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We study modulational instability (MI) in optical fibers with random group-velocity dispersion (GVD). We
consider Gaussian and dichotomous colored stochastic processes. We resort to different analytical methods
(namely, the cumulant expansion and the functional approach) and assess their reliability in estimating the MI
gain of stochastic origin. If the power spectral density (PSD) of the GVD fluctuations is centered at null wave
number, we obtain low-frequency MI sidelobes which converge to those given by a white-noise perturbation
when the correlation length tends to 0. If instead the stochastic processes are modulated in space, one or more MI
sidelobe pairs corresponding to the well-known parametric resonance (PR) condition can be found. A transition
from small and broad sidelobes to peaks nearly indistinguishable from PR-MI is predicted, in the limit of large
perturbation amplitudes and correlation lengths of the random process. We find that the cumulant expansion
provides good analytical estimates for small PSD values and small correlation lengths, when the MI gain is very
small. The functional approach is rigorous only for the dichotomous processes, but allows us to model a wider
range of parameters and to predict the existence of MI sidelobes comparable to those observed in homogeneous
fibers of anomalous GVD.
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I. INTRODUCTION

A physical system exhibiting an interplay of weak non-
linearity and group velocity dispersion (GVD) is subject to
modulational instability (MI), i.e., the destabilization of a
homogeneous state (plane or continuous waves), via the expo-
nential growth of small harmonic perturbations on a uniform
background [1]. After pioneering works on MI in electromag-
netic waves [2], fluid mechanics [3,4], and plasmas [5], in the
1980s the phenomenon was observed in nonlinear fiber optics
[6]. In uniform fibers, MI arises for anomalous (negative)
GVD, but it may also appear for normal GVD if polarization
[7], higher-order modes [8], or higher-order dispersion are
considered [9]. A different kind of MI related to a parametric
resonance (PR) mechanism emerges when the GVD or the
nonlinearity of the fiber are periodically modulated [10–13].

The impact of a random variation of GVD on MI was also
the subject of a considerable research effort. The particular
case in which the GVD is perturbed by a Gaussian white
noise, i.e., a process exhibiting a vanishing correlation length
or equivalently a flat power spectral density (PSD), is exactly
solvable [14–18]. When the unperturbed fiber has an anoma-
lous GVD, the conventional MI gain profile is deformed due
to the random perturbation. In addition, MI sidebands of
stochastic origin appear in the case of normal GVD. A white
noise, however, implies arbitrarily large variations of GVD
on arbitrarily small scales: an idealization that does not al-
ways provide a relevant modeling of the randomness that may

occur in physical fibers. A nonconclusive theoretical study of
parametric amplification in the case of a GVD perturbed by a
Gaussian process with a finite correlation length was proposed
in [19], and a numerical study can be found in [20].

We aim at studying the MI problem in a class of
random-GVD fibers that is both experimentally accessible
and theoretically tractable. In [21], we studied the case of a
GVD perturbed by randomly located sharp and large kicks.
Two different families of random processes were chosen
to generate their mutual spacing and amplitude. Differ-
ent MI sidebands were predicted, including multibump
ones around zero detuning and others localized around PR
frequencies.

Here, we consider random fluctuations extended in space
as in Ref. [14], but focus on colored processes exhibiting an
exponentially decaying autocorrelation function. A low-pass
(LP) and a band-pass (BP, modulated) case are considered.
We resort to cumulant expansion [22–28], functional meth-
ods [29–31], and numerical simulations. The LP processes
converge to the white-noise results for vanishing correlation
lengths. The MI sidelobes are located in the same detuning
range and have amplitudes of the same order of magnitude of
those calculated from white noise. The BP processes yield PR-
like MI sidebands that are also comparable (in their maximal
values) to the white-noise MI gain. For this reason, the white
noise turns out to be a reference for many crucial properties
of the MI gain in a more generic setting, even though there is
little hope of an experimental realization of it.
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Since the values of frequency detuning span a large range,
the validity of the different analytical methods has to be ques-
tioned, like in other physical settings and systems [32,33]. We
thus have to rely on different approaches and comparatively
assess their soundness in describing the different features of
the MI sidelobes (position, height, width).

The rest of the paper is organized as follows. After pre-
senting the model equations (Sec. II), we study in Sec. III the
low-pass random fluctuation by means of the two different
approaches mentioned above. We then analyze in Sec. IV
band-pass random fluctuations, for which we find convenient
to introduce an averaging approach to the stochastic equa-
tions. In each case we present a thorough comparison of
analytical approaches to numerical results. To close the paper,
we report our conclusions and perspectives.

II. MODEL DESCRIPTION

The propagation of optical pulses in a nonlinear optical
fiber can be modeled by the universal nonlinear Schrödinger
equation (NLSE)

i∂zU − 1
2β2(z)∂ttU + γ |U |2U = 0. (1)

Here U (z, t ) is the envelope of the optical pulse field in units
of

√
W , function of the propagation distance z and time t in

the frame of reference propagating at the group velocity of
the mode propagating in the fiber, β2 is the GVD, and γ is
the nonlinear coefficient [34]. They depend, respectively, on
the dispersion relation and electromagnetic field profile of the
fundamental mode propagating in the optical fiber. We sup-
pose that β2 fluctuates randomly in z, while γ stays constant.
This is reasonable if we consider an optical fiber operating
near the zero-dispersion point, where the dispersion relation
is very sensitive to geometry and refractive index contrast, but
the confinement of light in the mode is not.

Let β2(z) = β0
2 + δβ(z), where β0

2 > 0 (normal average
GVD) and δβ(z) is a stochastic process of zero mean, that
we specify below. We observe that, for δβ = 0, Eq. (1)
has a continuous wave (t-independent) solution U0(z) =√

P exp(iγ Pz).
In order to study the stability of this continuous-wave so-

lution, we insert in Eq. (1) the perturbed solution U (z, t ) =
[
√

P + x̌1(z, t ) + ix̌2(z, t )] exp(iγ Pz), linearize and Fourier
transform the resulting equation with respect to t (ω is used
as the associated angular frequency detuning from the carrier
U0), to obtain

dx

dz
=

[
0 −g(z)

h(z) 0

]
x, (2)

with x ≡ (x1, x2)T (functions of ω and z), g(z) = g0 + δg(z),
and h(z) = h0 + δg(z), with g0 ≡ β0

2
ω2

2 , h0 ≡ g0 + 2γ P, and

δg(z) ≡ δβ(z)ω2

2 . Equation (2) is a system of stochastic dif-
ferential equations (SDEs) for each value ω. In the following
sections we will discuss how to reduce it to a system of
ordinary differential equations (ODEs) for the first and second
moments of the probability density function of x in order to
estimate the MI gain.

We recall that we consider only normal average GVD, thus,

k2 ≡ g0h0 > 0 (3)

and no conventional MI appears for δβ(z) = 0. The MI side-
bands we predict below are therefore completely ascribed to
random fluctuations. The case of anomalous average GVD
will be the subject of future work.

We focus here on two families of random processes, where
the stochastic process δβ is characterized by two parameters
N0 > 0 and B > 0. The first family, for which we denote δβ ≡
χ , is characterized by an autocorrelation function of the form

Rχ (ζ ≡ z − z′) ≡ 〈χ (z)χ (z′)〉 = N0B

4
exp(−B|ζ |). (4)

We recall that the variance of the process is σ 2
χ = Rχ (0) =

N0B
4 . For B → ∞, Rχ → N0

2 δ(ζ ), i.e., the white-noise auto-
correlation function. Different stochastic processes exhibit
this same autocorrelation function. Here, we consider the
Gaussian (often denoted in the physics literature as Ornstein-
Uhlenbeck [28]) and the dichotomous processes, which find
important applications in physics and allow us to obtain work-
able approximations [33].

Both are stationary in z. By virtue of the Wiener-Khinchin
theorem, the PSD of χ coincides with the Fourier transform
of Rχ :

Sχ (κ ) =
∫ ∞

−∞
dζ Rχ (ζ ) exp(iκζ ) = N0

2

B2

B2 + κ2
. (5)

The Gaussian process is numerically generated in the κ

domain by filtering an approximated white noise of PSD N0/2
by means of a low-pass filter of transfer function

HLP(κ ) = B

B + iκ
. (6)

The dichotomous process is more conveniently obtained di-
rectly in the z domain by switching the amplitude of the
fluctuation between ±σχ with an exponentially distributed
waiting (i.e., between switching points) length with mean
2/B. Both are pertinent to fiber optics. Indeed, the Gaussian
process corresponds to a continuous variation of GVD as can
be obtained by varying the fiber radius during the drawing
process. The dichotomous process corresponds to splicing
together fibers with different GVD β2 = β0

2 (1 ± σχ ) and ran-
dom lengths. We refer to the processes belonging to this class,
with autocorrelation function as in Eq. (4) and PSD as in
Eq. (6) as LP processes.

The second family of stochastic processes, for which we
denote δβ ≡ ξ , is obtained as the modulated version of χ with
central wave number κ0 = 2π

0
> 0 (0 is the associated spa-

tial period), that is written in phase-quadrature representation

ξ (z) = ψ1(z) cos κ0z + ψ2(z) sin κ0z. (7)

Here, ψ1,2 are two stationary (in z) and independent random
processes with zero mean and autocorrelation functions

Rψi (ζ ) = N0B

2
exp(−B|ζ |), (8)

for i = 1, 2; moreover, 〈ψiψ j〉 = N0B
2 δi j . In analogy to χ , we

consider either two Gaussian or two dichotomous processes
for ψ1,2. They are generated according to their distribution as
is done for χ . The process ξ thus exhibits an autocorrelation
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function of the form

Rξ (ζ ) = N0B

2
cos κ0ζ exp(−B|ζ |). (9)

The variance of the process is σ 2
ξ = N0B

2 , like for ψ1,2.
The PSD of ξ reads as

Sξ (κ ) = N0

2

[
B2

B2 + (κ − κ0)2
+ B2

B2 + (κ + κ0)2

]
. (10)

We note that, for B 	 κ0, Sξ is centered approximately around
the wave number ±κ0, with Sξ (±κ0) ≈ N0

2 = Sχ (0) and band-
width B (in wave number units). We refer to this family with
autocorrelation function as in Eq. (9) and PSD as in Eq. (10)
as BP processes.

For both LP and BP families, we employ the definition
of correlation length [35] ζ c ≡ 1

R(0)

∫ ∞
0 dζ |R(ζ )|, which gives

ζ c
χ = 1/B for χ and ζ c

ξ ≈ 2/(πB) for ξ , if B 	 κ0.
In the next two sections we will study the effect χ and ξ ,

respectively, on the MI predicted by Eq. (2).

III. LOW-PASS RANDOM DISPERSION

First we consider processes with the autocorrelation func-
tion given in Eq. (4). We will discuss both the first and the
second moment equations associated to Eq. (2).

A. Cumulant expansion (first moments)

The cumulant expansion yields a series development for
the ODEs associated to a SDE [28]. It is similar to the Dyson
series of scattering theory [36] and provides a solid base for

more ad hoc schemes [22]. See [26] for a systematic deriva-
tion of terms to arbitrary order.

Let us rewrite Eq. (2) in the standard form ẋ = [A1 +
αη(z)C1]x with

A1 =
[

0 −g0

h0 0

]
, C1 =

[
0 −1
1 0

]
,

α = ω2

4

√
N0B and η = 2χ/

√
N0B a random process with unit

variance and zero mean. The expansion is performed in the
formal parameter α. To second order (the first-order term is
obviously 0), we write the ODE for the first moment 〈x〉 =
(〈x1〉, 〈x2〉)T as

d

dz
〈x〉 = [

A1 + α2K1
2

]〈x〉, (11)

with

K1
2 =

∫ ∞

0
dζ C1eA1ζC1e−A1ζ Rη(ζ ). (12)

Other terms can be added in the expansion of Eq. (11): their
contribution to the solution rapidly decreases if

ε ≡ αζ c (13)

is small, i.e., ω2

4

√
N0
B 	 1. For large detuning or small filter

bandwidth B, the approximation may be invalid. A fixed initial
condition x(0) can be considered and the solutions of Eq. (11)
do not keep memory of it for z � ζc. The long-term dynamics
being our main focus, we set the limit of integration to infinity
in Eq. (12) (see [25]).

By tedious but straightforward algebra, we obtain

d

dz
〈x〉 =

[−ω4

4
g0

2k2 [(g0 + h0)c1 − (h0 − g0)c2] −g0 + ω4

8k (h0 − g0)c3

h0 + ω4

8k (h0 − g0)c3 −ω4

4
h0
2k2 [(g0 + h0)c1 + (h0 − g0)c2]

]
〈x〉, (14)

with

c1 ≡
∫ ∞

0
dζ Rχ (ζ ) = 1

2
Sχ (0) = N0

4
,

c2 ≡
∫ ∞

0
dζ Rχ (ζ ) cos 2kζ = 1

2
Sχ (2k) = N0B2

4

1

B2 + 4k2
,

c3 ≡
∞∫

0

dζ Rχ (ζ ) sin(2kζ ) = N0Bk

2

1

B2 + 4k2
. (15)

Since ci > 0, i = 1, 2, 3, for all ω, and c1 > c2, it is easy to
verify that the eigenvalues of the matrix in Eq. (14) have both
a negative real part, so that the system (14) does not predict
any MI gain. This finding is analogous to the conventional
harmonic oscillator with random frequency [28,33], for which
the first moment undergoes only damping. For this reason it is
necessary to resort to the equations for the second moments.

We recall that, for white noise, the cumulant expansion at
second order is exact and in that limit B → ∞, c1 = c2 and
c3 = 0, so the eigenvalues of Eq. (14) reduce to Eq. (23) of
Ref. [14].

B. Cumulant expansion (second moments)

We now consider second moments. First we let X1 = x2
1,

X2 = x2
2, and X3 = x1x2 and derive from Eq. (2) a system for

their evolution, which reads as

d

dz
X =

⎡
⎣ 0 0 −2g(z)

0 0 2h(z)
h(z) −g(z) 0

⎤
⎦X. (16)

In order to perform the cumulant expansion, we write
Eq. (16) in standard form by letting

A2 =
⎡
⎣ 0 0 −2g0

0 0 2h0

h0 −g0 0

⎤
⎦, C2 =

⎡
⎣0 0 −2

0 0 2
1 −1 0

⎤
⎦,

the other quantities α and η being the same as in the previous
subsection.

Up to second order, the cumulant expansion reads as

d

dz
〈X 〉 = [

A2 + α2K2
2

]〈X 〉,

with K2
2 =

∫ ∞

0
dζ C2eA2ζC2e−A2ζ Rη(ζ ), (17)
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which gives

d

dz
〈X 〉 =

⎡
⎢⎣

− ω4

4g0
[(g0 + h0)c1 + (g0 − h0)c2] ω4

4h0
[(g0 + h0)c1 − (g0 − h0)c2] −2g0

ω4

4g0
[(g0 + h0)c1 + (g0 − h0)c2] − ω4

4h0
[(g0 + h0)c1 − (g0 − h0)c2] 2h0

h0 + ω4

4k (h0 − g0)c3 −g0 + ω4

4k (h0 − g0)c3 − ω4

4k2 [(g0 + h0)2c1 − (g0 − h0)2c2]

⎤
⎥⎦〈X 〉,

(18)

with the ci’s defined as above. The validity condition of the
expansion is the same as in the previous subsection.

As in Ref. [21], the MI of stochastic origin is related
to the growth rate of the second moment. The eigenvalues
of the matrix in Eq. (18) can be written analytically. Their
form is rather complicated: in general we have two complex-
conjugate eigenvalues (λ±) with negative real part and one
positive real eigenvalue λ0. The MI gain is thus defined as
G2(ω) ≡ λ0

2 . Since G2(ω) is small for small N0, we proceed
like in Ref. [14] to derive the following approximation:

G2(ω) ≈ 4(γ P)2kω4
{
8c2k3 + c3ω

4
[
c1 j2

0 − 4c2(γ P)2
]}

64k6 − 32c3(γ P)2k3ω4 − ω8
[
c1 j2

0 − 4c2(γ P)2
] ,

(19)
with j0 ≡ g0 + h0. Nevertheless, this expression is still very
cumbersome and, below, we rely only on the numerically
computed eigenvalue λ0.

We note that the cumulant expansion could be extended
to fourth order (the process being Gaussian, the third-order
terms vanish), but the resulting terms are very involved and do
not clarify the behavior of gain at large ω, where the method
breaks down (see below).

C. Functional approach

An alternative approach follows [33,37] and generalizes
the use of Furustu-Novikov-Shapiro-Loginov formulas, on
which the treatment of white noise in Ref. [14] is based.

Let us consider one of the second moments Xi, i = 1, 2, 3.
They are functionals of δg. Since δg ∝ χ , its autocorrelation
function has the form of Eq. (4). According to Ref. [31], we
have 〈

δg
dXi

dz

〉
=

(
d

dz
+ B

)
〈δgXi〉. (20)

Two steps are needed to write an averaged system: (i)
average directly Eq. (16); (ii) multiply each row by δg and
average. We introduce three new variables, X3+i ≡ δgXi and,
in order to truncate the system, we assume 〈δg2Xi〉 = σ 2

δg〈Xi〉,
where σ 2

δg ≡ N0B ω4

16 is the variance of the process. This last
assumption is rigorously valid only for a dichotomous pro-
cess [33] and in general an infinite hierarchy of equations is
obtained for a Gaussian one (see [31]).

We obtain a sixth-order system of ODEs

d

dz
〈X 〉 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 −2g0 0 0 −2
0 0 2h0 0 0 2
h0 −g0 0 1 −1 0
0 0 −2σ 2

δg −B 0 −2g0

0 0 2σ 2
δg 0 −B 2h0

σ 2
δg −σ 2

δg 0 h0 −g0 −B

⎤
⎥⎥⎥⎥⎥⎥⎦

〈X 〉.

(21)

The matrix in Eq. (21) has six eigenvalues. We observe nu-
merically that one is real and negative, one (λ0) is real and
positive, the last four are two pairs of complex-conjugate
values with negative real part. The MI gain is defined as above,
G2(ω) ≡ λ0

2 . By numerical inspection, we notice that the sys-
tem in Eq. (21) generally gives different eigenvalues with
respect to Eq. (18). We stress that, in contrast to Sec. III B,
the accuracy of the functional approach does not require any
condition on ε. However, in the white-noise limit of B → ∞,
the system reduces to three independent variables [33] and we
obtain the Eqs. (26)–(30) of [14], which as expected coincide
with the cumulant expansion results.

In the next subsection, we will show what are the limits
of validity of the two approximations and which fits better to
numerical results.

D. Results

In order to validate our theoretical analysis, we resort to
solving Eq. (2) by generating a large number N of realizations
of χ and studying the moments of the resulting sample of
solutions. The solution of Eq. (2) is known exactly for piece-
wise constant β2(z) in terms of transfer matrices [34]. For
the Gaussian process, we choose the length L of the domain
sufficiently large to ensure that the sampling rate in the spatial
frequency, i.e., �κ = 2π

L , fairly represents the PSD of the pro-
cess, namely, B/�κ 	 1. An array of identically distributed
Gaussian random variables of zero mean and variance σ 2 =
N0
2�z , with �z the sampling distance in z (over which the disper-
sion is assumed constant), is generated numerically. This array
is transformed to the κ domain by means of FFT, then multi-
plied by the Lorentzian filter of Eq. (6) and transformed back
to space domain. A realization of the dichotomous process is
instead obtained in the z domain, by randomly generating the
switching distances (where χ changes sign) from a randomly
generated exponential distribution of mean 2/B. Between two
switching points, the GVD is assumed constant.

We solve Eq. (2) for a given initial condition
(x1(0), x2(0))T = (1, 0), corresponding to balanced
sidebands, over each random sequence of constant
dispersion segments, to obtain a set of output vectors
(x1(L), x2(L))T from which we estimate the MI gain. Let
Pout ≡ x2

1 (L) + x2
2 (L). We then compute the mean gain,

defined as [20,21]

G ≡ 1

2L
ln

〈Pout

Pin

〉
. (22)

In all our results we take γ P = β0
2 = 1. This is equivalent

to putting Eq. (1) in the standard adimensional form.
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FIG. 1. MI gain as a function of detuning ω for a LP random
dispersion. Comparison of numerical values for a Gaussian (blue
solid lines) and dichotomous process (green dotted lines) obtained
from Eq. (2) with the estimates provided by Eq. (18) (red dashed
lines) and by Eq. (21) (dashed-dotted purple lines). We include also
the gain corresponding to the white process (yellow dotted line with
pluses). In (a) N0 = 0.005 and B = 4π , so that ε < 0.5 over the
considered ω range, (b) N0 = 0.4 and B = 4π , so that ε ≈ 1 around
the maximum gain. The inset in (a) shows a single realization of the
two processes.

In Fig. 1 we consider two examples of MI gain curves. We
notice that the sidelobes exhibit a single maximum Gmax at
detuning ωmax.

We consider two different values of N0. For small values,
the gain is generally small [see Fig. 1(a)], where N0 = 0.005.
We choose a long domain L = 5000 to prevent finite-size
effects that may appear at small ω, where the transmission
Pout/Pin grows as a power law [38], and �z = 0.01 for the
Gaussian case. Satisfactory statistics are obtained for N =
2000.

In this case ε ≈ 0.5 at ω = 10 [see the definition of ε in
(13)], the cumulant expansion is thus expected to be valid.
The functional approach gives very similar results, apart from
some deviations in the large-ω tails. The numerical data show
that the two processes provide the same trend, that matches
almost perfectly with the analytical estimates (the functional
approach proves more accurate in the tails, as expected). The
behavior near ω = 0 is due to the above-mentioned finite-
size effects. We notice that the LP process provides a much
narrower and smaller gain than the white noise (dotted yel-
low line with pluses). In this regime, the correlations of the
stochastic process suppress the MI gain.

Then we study the case of an intermediate value N0 = 0.4,
where ε > 1. We choose L = 50, �z = 0.01, and N = 1000.
We show in Fig. 1(b) how the numerical results compare to
the analytical estimates. The functional approach proves very
accurate for the dichotomous process over the full range of
ω. The cumulant expansion models the numerical data quite
well, except in the large-ω tails. We notice that the white-noise
gain is smaller than the LP gain lobes, particularly for the di-
chotomous case. Thus, for large N0, correlations can improve
the MI gain.

In Figs. 2 and 3 we show the effect of variations of
B on ωmax and Gmax, respectively; L, �z, and N are cho-
sen to guarantee a satisfactory statistical sample for each
point.

For N0 = 0.005 [Figs. 2(a) and 3(a)] the position as well
as the value of the maximum gain are, for both stochastic pro-
cesses, in the same range of values and are, within the residual
oscillation margins, well approximated by both methods. Both
ωmax and Gmax are monotone increasing functions of B. As
B → +∞, they converge from below to the corresponding
values for a white-noise process. The limiting values are not
shown because they are well beyond the axis scales.

The behavior for N0 = 0.4 is very different [Figs. 2(b) and
3(b)]. First, for the dichotomous case, the numerical points
are well approximated by the eigenvalues of Eq. (21). The
maximum MI gain exhibits a sharp peak [see Fig. 3(b)]. We
notice in Fig. 2(b) that ωmax diverges for this value of B: this
means that the gain lobe never decays.

To understand this phenomenon, we study the eigenvalues
of Eq. (21) at ω → ∞ and we notice that, for σδg = g0, i.e.,
B = 4(β0

2 )2/N0, G2(ω) converges, for small N0, to Gmax ≈
1
4 [−B +

√
B2+B

√
B2+64(γ P)2

2 ]. Notice also that for this value

σ 2
χ = 1, i.e., in dimensional units the GVD switches from

0 to 2β0
2 . In the present case, B = 10 and Gmax ≈ 0.17, as

observed in Fig. 3(b). For N0 > 1, the reasoning is still valid:
the value of B for which G2(ω) does not decay at ω → ∞
is well predicted, while its value is generally larger than the
approximated Gmax above. From a physical point of view,
this case is very pathological because higher-order dispersion
effects should be included in Eq. (1).

For the Gaussian process, ωmax and Gmax stay close to the
white-noise limit (yellow dotted line) even for small B and are
satisfactorily described by the cumulant expansion for large B.
As expected, the cumulant expansion is not accurate for small
B and is very different from the estimate of the functional
approach.
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FIG. 2. Detuning at the gain maximum as a function of B. Nu-
merical results of Gaussian (blue crosses) and dichotomous (green
pluses) process are compared to Eq. (18) (red dashed line) and
Eq. (21) (purple dashed-dotted line). We include ωmax for the white
noise, too, as reference (yellow dotted line). The dashed vertical lines
highlight the value of B used in Fig. 1. (a) N0 = 0.005, (b) N0 = 0.4.

We conclude that the cumulant expansion provides an ac-
curate approximation for Gmax and ωmax for the Gaussian
process. We recall that, on the contrary, this is not the case
for the behavior of the MI gain at large ω [see Fig. 1(b)].

In conclusion, the LP processes yield a very small gain for
ε 	 1, always less than white-noise limit. For ε ∼ 1, Gmax

can yield an MI gain larger than the white-noise gain, but is
about one order of magnitude smaller than the conventional
MI gain in homogeneous fibers with anomalous GVD.

IV. NARROW-BAND RANDOM DISPERSION

Here we consider the modulated process ξ with the au-
tocorrelation function in Eq. (9), for which a new degree of
freedom κ0 is included. We start directly from Eq. (16).

FIG. 3. Maximum gain as a function of B. Same convention as in
Fig. 2.

A. Direct cumulant expansion

The cumulant expansion gives the same result as Eq. (18)
with

c1 = N0

2

B2

B2 + κ2
0

,

c2 = N0B2

4

[
1

B2 + (2k − κ0)2
+ 1

B2 + (2k + κ0)2

]
,

c3 = N0Bκ
B2 − κ2

0 + 4k2

[B2 + (2k − κ0)2][B2 + (2k + κ0)2]
. (23)

We observe that, while c1 is constant, c2 and c3 exhibit a
resonant line-shape behavior close to 2k = κ0, i.e., the first PR
condition: the former exhibits a maximum at 4k2 ≈ κ2

0 − B4

4κ2
0
,

while the latter crosses zero at 4k2 = κ2
0 − B2. We recall that

the mth-order PR condition is in general 2k = mκ0, which
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gives

ω2
PR,m =

√
4

(
γ P

β0
2

)2

+
(

mκ0

β0
2

)2

− 2γ P

β0
2

. (24)

For B 	 κ0, we can set c1 ≈ 0. Then, around the first
parametric resonance detuning, tedious but straightforward
calculations show that the instability gain is approximated by

G2(ω) ≈ 1

2

(2γ P)2ω4

κ2
0

c2, (25)

that attains its maximum approximately at ωPR,1,

Gmax
2 ≈ G2(ωPR,1) ≈ N0(γ P)2

2

ω4
PR,1

κ2
0

= N0(γ P)2(
2β0

2

)2

ω2
PR,1

ω2
PR,1 + 4γ P

β0
2

. (26)

We remark also that Eq. (25) is composed of a Lorentzian
factor depending on the process PSD (c2) and a factor in-
dependent of the process. Moreover, it turns out that the
maximum MI gain, Eq. (26), coincides, for small ω and a
given N0 with the white-noise MI gain evaluated at ω = ωPR,1,
as hinted at in Ref. [32].

Notice that in Eq. (26), the MI gain is proportional to
N0ω

4
PR,1

κ2
0

, while the PR-MI scales like θ
ω2

PR,1

κ0
[12], with θ the

(constant) amplitude of the periodic variation. As in the low-
pass case, according to Eq. (26) the maximal MI gain depends
mainly on N0. For B → 0, the analogy to PR would suggest,
instead, a dependence on the amplitude of the fluctuations in
real space, i.e., N0B, as discussed also in Ref. [32]. Below, we
clarify this ostensible inconsistency.

B. Near-resonance reduction

In analogy to Ref. [32], a significant simplification of
Eq. (2) can be obtained by the conventional averaging method
used for PR [39].

In order to average Eq. (2), we let

x1(z) = y1(z) cos
(κ0

2
z
)

+ y2(z) sin
(κ0

2
z
)
,

x2(z) = κ0

2g0

[
y1(z) sin

(κ0

2
z
)

− y2(z) cos
(κ0

2
z
)]

,
(27)

where x2 is written assuming g = g0 constant, in the spirit of
the variation of constants.

By averaging out oscillating terms, noticing that δg
g0

= ξ ,
and employing the phase-quadrature representation of ξ [see
Eq. (7)], we obtain

κ0ẏ1 = �2y2 + �ψ1y2 − �ψ2y1,

κ0ẏ2 = −�2y1 + �ψ1y1 + �ψ2y2,
(28)

with � ≡ 1
2 ( κ2

0
4 − g2

0) and �2 ≡ k2 − κ2
0
4 quantifies the detun-

ing from the PR condition; close to resonance, �2 = (k +
κ0/2)(k − κ0/2) ≈ κ0(k − κ0/2).

Notice that the PR-MI gain of the first PR tongue is ob-
tained from Eq. (28) by putting ψ1 = ψ2 = θ . It reads as

GPR,1 =
√

2(�θ )2 − �2

κ0
. (29)

Starting from Eq. (28), in this section we only study the
evolution of second moments. We introduce Y1 ≡ y2

1, Y2 ≡ y2
2,

and Y3 ≡ y1y2. It is easy to verify that Y ≡ (Y1,Y2,Y3)T obeys

κ0
d

dz
Y =

⎡
⎣ −2�ψ2 0 2�2 + 2�ψ1

0 2�ψ2 −2�2 + 2�ψ1

−�2 + �ψ1 �2 + �ψ1 0

⎤
⎦Y,

(30)
where the parameters are the same as those used throughout
this section.

Two random processes appear in Eq. (30) and both the
cumulant expansion and functional approach need generaliz-
ing accordingly. While we present the former in Appendix,
because it provides very similar results to the direct cumulant
expansion of the previous subsection, the latter is reported
below.

C. Functional approach near resonance

Following [40], we generalize the functional approach.
We define Y3+i ≡ ψ1Yi, Y6+i ≡ ψ2Yi, and Y9+i ≡ ψ1ψ2Yi, i =
1, 2, 3. We perform four different averaging steps: (i) average
directly Eq. (30), (ii) multiply each row of Eq. (30) by ψ1

and average, (iii) multiply by ψ2 and average; (iv) multiply by
ψ1ψ2 and average. We employ the formula of differentiation
in Eq. (20) and its generalization〈

ψ1ψ2
dYi

dt

〉
=

(
d

dt
+ 2B

)
〈ψ1ψ2Yi〉. (31)

If we assume as above that we can factor the variance out
if the same process occurs twice in an average, we obtain

κ0
d〈Y 〉
dz

=

⎡
⎢⎢⎣

A2 �C′
2 �C′′

2 0
σ 2

ξ �C′
2 A2 − BI 0 �C′′

2
σ 2

ξ �C′′
2 0 A2 − BI �C′

2
0 σ 2

ξ �C′′
2 σ 2

ξ �C′
2 A2 − 2BI

⎤
⎥⎥⎦

×〈Y 〉, (32)

with

A2 =
⎡
⎣ 0 0 2�2

0 0 −2�2

−�2 �2 0

⎤
⎦, C′

2 =
⎡
⎣0 0 2

0 0 2
1 1 0

⎤
⎦,

C′′
2 =

⎡
⎣−2 0 0

0 2 0
0 0 0

⎤
⎦, (33)

and denoting 0 and I the null and identity matrix, respectively.
We compute numerically the eigenvalues of the matrix in

Eq. (32) and look for the dominant one λ∗. The maximum MI
gain, for �2 = 0, is found analytically as

(
GPR

2

)max = 1

4κ0

[√
B2 + 4N0Bω4

PR,1 − B
]
. (34)

We remark that the dependence on σξ is different from
Eq. (26). For small B, the gain is no longer proportional to
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ω4
PR,1N0

κ2
0

, but to
ω2

PR,1

√
N0B

κ0
, as we would formally obtain in the

conventional periodic dispersion case, once we replace the
amplitude of parametric oscillation θ with

√
2σξ .

Thus, a very different result is found when compared to the
cumulant expansions above. We now assess which approxima-
tion works better by comparing them to numerical solutions of
Eq. (2).

D. Results

In order to generate a realization of the process ξ with
Gaussian distribution (respectively dichotomous), we employ
the same approach in the spectral (respectively spatial) do-
main as above, generate two independent LP processes, and
modulate them according to Eq. (7). The numerical domain is
obviously discretized in both cases: for the Gaussian process
a lower limit on L is required as in Sec. III D, the dichotomous
process requires a short �z to avoid spurious correlations. We
do not forget to correctly sample the period 0 of the process
spatial oscillations.

While in the previous section we were interested in the
limit B → ∞ to contrast the LP processes to white noise,
here we aim at understanding the opposite limit B → 0, with
fixed and finite N0B. We expect that the gain associated to the
stochastic fluctuations converges to the one of the periodically
modulated fiber in this limit.

First, we consider a small perturbation N0 = 0.005, with
an intermediate bandwidth B = π/4 around κ0 = 2π . We
take L = 500, �z = 0.01; a consistent statistical sample is
collected for N = 2000. In Fig. 4(a) we compare the numer-
ical mean gain G(ω) with the analytical estimates obtained
above. For such a small perturbation, only a single MI peak
can be observed (see the inset for a larger detuning range).
We notice that the MI gain is centered about ωPR,1 with
gain Gmax and width �ω. The Gausssian and dichotomous
processes give two almost identical results. The cumulant ex-
pansion provides a very good approximation because ε ≈ 0.1.
The near-resonance functional approach proves instead very
imprecise, as far as both Gmax and �ω are concerned. We
explain this as follows: It is easy to verify that the period of
the modulation is comparable to correlation length 0 ≈ ζc.
Thus, we apply successively two distinct averaging proce-
dures (near-resonant expansion and functional approach) upon
two perturbations occurring at the same scale as if they were
independent. This is a sure recipe for failure.

Moreover, we are not showing here the result of Eq. (A3)
that coincides with the direct cumulant expansion around
ωPR,1, but is skewed towards ω → 0, contrary to the numerical
results.

As a second case, we consider a large N0 = 3.2 and a small
bandwidth B = π/32. All the other parameters are the same
as the previous. In Fig. 4(b) we observe, as above, that the MI
lobe occurs around ωPR,1 and the Gaussian and dichotomous
processes provide two very close results. For such a large per-
turbation, several MI sidelobes can be observed, in analogy to
PR-MI [see the inset of Fig. 4(b)]. Now ε ≈ 6.3 � 1; we thus
expect that the cumulant expansion fails to correctly describe
the numerical results: indeed, it overestimates the peak MI
while it underestimates its width (red dashed line). It captures

FIG. 4. MI gain as a function of detuning ω for a BP random
dispersion κ0 = 2π . Comparison of numerical values for a Gaussian
(blue solid lines) and dichotomous process (green dotted lines) ob-
tained from Eq. (2) with the estimates provided by Eqs. (18) and
(23) (red dashed lines), and by Eq. (32) (dashed-dotted purple lines).
In (a) N0 = 0.005 and B = π/4, so that ε < 0.1 around the PR reso-
nance, (b) N0 = 3.2 and B = π/32, so that ε � 1 around the ωmax. In
(b), we include the PR-MI gain of Eq. (29) with θ = √

2σξ = √
π/5

(yellow dotted line with circles). The insets show the numerical
results for a Gaussian process on a larger ω range.

approximately the behavior of the MI gain in the tails (both
left- and right-hand sides). The functional method provides
instead a good approximation (purple dashed-dotted line).
For these parameters, Eq. (32) provides a result very close
to the conventional PR gain (yellow dotted line with circles)
apart from the tails. We can thus state that for ζc � 0, the
proposed functional approach gives a good estimate of the
numerically estimated mean gain because the two independent
approximations are performed in the correct order on the
two different scales, i.e., for B 	 κ0, the BP process can be
considered a small perturbation to the PR-MI effect. We show
in Fig. 5 the effect of variations of B on Gmax. We keep κ0

and N0B constant; L, �z, and N are chosen to guarantee a
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FIG. 5. Maximum gain Gmax as a function of B at constant N0B.
Same convention as in Fig. 2, dichotomous process excluded. We
take a constant κ0 = 2π and (a) N0B = 0.0039, (b) N0B = π/10 =
0.314. Notice the ordinate axis is in logarithmic scale in (a). The
dashed vertical lines highlight the values of B used in Figs. 4(a) and
4(b), respectively.

significant statistical sample for each value. Only the Gaussian
process is considered.

For small N0B = 0.0039 the MI gain follows very well the
cumulant expansion: Gmax grows for B → 0 (notice the loga-
rithmic scale). The functional approach always overestimates
it. For larger N0B = π/10 we still observe a decreasing trend
of Gmax. It is apparent that the cumulant expansion is valid
only for large B > π/2 and completely loses its validity below
B = π/4. The functional approach works well in the PR limit,
i.e., for B < π/16. Indeed, ζc depends inversely on B and
the approximation is expected to become more faithful. The
residual discrepancies may depend on a systematic error of the
averaging procedure or on numerical inaccuracies. In brief, we
show the transition from the stochastic regime, where the MI
gain scales with N0, to the parametric regime where it depends
on σξ , i.e., the fluctuation amplitude.

FIG. 6. MI gain curves G(ω) and their maxima Gmax obtained
for different values of κ0 ∈ {π, 2π, 4π, 8π, 16π, 32π, 64π}. Com-
parisons of numerical results (blue crosses and blue solid lines) with
the peak of Eq. (26) (red dashed line) and of Eq. (34) [purple dashed-
dotted line, not shown in (a), out of scale]. We include also G2(ω) for
the white-noise limit at the corresponding (yellow dotted line). The
dashed vertical lines highlight the value of κ0 used in Figs. 4 and 5.
(a) N0 = 0.005, B = π/4; (b) N0 = 3.2, B = π/32.

Finally, we report in Fig. 6 different MI gain curves ob-
tained from numerical simulations of the Gaussian process
by varying κ0 ∈ {π, 2π, 4π, 8π, 16π, 32π, 64π}. The simu-
lation parameters are chosen for each value to ensure that the
sample is statically significant.

In Fig. 6(a), we choose N0 = 0.005 and B = π/4 and show
that the MI lobes have a Lorentzian shape dominated by
a simple envelope, as predicted by Eq. (25). We explicitly
show Gmax

2 obtained from Eq. (26) for the values of ωPR,1

corresponding to a continuous set of κ0 (red dashed line) and
compare it to the values of Gmax (blue crosses). They match
very well over the full range of ω. The result of the functional
approach, Eq. (34), is not shown here because it always over-
estimates the MI gain. We also include the white-noise gain
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for the given N0 (yellow dotted line). For such a small PSD
value, it exhibits a monotone growth up to ω ≈ 9 [compare
to Fig. 1(a)] . The expression in Eq. (26) coincides with it
up to this point and tends to N0/2 for κ0, ωPR,1 → ∞. This
strengthens the idea that the MI gain of stochastic origin is
ruled predominantly by N0, at least for small values.

If, instead, we choose N0 = 3.2 and B = π/32, we observe
[see Fig. 6(b)] that the MI lobes are sharper than a Lorentzian.
Their maxima (blue crosses) are well approximated by the
functional approximation (purple dashed-dotted line), while
the cumulant expansion (red dashed line) always overesti-
mates the MI gain by more than three times. For such a small
B, Eq. (34) effectively coincides with Eq. (29) (not shown)
as expected. As in the previous case, the gain monotonously
increases with κ0, consistently with the PR nature of the
phenomenon [see Eq. (29)]. If we consider the white noise,
we see that the MI gain exhibits a narrow lobe, that attains a
maximum for ω ≈ 1.25 and coincides with (26) only for small
detuning, as expected.

As κ0 is increased, the modulation period of the process
becomes smaller, while ζc is kept constant; thus, the near-
resonant approximation performs better for large κ0 and the
discrepancies observed [Fig. 6(b)] are probably due to a sys-
tematic error or residual numerical inaccuracies.

V. CONCLUSIONS

We discuss the modulational instability in nonlinear optical
fibers in which the group-velocity dispersion is randomly
modulated. In contrast to the exactly solvable case of white
noise or of random kicks, we consider the case of stochastic
processes with exponentially decaying autocorrelation func-
tion. This is equivalent to a Lorentzian-shaped power spectral
density, i.e., the process is colored. Two families of colored
processes are studied: low pass and band pass. For each fam-
ily, we consider Gaussian and dichotomous processes.

The distinction between the two stochastic processes turns
out to be important in the LP and marginal in the BP case.
While for very small perturbation the LP yields very small
MI gain, for larger power spectral densities it can yield MI
sidelobes larger than the white noise, sitting in the same range
of detuning and exhibiting larger gain in the tails. For small
bandwidth, the gain disappears, while in the opposite limit it
converges to the white-noise limit. The variance demanded
for obtaining a measurable MI gain is large, though, and
the dichotomous process looks more promising in view of
an experimental characterization of the phenomenon because
values of bandwidth (correlation length) exist where the gain
is quite larger than the white-noise limit.

As far as a BP process is concerned, if the perturbation
is large enough, we may observe several MI sidelobes sitting
around PR detunings. We focus on the dominant first peak:
it converges to the PR sidelobe for small bandwidth and is
generally broader and smaller for small correlation lengths.

We compare our numerical results to different analyti-
cal approximations, based on the cumulant expansion (as
formalized by van Kampen) or the functional (Furutsu-
Novikov-Loginov-Shapiro) formulas. While the former is
reliable only for small perturbations and small detuning and
provides some qualitative estimates elsewhere, the latter pro-

vides good results for the dichotomous processes, for which
the closure of the system is rigorously obtained.

For both families of correlation functions, the functional
method emerges as more reliable and allows us to describe
the transition from parametric to stochastic resonances in the
BP case. Notwithstanding, the cumulant expansion provides
good estimates of the tails of resonant peaks even for relatively
small bandwidth values (large correlation length), beyond the
expected validity range of the approximation.

Our results pave the way for tailoring MI gain sidebands in
optical fibers by means of stochastic GVD fluctuations and
suggest the regimes to achieve that. Such fluctuations can
be implemented by continuous or discrete variations of fiber
specifications.
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APPENDIX: CUMULANT EXPANSION NEAR
RESONANCE

In this Appendix we will apply the cumulant expansion to
Eq. (30). The cumulant expansion to second order is built by
decomposing Eq. (30) as κ0Ẏ = [A2 + �ψ1C′

2 + �ψ2C′′
2 ]Y ,

with A2, C2, and C′
2 as in Eq. (33). As ψ1,2 are mutually

independent, the expansion is obtained by computing K2 sep-
arately for C′

2 and C′′
2 , according to Eq. (17), and adding them

up.
We obtain

κ0
d〈Y 〉
dz

=
⎡
⎣ 6d2�

2 2d2β
2 2�2 − 4�2d3

2d2β
2 6d2β

2 −2�2 + 4�2d3

2�2d3 − �2 −2�2d3 + �2 4�2d2

⎤
⎦

×〈Y 〉, (A1)

with

d2 ≡ 1

κ0

∫ ∞

0
dζ Rψ1 (ζ ) cos

2�2

κ0
ζ = N0B2

2κ0

1

B2 + 4�4

κ2
0

,

d3 ≡ 1

κ0

∫ ∞

0
dζ Rψ1 (ζ ) sin

2�2

κ0
ζ = N0B

2κ0

2�2

κ0

B2 + 4�4

κ2
0

. (A2)

We note that there is here no counterpart to c1 and near
PR κ0d2 ≈ 2c2. The dominant eigenvalue of the matrix in
Eq. (A1) is exactly λ∗ = 8d2�

2, so the instability gain is

GPR
2 = 8d2�

2

κ0
, (A3)

which attains a maximum (GPR
2 )max ≈ N0ω

4
PR,1

2κ2
0

, identical to
what is found above in Eq. (26).
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