatially random
screen, namely, a screen that is sufficiently thick for strong
multiple scattering to be operative. For each transverse posi-
tion of such a source-plus-screen combination, an independent
speckle field will be generated for each energy band [43].

4Private communications from Daniele Pelliccia (Instruments &
Data Tools, Australia) and Scott D. Findlay (Monash University,
Australia) to the authors, on June 23 and June 24, 2021, respectively.

D. Combined raster scanning and ghost projection

Since SNR is typically inversely proportional5 to the res-
olution nm of the projected image, a combination of raster
scanning and ghost projection could be employed to improve
SNR. This would give a contiguous array of ghost projec-
tions, in a manner analogous to the ghost-imaging scheme in
Kingston et al. [34].

E. 2D and 3D ghost photocopier

An application of ghost projection would be to construct
a ghost photocopier where one could ghost image and ghost

5In the analytical cases of weighting and filtering the basis ac-
cording to the pseudocorrelation coefficient, SNR ∝ 1/(nm) and
SNR ∝ 1/

√
nm, respectively. For the numerically optimized case,

the relationship between SNR and resolution is a more complex
one which depends on the number of basis members available. If
N 
 nm, then the SNR will not necessarily be degraded, although the
computational expense of optimization will significantly increase. If
N ≈ O(nm), then the SNR will degrade with increased resolution.
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project an object in the same setup. Interestingly, in this
process one would not necessarily need to image the random-
basis set, as explained below.

A two-step ghost-photocopier scheme is shown in
Fig. 13(a). Step 1 corresponds to a conventional mask-based
classical ghost-imaging setup using a reproducible but other-
wise unknown set of random masks {Ri jk}. This enables the
pseudocorrelation coefficients {Ck}, which are equivalent to
suitably normalized bucket signals in the terminology of ghost
imaging [cf. Eq. (11)], to be measured. Step 2 of this scheme
uses the same set of masks to perform ghost projection, with
mask exposure times {tk} chosen based on the previously
measured pseudocorrelation coefficients [see e.g., Eq. (13)].
If the masks are not known, one of the analytical schemes in
the present paper can be used for the ghost-projection step.
Conversely, if the masks are previously measured or known a
priori, any of the schemes (analytical or numerical) could be
used for the ghost-projection step.

A single-step ghost-photocopier scheme is shown in
Fig. 13(b). Here a radiation source illuminates a series of
unknown random masks, with the beam transmitted by each
mask being passed through a beamsplitter. An object is placed
in one arm of the beamsplitter, enabling a time-dependent
bucket signal to be measured. Since this bucket signal is
proportional to the pseudocorrelation coefficient, it can be
used to drive the exposure time of a shutter in the other, ghost
projection, arm of the setup. Moreover, if the coherence time
of the source is comparable to or larger than the shutter re-
sponse time, one could dispense with the masks altogether and
instead employ the spatiotemporal speckles associated with
partially coherent sources, to generate the required ensemble
of random masks [52–54].

Finally, we mention that the schemes outlined here could
be performed in a 2D sense, as already indicated, or made
into a 3D-printing version for, e.g., volumeteric additive man-
ufacturing [14,15], via an extension of the concept of ghost
tomography [24,25,55].

There are close conceptual connections between the con-
cept of ghost photocopying and recent work on naked-eye
ghost imaging [56–58]. In naked-eye ghost imaging, real-time
bucket signals are used to obtain weights for structured-
illumination intensities using a suitable basis, with this
illumination then impinging on the human eye. The optical
persistence time of the eye—which is on the order of 20
ms [56,57]—then integrates over time, effectively summing
a number of consecutive illuminations, and thereby build-
ing up a ghost image in the human visual system. This
is closely related to ghost projection via pseudocorrelation
weights (Sec. III), in the following respects: both techniques
establish classical correlations between a set of structured
illuminations and the image being projected, both build up a
desired distribution of radiant exposure using an ensemble of
basis masks, both have a pedestal offset, both can work with
monochromatic and color images, projection-quality metrics
such as contrast and contrast-to-noise ratio are important in
both techniques, and both work in the temporal domain.

One key difference between the naked-eye ghost imaging
work and ghost projection in general, is the fact that ghost
projection does not require the presence of the object that is
being imaged. In ghost projection one has complete a priori

knowledge regarding the basis and the image that one wishes
to ghost project before even a single mask has been chosen,
which is not the case when an unknown sample is being
imaged. With this a priori knowledge, we need not necessarily
restrict ourselves to weightings that are linearly proportional
to the correlation, or pseudocorrelation coefficient, nor do
we need to use all possible basis members. Instead we can
computationally filter, or seek an optimized representation of
the desired image within the basis at hand. This allows us
to efficiently utilize over-complete, nonorthogonal bases in
a way that is competitive with orthonormal basis sets and
removes the need to manufacture said orthonormal basis set.
As was seen in the SNR results of Secs. IV and VII, significant
SNR boosts are obtainable by filtering or numerical optimiza-
tion compared to standard pseudocorrelation weightings for
an arbitrary basis set.

F. Numerical weights

Given the orders-of-magnitude improvement in ghost-
projection SNR using numerically derived weights in com-
parison to the analytical treatment, we can trade some of
this SNR improvement for additional desired attributes. Ex-
amples include (1) a reduction of the number of members
in the required basis set, (2) a reduction in the magnitude
of the pedestal to which the projected image is added, (3)
imposing the constraint of a minimum mask-weight value,
corresponding to a minimum nonzero mask exposure time,
and (4) maximizing SNR for the case of uniform weights
being applied to all masks.

Supposing the number of elements in the starting basis to
be sufficiently large (e.g., on the order of five times the number
of resolution elements in the desired ghost projection), it may
be realistic to seek many of the listed attributes to be attained,
while maintaining an acceptably high SNR in the ghost pro-
jection.

For the analytical treatments in Secs. III–VI, we derived
results for the expected SNR given the basis size, projec-
tion resolution and various contaminating noise contributions.
Several of these questions remain open for ghost projection
with numerically derived weights.

(1) Given N , n, m and I , what SNR should we expect?
(2) How do the numerical-weights and ghost-projection

SNR depend on the statistical characteristics of the random-
matrix basis, e.g., on the choice of statistical distribution
(uniform, binomial, Poissonian, Gaussian, etc.), variable over-
lap between matrices, the spatial power spectrum of the
random basis, or the expected value E[R] and variance Var[R]
of the basis?

(3) How do the numerical-weights and ghost-projection
SNR depend on aspects of the desired image such as its norm
E[I2] and entropy [59]?

(4) What noise-resolution uncertainty principle applies to
numerical-weights ghost projection?

(5) What size basis set will, to within a specified confi-
dence interval, ghost-project any image to a desired SNR?

(6) How might the numerical-optimization ghost-
projection scheme be extended to the case of color-image
ghost projection?
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IX. CONCLUSION

Ghost projection is an indirect projection technique that
creates a desired distribution of radiant exposure via a suitably
weighted linear combination of illuminated random masks.
The method is so termed on account of its conceptual parallels
with ghost imaging using randomly patterned masks.

Two analytical cases of ghost projection were investigated,
namely, a linearly weighted sum of random matrices and a
filtered sum of random matrices. In either case, both weights
and filtering were based on the pseudocorrelation coefficient
between the desired image and a specified ensemble of ran-
dom matrices. These two analytical cases, while providing
both conceptual clarity and continuity with our previous work
on ghost projection [25], have rather low inherent projection
efficiency. Accordingly, these two analytical cases of ghost
projection were augmented by numerically optimized filtra-
tion and weights, which were seen to significantly outperform
the analytically tractable cases in terms of inherent projection
efficiency.

To gain a more accurate impression of how ghost pro-
jection will perform in practice, two sources of noise were
considered. Poisson noise was used to model shot noise in the
photon counts. Gaussian noise was used to model errors in
the exposure shutter-opening times which physically realize
the weighting coefficients for each illuminated random mask.
With these realistic sources of noise, ghost projection can
still perform adequately for certain practical applications, e.g.,
achieving an SNR on the order of 10 for a contrast on the
order of 10 000 photon counts with a pedestal on the order of
100 000 counts.

As well as these monochromatic cases of ghost projec-
tion, we introduced the concept of color ghost projection,
whereby a desired spatial distribution of radiant exposure
could be achieved for a number of different energy channels.
This could be achieved, for example, by illuminating a single
thick spatially random screen using a broadband source that
is sufficiently small in spatial extent (i.e., sufficiently spatially
coherent) to create independent speckle images for each en-
ergy channel.

In addition to its fundamental interest as a means to “build
signals out of noise,” several possible future applications pro-
vide broad motivation for this work. The ghost-projection
concept may be useful for constructing data projectors for
radiation and matter wave fields (e.g., hard x rays and neu-
trons) for which such devices either do not exist or have
limited spatial resolution. Lithography using, e.g., short-
wavelength electromagnetic radiation, as well as atomic or
molecular beams, is another potential application. Three-
dimensional printing or volumetric additive manufacturing via
reverse tomography, particularly for electromagnetic radiation

at extreme ultra-violet and shorter wavelengths, constitutes
another possible avenue for future application. One final po-
tential application is ghost photocopying, which hybridizes
ghost-imaging measurement of a sample and subsequent
ghost-projection of the same sample.

A useful feature of ghost projection is its ability to employ
a single spatially random screen, as a universal mask for a
wide variety of radiation and matter wave fields. Another
advantage is its ability to utilize propagation-based phase
contrast in a constructive manner, to sidestep the need for high
aspect-ratio attenuation masks as well as being immune to
the proximity-correction problem. These advantages of ghost
projection should be balanced against the drawback of a sig-
nificant pedestal of uniform exposure, upon which the desired
contrast sits. While this pedestal may prove prohibitive for
certain applications, it can be reduced and in many cases,
adapted for.
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APPENDIX A: CORRELATION COEFFICIENT

Having introduced and explored the simpler pseudocorre-
lation coefficient defined in Eq. (20), it might appear natural to
extend consideration to the correlation coefficient itself. The
difference between the two is that in the pseudocorrelation
case, we normalize by the expected magnitude of a basis
member rather than the particular magnitude of each basis
member. Doing this has the drawback of suggesting that a
random-basis member with a higher average value is more
correlated with the desired image than it in fact is. The reason
for having introduced the pseudocorrelation coefficient first
[i.e., in Eq. (20) of the main text] is that the analysis is con-
siderably simpler and yet still yields the dominant descriptive
power that we are seeking. To justify these claims, consider
the genuine correlation coefficient

C̃k = Ri jkI i j√(
RαβkRαβ

k

)
(IμνIμν )

= Ri jkI i j√
nmE[I2]

(
RαβkRαβ

k

) . (A1)

This correlation coefficient can be approximated by taking
a Taylor series expansion of the denominator R2

αβkJαβ/(nm)
about its expected value E[R2], truncating to first order:

C̃k ≈ Ri jkI i j√
nmE[I2]

(
1√

nmE[R2]
−

(
R2

αβkJαβ

nm
− E[R2]

)
1

2
√

nmE[R2]3

)
≈ 3

2
Ck − Ri jkIi jR2

αβkJi jJαβ

2(nm)2
√

E[I2]E[R2]3
. (A2)

We can justify truncating this series at first order in
the limit that the product nm is large (i.e., a reason-

able resolution image) as the terms decrease by powers
of 1/(nm). Taking the expectation value of our truncated
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FIG. 14. (a) Overlay of the pseudocorrelation coefficient Ck [Eq. (20)] and correlation coefficient C̃k [Eq. (A1)] for the zero-centered test
image expressed in Fig. 4(a), for 200 000 uniformly random 40 × 40 random matrix basis realizations. Note, these histograms overlap one
another and appear nearly identical. (b) Non-zero-centered test image for the comparison of the statistical properties of the pseudocorrelation
coefficient and correlation coefficient. (c) Overlay of Ck and C̃k for the non-zero-centered image expressed in (b), for 200 000 uniformly random
40 × 40 random matrix basis realizations.

series yields

E[C̃k] ≈ E[Ck] − E[I](E[R3] − E[R2]E[R])

2nm
√

E[I2]E[R2]3
.

Observe that for a zero-centered image, the expected cor-
relation and pseudocorrelation is the same to first order.
To determine if it is worthwhile to calculate the variance
of Eq. (A2), consider the simulations in Fig. 14. For a
zero-centered image (i.e., E[I] = 0), there is little func-
tional difference between the statistical properties of the
correlation coefficient and pseudocorrelation coefficient. For
the non-zero-centered image case, we do see a noticeable
reduction in variance for the correlation coefficient as com-
pared to the pseudocorrelation coefficient. How this impacts
the reconstruction of a ghost projection is, at this stage,
unknown. Owing to the negligible difference between the
pseudocorrelation coefficient and correlation coefficient for
the zero-centered image case (which can often be arranged),
and owing to the gains in simplicity, we will continue using
the pseudocorrelation coefficient over the correlation coeffi-
cient for the purposes of this work.

APPENDIX B: PSEUDOCORRELATION FILTERED
GHOST PROJECTION WITH LINEAR WEIGHTS

Suppose we wish to construct a ghost projection that filters
out a portion of the random-matrix basis and then linearly
weights the remaining elements according to the pseudocor-
relation coefficient in some optimum fashion. That is, we
consider the scheme

Pi j (Cmin, α, β ) = (αCk − βJk )R′ k
i j ,

where Cmin, α and β are parameters to be determined via opti-
mization of SNR. Our aim in doing this is to produce a scheme
that achieves better SNR than just weighting or filtering alone.
Note that, in this Appendix, we restrict ourselves to the case
that our desired image is zero-centered, i.e., E[I] = 0.

From filtering, we know that the expectation value of each
basis member is skewed according to

E[R′
i j] = E[R]Ji j + Ii jγ ,

where
γ = (E[C′] − E[C])

√
E[R2]/E[I2].

To make the above scheme viable, we need to determine the
scaling factor of our desired image, together with the offset
that this produces in expectation value. Motivated by what
we have seen with the previous case of pseudocorrelation
filtering, we obtained a scaling factor of the expected corre-
lation, normalized to the appropriate length (i.e., we divide
by the magnitude of the basis member and multiply by the
magnitude of the image,

√
E[I2]/E[R2]). In this case, we

expect the scaling constant that we need to divide by, to be
E[αC′2 − βC′]

√
E[R2]/E[I2]. Moreover, for the offset value

inherent to this scheme, we can deduce this for the nonfiltered,
zero image Ii j = 0 case to be E[R](αE[C′] − β ). Making these
appropriate substitutions, we obtain the expected result of the
scheme to be

E[Pi j] = (
αE[C′2] − βE[C′]

)√E[R2]

E[I2]
Ii j

+ E[R](αE[C′] − β ).

This implies that for our scheme to produce our desired image,
we need to normalize the coefficient of Ii j . Redefining our
scheme then, we have

Pi j = tkR′ k
i j ≈ Ii j + E[R]

(
E[C′] − β

α

)
E[C′2] − β

α
E[C′]

√
E[I2]

E[R2]
Ji j,

where

tk = Ck − β

α
Jk

N ′(E[C′2] − β

α
E[C′]

)
√

E[I2]

E[R2]
.

We performed two simulations for the same conditions as
the pseudocorrelation filtered ghost projection in Sec. IV F,
one with the optimal pseudocorrelation cutoff Cmin = E[C] +
0.612

√
Var[C] [Fig. 15(a)] and another with the reduced cut-

off value of Cmin = E[C], both with β

α
= Cmin. Based on the

very mild reduction in variance exhibited in Fig. 15(b), we
will not pursue analytically determining the variance of this
scheme, nor calculating an SNR uncertainty principle. There
is a greater relative improvement between the filtered-and-
weighted scheme as compared to the just-filtered scheme for
the sub-optimal cutoff criterion of Cmin = E[C], however, this
relative improvement is still short of the former case. The
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FIG. 15. (a) Pseudocorrelation filtered ghost projection with linear weights for the same conditions as Fig. 4 in Sec. IV F, with β

α
= Cmin.

(b) The noise obtained in the pseudocorrelation filtered ghost projection with linear weights, as compared to without linear weights. (c) The
noise obtained in the pseudocorrelation filtered ghost projection with linear weights, as compared to without linear weights, for sub-optimal
pseudocorrelation cutoff Cmin = E[C]. Note that, despite the fact that the linear weights indeed out perform the uniform weights, the variance
of this case is still higher than for the optimal pseudocorrelation cutoff of Cmin = E[C] + 0.612

√
Var[C].

reason we suspect the gains are so mild is that, although we
are privileging those basis members with a higher pseudocor-
relation value, the variance within pseudocorrelation values is
low. That is, those that are relatively more correlated are still
not correlated to any high degree in an absolute sense, and
the differentiation of these pseudocorrelation values does not
produce significant results for the conditions explored above.
Moreover, it is worth noting that, even for the very mild gains
in reduced variance, this comes at the significant complexity
cost of having to expose each mask for its own unique period
of time, as opposed to exposing all masks for the same period
of time.

APPENDIX C: MINIMUM NUMBER OF BASIS VECTORS
TO GUARANTEE NON-NEGATIVE COEFFICIENTS

Ghost projection can conceptually be thought as a non-
negative basis representation. One naturally arising question
is then, what is the minimum number of basis vectors one
needs to guarantee non-negative coefficients exist? In an
unrestricted-weights context, such a question would have the
answer of an orthogonal basis.

We remark that non-negative coefficients will always exist
if one has an orthogonal basis paired with a complementary
orthogonal basis that is a mirrored (i.e., multiplied by −1)
version of the original, e.g., in two dimensions, {(1, 0), (0, 1)}
paired with {(−1, 0), (0,−1)}. However, this is not the mini-
mal number of basis vectors required to ensure a non-negative
solution exists.

Theorem 1. For an n-dimensional linear vector space, (n +
1) basis vectors can be arranged to guarantee non-negative
coefficients exist.

Proof. Base case: starting with the 1D case, we can see that
the basis set {(1), (−1)} ensures non-negative coefficients can
be found to express every real number.

To increase by a dimension, we propose the following
algorithm.

(1) Indexing the basis vectors chronologically according
to (1) as the first, (−1) as the second, and so on for subsequent
basis vectors that are introduced.

(2) Adding a zero column to the end of all basis vectors.

(3) Taking the last basis vector, creating two copies, and
replacing the 0 in the last column with

√
3 and −√

3, respec-
tively.

In going from 1D to 2D, this amounts to taking {(1), (−1)}
and transforming it to {(1, 0), (−1,

√
3), (−1,−√

3)}. Graph-
ically speaking, these three basis vectors are such that the
same angle is obtained between any two vectors. Note, they
need not necessarily be equally angularly spaced, but, for
the sake of argument, we assume them to be. In general, the
basis vector being ‘split’ could take any angle between (0,90)
degrees from its previous orientation.

To prove these basis vectors guarantee non-negative coeffi-
cients, we will show that a non-negative solution exists for the
vectors {(1, 0), (0, 1), (−1, 0), (0,−1), (0, 0)} – which are an
orthonormal set, the complementary mirrored orthonormal
set and a zero vector (note, constructing the zero vector is
an important property for the induction step). Assigning our
basis vectors a name, let’s call 
a = (1, 0), 
b = (−1,

√
3) and


c = (−1,−√
3). From here, we can see that 
a = (1, 0), (
a +


b)/
√

3 = (0, 1), 
a + 
b + 
c = (−1, 0), (
a + 
c)/
√

3 = (0,−1)
and 2
a + 
b + 
c = (0, 0).

Induction step: assume that we have n + 1 basis vectors for
an n-dimensional space that have a nontrivial, non-negative
solution for (i) the orthonormal basis, (ii) the mirrored com-
plementary orthonormal basis, and (iii) the zero vector. We
notate this basis set by the matrix Bi j where the rows i ∈
[1, n + 1] index the different basis vectors and the columns
j ∈ [1, n] index the elements of each basis vector. For this
matrix, let us also explicitly define the nontrivial, non-negative
row vector Tn with dimensions [1,n + 1] that, when acting
from the left on B, achieves a vector of all zeros, i.e., Tn =
(n, n − 1, . . . , 4, 3, 2, 1, 1).

Moving onto the (n + 1)-dimensional space, we have the
basis set {(Bi j, 0) ∀ i ∈ [1, n], (B(n+1) j,

√
3), (B(n+1) j,−

√
3)}.

To prove this has non-negative coefficients for all possible
vectors in the (n + 1)-dimensional space, we need to be able
to create (0, . . . , 0, 1), (0, . . . , 0,−1) and (0, . . . , 0, 0). To
achieve the first case, take the matrix (Bi j, 0)∀i ∈ [1, n] and
augment it with (B(n+1) j,

√
3) in the final row, then apply Tn

and divide by
√

3. To achieve the second case, we take the
matrix (Bi j, 0)∀i ∈ [1, n] and augment it with (B(n+1) j,−

√
3)
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in the final row, then apply Tn and divide by
√

3. To achieve the
final case, we can augment the matrix (Bi j, 0)∀i ∈ [1, n] with
both (B(n+1) j,

√
3) and (B(n+1) j,−

√
3) in the final two rows,

and define the new nontrivial, non-negative row vector Tn+1

with dimensions [1,n + 2] that, when acting from the left on
B, achieves a vector of all zeros. Explicitly, this transformation
is T(n+1) = (n + 1, n, . . . , 4, 3, 2, 1, 1).

Conclusion: we have shown that with three vectors, we can
ensure a non-negative solution exists for the coefficients of
a vector in 2D, as well as a nontrivial, non-negative solution
to create an all-zero vector. Assuming these properties hold
for n dimensions, we showed they must hold for (n + 1)
dimensions. So, since they hold for 2D, they must hold for
3D. Since they hold for 3D, they must hold for 4D, and so
on. �
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