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Generalized orbital angular momentum symmetry in parametric amplification
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We investigate interesting symmetry properties verified by the down-converted beams produced in optical
parametric amplification with structured light. We show that the Poincaré sphere symmetry, previously demon-
strated for first-order spatial modes, translates to a multiple Poincaré sphere structure for higher orders. Each
one of these multiple spheres is associated with a two-dimensional subspace defined by a different value of the
orbital angular momentum. Therefore, the symmetry verified by first-order modes is reproduced independently
in each subspace. This effect can be useful for parallel control of independently correlated beams.
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I. INTRODUCTION

Optical parametric amplification is a powerful tool for
generating quantum correlations between independent light
beams [1–6]. It has been used as an important resource
for many quantum applications such as quantum teleporta-
tion [7] and quantum metrology [8]. The longitudinal-mode
structure of quantum correlated beams generated by an op-
tical parametric oscillator gives rise to a frequency comb
of quadrature entangled beams that are good candidates to
scalable quantum computers [9–11]. These useful correlations
stem from different constraints imposed by the parametric
process, which includes energy and momentum conservation
among the photons participating in the nonlinear interac-
tion. Transverse momentum conservation is in the heart
of well-established spatial correlations between the photons
emitted by spontaneous parametric down-conversion [12].
These spatial correlations can be combined with polarization
entanglement [13], giving rise to hyperentangled two-photon
quantum states [14–17].

Interesting conditions are also verified when structured
light beams are coupled in the parametric process. Orbital
angular momentum (OAM) conservation has been investi-
gated in cavity-free spontaneous [18] and stimulated [19]
parametric down-conversion. The nonlinear coupling between
different transverse modes is subject to conditions imposed
by the spatial overlap between them, giving rise to selec-
tion rules that limit the modes allowed in the interaction
[20–23]. When the process is intensified inside an optical
resonator, cavity conditions also dictate which modes can
survive the loss-gain balance, which can affect both the trans-
verse [24–26] and longitudinal [27] mode structures. These
effects determine whether OAM can be exchanged between
the interacting modes [28–31]. The selection rules that apply
to parametric amplification also lead to symmetry properties
that have already been investigated for first-order modes. In
particular, OAM conservation and intensity overlap between
the down-converted beams were shown to impose a reflection
symmetry in the Poincaré sphere representation of the signal
and idler beams [32–35]. OAM correlations inside an optical

parametric oscillator (OPO) give rise to entanglement in the
continuous variable regime [36], that can be combined with
polarization to produce continuous variable hyperentangle-
ment [37–41].

In this work, we investigate how this Poincaré sphere
symmetry extends to multiple higher orders, simultaneously
amplified in the OPO cavity. In principle, this subject suggests
a difficult task, since higher-order modes do not have a simple
geometric representation. However, the selection rules that
arise from the spatial overlap between the interacting modes
impose restrictions that limit the symmetry properties to two-
dimensional subspaces of the higher-order mode structure.
These subspaces are spanned by pairs of modes with oppo-
site OAM values. The Poincaré symmetry is independently
verified inside each subspace, what can be useful for parallel
control of independent down-conversion channels. Here, we
will focus on the classical behavior of the mode dynamics,
which will serve as a starting point for a future investigation
in the quantum domain. As we will see, this classical instance
of the problem already encompasses a rich dynamics.

II. STRUCTURED LIGHT INJECTION IN PARAMETRIC
AMPLIFICATION

Let us consider the optical parametric amplification pro-
cess involving two input beams, pump and signal, which
interact through a nonlinear crystal and generate a third beam
called idler. The interacting beams carry the frequencies ωp

(pump), ωs (signal), and ωi (idler), satisfying ωp = ωs + ωi .
The three-beam interaction is mediated by the second-order
nonlinear susceptibility of the crystal. We are interested in de-
riving general symmetry properties carried by the signal and
idler beams as a result of the nonlinear coupling. This kind of
symmetry has already been investigated, both theoretical [33]
and experimentally [34], for first-order modes, where OAM
conservation and intensity overlap were the main features
behind the symmetry observed. Our objective is to extend
these symmetry properties to higher-order modes injected in
the OPO. The physical situation is illustrated in Fig. 1. A
pump beam is sent to the OPO cavity along with a seed beam
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FIG. 1. Sketch of the optical parametric oscillator with type-II
phase matching and structured light injection. êh and êv are the
horizontal and vertical polarization unit vectors, respectively. The
pump beam can be radially structured to optimize the spatial overlap
with signal and idler.

that matches the signal frequency and polarization. Inside the
resonator, the pump energy is transferred to signal and idler,
which, under type-II phase matching, is generated with its
polarization orthogonal to the signal beam.

The seed beam is assumed to be structured with an arbitrary
superposition of Laguerre-Gaussian (LG) modes of the same
order Ns, while the pump beam is assumed to be in a single
LG mode without OAM. In the LG basis, the pump and seed
electric fields can be written as

Epin (r) = αpinψ
0qp (r),

Esin (r) =
∑

l

αlqs
sin

ψ lqs (r), (1)

where ψ lq(r) is a LG mode function with topological charge
(OAM) l and radial index q , αlq

sin is the corresponding complex
amplitude of the signal mode, and αpin is the pump complex
amplitude. The mathematical expression of the LG modes in
terms of the polar coordinates (r, φ) in the focal plane (z = 0)
is given by [42]

ψ lq(r) =
√

(2/π ) p!

(p + |l|)!
(
√

2 r)|l|

w|l|+1
L|l|

p

(
2r2

w2

)
e− r2

w2 eilφ, (2)

where w is the beam radius and L|l|
p ( 2r2

w2 ) is the generalized
Laguerre polynomial.

The summation over the seed modes is constrained by
2qs + |l| = Ns . The choice of a fixed order for the seed beam
is of experimental relevance since in this case all components
evolve with the same Gouy phase and can be simultaneously
mode matched to the OPO cavity.

A. Dynamical equations

These input modes feed the dynamics that governs the
buildup of the intracavity fields. They constitute the source
terms of the dynamical equations for the intracavity ampli-
tudes. Let the intracavity electric fields in the LG basis be
written as

Ep(r) = αpψ
0qp (r),

E j (r) =
∑

l

α
lq j

j ψ lq j (r), (3)

where the indices j = s, i refer to signal and idler, re-
spectively. The stimulated idler beam will populate the
Laguerre-Gaussian modes with optimal overlap

�l
qsqi

=
∫

[ψ0qp (r)]∗ψ lqs (r) ψ−lqi (r) d2r, (4)

with the pump and seed modes. This imposes OAM con-
servation ls + li = lp and restricts the radial indices as well.
Since the pump beam is assumed to carry zero OAM, the cou-
pled signal and idler modes must have opposite topological
charges. However, the radial mode selection for the idler beam
is not so simple. It is determined by the maximum overlap
with the pump and seed modes. This point will be clarified in
our numerical examples.

Assuming the perfect resonance of the three fields, the
dynamical equations for the intracavity mode amplitudes are

dαp

dt
= −γpαp + iχ

∑
l

�l
qsqi

αlqs
s α

−lqi
i + ηpαpin ,

dα
lqs
s

dt
= −γαlqs

s + iχ�l ∗
qsqi

αp
(
α

−lqi
i

)∗ + ηαlqs
sin

, (5)

dα
lqi
i

dt
= −γα

lqi
i + iχ�l ∗

qsqi
αp

(
α−lqs

s

)∗
,

where χ is the nonlinear coupling constant, γp is the pump de-
cay rate, γ is the common decay rate of signal and idler, ηp and
η are the pump and signal input transmissions, respectively.
We recall that the mode indices l and qs run over the allowed
values compatible with the seed order Ns = 2qs + |l| , while
the stimulated idler beam will carry the Laguerre-Gaussian
modes with optimal overlap with the pump and seed modes.

Our analysis is significantly simplified when we define the
normalized variables

βp = χαp/γ , βpin = χηpαpin/γ
2,

β lqs
s = χαlqs

s /γ , β lqs
sin

= χηαlqs
sin

/γ 2, (6)

β
lqi
i = χα

lqi
i /γ .

With the normalized variables, the dynamical equations
become

β̇p = −γrβp + i
∑

l

�l
qsqi

β lqs
s β

−lqi
i + βpin ,

β̇ lqs
s = −β lqs

s + i�l ∗
qsqi

βp
(
β

−lqi
i

)∗ + β lqs
sin

, (7)

β̇
lqi
i = −β

lqi
i + i�l ∗

qsqi
βp

(
β−lqs

s

)∗
,

where dotted variables in the left-hand side are derivatives
with respect to the dimensionless time τ = γ t , and γr =
γp/γ is the decay ratio.

B. Steady-state solution

The output field distribution is given by the steady-state so-
lution of the dynamical equations (7), which can be obtained
by setting the time derivatives equal to zero in the left-hand
side (β̇p = β̇

lqs
s = β̇

lqi
i = 0) and solving the resulting alge-

braic equations. From the last two equations we get

β lqs
s = β

lqs
sin

1 − ∣∣�l
qsqi

βp

∣∣2 ,

β
lqi
i = i βp �l ∗

qsqi

(
β

−lqs
sin

)∗

1 − ∣∣�l
qsqi

βp

∣∣2 . (8)
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These equations can be plugged into the steady-state condition
for the intracavity pump amplitude, resulting in⎡

⎢⎣γr +
∑

l

∣∣�l
qsqi

β
lqs
sin

∣∣2

(
1 − ∣∣�l

qsqi
βp

∣∣2
)2

⎤
⎥⎦ βp = βpin , (9)

where we used �−l
qsqi

= �l
qsqi

. Without loss of generality, we
may set the input pump phase equal to zero (αpin ∈ R). There-
fore, the intracavity pump amplitude is also a real number that
can be found by solving the quintic equation (9). For arbitrary
mode orders, this is usually a difficult task that is beyond
the scope of this work. Nevertheless, Eq. (8) allow us to
establish an interesting property of the down-converted beams
generated by the nonlinear process, without the need of the
intracavity pump solution. As we discuss next, the relationship
between the amplitudes of the seed beam and the intracavity
down-converted fields sets an interesting symmetry relation
between signal and idler in a generalized Poincaré sphere
representation of higher-order modes.

III. GENERALIZED POINCARÉ SYMMETRY

The Poincaré sphere representation of OAM beams has
been first introduced for first-order modes [32]. It describes
linear combinations of Laguerre-Gaussian modes with ra-
dial number q = 0 and topological charges l = ±1 . In our
case, we will use an independent Poincaré sphere for each
two-dimensional mode space spanned by Laguerre-Gaussian
beams with opposite OAM, ψ±lq . For the signal beam, l and
qs run over the allowed values compatible with 2qs + |l| = N .
For the idler beam, the radial numbers are defined by those
modes with maximal spatial overlap with the pump and seed
modes. Note that a zero OAM component l = 0 can only
occur in even orders for qs = N/2 , while the LG modes with
odd orders have l �= 0 . In this way, we can group the LG
modes of a given order in pairs with opposite OAM {ψ±lq}
and an isolated mode with zero OAM for even orders. For
example, for seed beams with orders from 0 to 4 we have

N = 0 : {ψ00},
N = 1 : {ψ±10},
N = 2 : {ψ±20} ⊕ {ψ01},
N = 3 : {ψ±30} ⊕ {ψ±11},
N = 4 : {ψ±40} ⊕ {ψ±21} ⊕ {ψ02}. (10)

Note that each {ψ±|l|qs} subspace realizes an independent
SU(2) structure.

The idler modes will follow a similar structure. However,
the corresponding radial numbers are selected by the optimal
overlap with the pump and seed modes and, in general, do
not fix a given order. As we will see, the Poincaré sphere
symmetry previously demonstrated for first-order modes in
Refs. [33,34] is independently verified within each one of the
two-dimensional OAM subspaces for higher orders.

From Eq. (8) we can see that the intracavity signal and idler
amplitudes are related by

β
lqi
i = i βp �l ∗

qsqi

(
β−lqs

s

)∗
. (11)

For l = 0 , there is no SU(2) structure and this equation simply
states the conjugate relation between signal and idler ampli-
tudes for the zero OAM modes. In this case, no Poincaré
symmetry can be realized. However, when l �= 0 , Eq. (11)
sets a connection between the SU(2) structures of signal and
idler. Let the signal input be an arbitrary structure of order
N = 2qs + |l| , which can be written as

Esin =
∑
l>0

Alqs

in [cos (θl/2)ψ lqs + eiφl sin (θl/2)ψ−lqs ], (12)

where {Alq
in } are complex amplitudes and {(θl , φl )} are the

Poincaré sphere coordinates that represent the seed mode in
each SU(2) structure Hl ≡ {ψ±lq} . For a given order N , a
Poincaré sphere is associated with each OAM value l . With
these definitions, the source terms that figure in the dynamical
equations (7) become

β lqs
sin

= χη

γ 2
Alqs

in cos (θl/2),

β−lqs
sin

= χη

γ 2
Alqs

in eiφl sin (θl/2). (13)

From the steady-state solution (8) and the signal-idler conju-
gation relation (11), we easily get

β lqs
s = χ

γ
ξ lqs

s cos (θl/2), β−lqs
s = χ

γ
ξ lqs

s eiφl sin (θl/2),

β
lqi
i = χ

γ
ξ

lqi
i e−iφl sin (θl/2), β

−lqi
i = χ

γ
ξ

lqi
i cos (θl/2), (14)

where

ξ lqs
s = η Alqs

in /γ

1 − ∣∣�l
qsqi

βp

∣∣2 ,

ξ
lqi
i = i βp �l ∗

qsqi

(
ξ lqs

s

)∗
. (15)

Equations (14) set the Poincaré sphere symmetry between
signal and idler spatial modes. Indeed, we can easily see that
signal and idler coordinates on the sphere are related by

θ i
l = π − θ s

l ,

φi
l = φs

l , (16)

which means that within each SU(2) structure Hl , signal and
idler are represented by two points on the sphere that are the
specular image of each other with respect to the equatorial
plane. This is a generalization of the first-order mode symme-
try previously demonstrated in Refs. [33,34]. The intracavity
signal and idler spatial modes are then given by

Es =
∑
l>0

ξ lqs
s [cos (θl/2)ψ lqs + eiφl sin (θl/2)ψ−lqs ],

Ei =
∑
l>0

ξ
lqi
i [e−iφl sin (θl/2)ψ lqi + cos (θl/2)ψ−lqi ]. (17)

We next discuss some examples which allow us to visualize
the generalization of the Poincaré sphere symmetry between
signal and idler spatial modes. As we will see, the odd modes
already capture the essential features of the symmetry since
for even orders the zero OAM components do not possess the
required SU(2) structure.
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FIG. 2. Poincaré sphere representation for first-order OAM
symmetry.

A. First order revisited

We now briefly revisit the first-order case already discussed
in Refs. [33,34]. In this case, we can assume a Gaussian pump
(qp = 0) and a first-order signal input,

Epin = αpin ψ00,

Esin = A10
in [cos (θ/2)ψ10 + eiφ sin (θ/2)ψ−10]. (18)

The steady-state intracavity pump amplitude is given by the
solution of the quintic equation[

γr +
∣∣�1

00 A10
in

∣∣2

(
1 − ∣∣�1

00 βp

∣∣2)2

]
βp = βpin . (19)

Then, the intracavity signal and idler spatial structures are

Es = ξ 10
s [cos (θ/2)ψ10 + eiφ sin (θ/2)ψ−10],

Ei = ξ 10
i [e−iφ sin (θ/2)ψ10 + cos (θ/2)ψ−10], (20)

with the mode amplitudes given by

ξ 10
s = η A10

in /γ

1 − ∣∣�1
00βp

∣∣2 ,

ξ 10
i = iβp�

1 ∗
00

(
ξ 10

s

)∗
. (21)

The coordinates of the points representing the signal and
idler structures in the Poincaré sphere are related by

θ i = π − θ s,

φi = φs. (22)

As shown in Fig. 2, the point representing the idler mode is
the specular image of the point representing the signal with
respect to the equatorial plane. This symmetry provides opti-
mal intensity overlap and OAM conservation between signal
and idler.

FIG. 3. Example of a second-order seed beam. In this case we
have set A01

in = A20
in = 1/

√
2 , θ = 45◦, and φ = 90◦.

B. Poincaré symmetry with a second-order seed

The even-order subspaces include a zero-OAM mode with
radial number q = N/2 . Since it is an isolated single-mode
subspace, there is no room for a Poincaré sphere represen-
tation or symmetry relation. The remaining OAM carrying
modes can be grouped in pairs with opposite OAM, con-
stituting a set of independent SU(2) structures where the
aforementioned symmetry is verified. For example, consider
the case of a second-order seed beam {ψ±20, ψ01} and a
single-mode pump with zero OAM and radial order qp = 1 ,

Epin = αpin ψ01,

Esin =A01
in ψ01+A20

in [cos (θ/2)ψ20+eiφ sin (θ/2)ψ−20]. (23)

An example of one such structure is shown in Fig. 3. The
idler modes which will profit from the pump and seed en-
ergy are those with maximum spatial overlap with the input
modes. First, OAM conservation is required for nonvanishing
overlap. Then, the radial order associated with each OAM is
determined by the maximum numerical value of the overlap
integrals �2

0qi
and �0

1qi
. In Fig. 4 we show the numerical value

of the overlap integrals as a function of the idler radial order.
As we can see, for both l = 0 and ±2 , the zero radial order

(qi = 0) displays optimal coupling. Therefore, the transverse
modes taking part in the intracavity interaction are {ψ01} for
the pump, {ψ01, ψ±20} for the signal, and {ψ00, ψ±20} for
the idler. In this case, the pump steady state is given by the
solution of[

γr +
∣∣�0

10 A01
in

∣∣2

(
1−∣∣�0

10 βp

∣∣2)2 +
∣∣�2

00 A20
in

∣∣2

(
1−∣∣�2

00 βp

∣∣2)2
]
βp = βpin , (24)

and the steady-state amplitudes of signal and idler are

Es = ξ 01
s ψ01 + ξ 20

s [cos (θ/2)ψ20 + eiφ sin (θ/2)ψ−20],

Ei = ξ 00
i ψ00 + ξ 20

i [e−iφ sin (θ/2)ψ20 + cos (θ/2)ψ−20],

(25)

with the mode amplitudes given by

ξ 01
s = η A01

in /γ

1 − ∣∣�0
10βp

∣∣2 , ξ 20
s = η A20

in /γ

1 − ∣∣�2
00βp

∣∣2 ,

ξ 00
i = i βp �0 ∗

10

(
ξ 01

s

)∗
, ξ 20

i = i βp �2 ∗
00

(
ξ 20

s

)∗
. (26)

Note that no special symmetry can be realized in the zero
OAM subspace, only the usual conjugation relation between
signal and idler amplitudes. However, as shown in Fig. 5, the
l = ±2 subspace displays the same kind of Poincaré sphere
symmetry as the first-order case, with the signal and idler
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FIG. 4. Pump-signal-idler overlap integrals for l = ±2 (top) and
l = 0 (bottom) as a function of the idler radial orders, when the pump
parameters are fixed at lp = 0 and qp = 1 .

coordinates related by

θ i = π − θ s,

φi = φs. (27)

C. Two-sphere symmetry for third-order beams

The simplest case with more than one Poincaré sphere
symmetry is realized by a third-order seed beam. As before,
the pump is assumed to carry zero OAM and optimal over-
lap is attained with qp = 2 . In Fig. 6 we show the overlap
integrals for different OAM values. As we can see, the largest
coupling between signal and idler modes with l = ±1 and ±3
occurs for the idler radial index qi = 0 . Therefore, the l = ±3
sphere represents signal and idler modes with qs = qi = 0 .
However, the l = ±1 sphere represents signal modes with
qs = 1 and idler modes with qi = 0 . In any case, the radial
numbers are irrelevant for the Poincaré symmetry condition,
which is essentially determined by OAM conservation.

With these input modes, the source terms in the dynamical
equations become

Epin = αpin ψ02,

Esin = A30
in

[
cos (θ3/2)ψ30 + eiφ3 sin (θ3/2)ψ−30

]
+ A11

in

[
cos (θ1/2)ψ11 + eiφ1 sin (θ1/2)ψ−11

]
. (28)

Two sets of Poincaré sphere coordinates are used, (θ1, φ1)
and (θ3, φ3) , associated with the l = ±1 and ±3 manifolds,

FIG. 5. Signal and idler symmetry in the Poincaré sphere for
second-order OAM (l = ±2).

respectively. In Fig. 7 we show an example of seed beam and
its decomposition in these manifolds.

The steady-state intracavity pump amplitude is given by
the solution of the quintic equation[

γr +
∣∣�3

00 A30
in

∣∣2

(
1 − ∣∣�3

00 βp

∣∣2)2 +
∣∣�1

10 A11
in

∣∣2

(
1 − ∣∣�1

10 βp

∣∣2)2

]
βp = βpin .

(29)
Once the solution of Eq. (29) is obtained, the intracavity signal
and idler spatial structures can be readily calculated from

Es = ξ 30
s [cos (θ3/2)ψ30 + eiφ3 sin (θ3/2)ψ−30]

+ ξ 11
s [cos (θ1/2)ψ11 + eiφ1 sin (θ1/2)ψ−11],

Ei = ξ 30
i [e−iφ3 sin (θ3/2)ψ30 + cos (θ3/2)ψ−30]

+ ξ 10
i [e−iφ1 sin (θ1/2)ψ10 + cos (θ1/2)ψ−10], (30)

with the mode amplitudes given by

ξ 30
s = η A30

in /γ

1 − ∣∣�3
00βp

∣∣2 , ξ 11
s = η A11

in /γ

1 − ∣∣�1
10βp

∣∣2 ,

ξ 30
i = iβp �3 ∗

00

(
ξ 30

s

)∗
, ξ 10

i = iβp �1 ∗
10

(
ξ 11

s

)∗
. (31)

These mode superpositions are represented in the Poincaré
spheres shown if Fig. 8. The signal and idler coordinates are
related by

θ i
3 = π − θ s

3, φi
3 = φs

3,

θ i
1 = π − θ s

1, φi
1 = φs

1. (32)

These relations show that the signal and idler modes verify
the Poincaré symmetry independently on each sphere. We
have also tested the symmetry condition with a numerical
integration of the dynamical equations. The numerical results
for the signal and idler mode amplitudes are displayed in
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FIG. 6. Pump-signal-idler spatial overlap for l = ±3 (top) and
l = ±1 (bottom) as a function of the idler radial orders, when the
pump parameters are fixed at lp = 0 and qp = 2 .

Fig. 9, along with the resulting two-sphere representation. The
spherical coordinates are evaluated from the numerical results,
confirming the two-sphere symmetry condition.

As before, this condition ensures both maximal intensity
overlap and OAM conservation. The extension of this sym-
metry condition to higher orders is straightforward. The mode
space can be split in two-dimensional OAM subspaces with
fixed absolute value |l| = 1, 2, 3 . . . , where the symmetry
condition is simultaneously verified on independent Poincaré
spheres. For even orders, there is an isolated component with
zero OAM, where no symmetry condition can be realized
other than the usual phase conjugation between signal and
idler amplitudes.

IV. OAM-STRUCTURED PUMP

It is also interesting to investigate how the Poincaré sphere
symmetry between signal and idler is affected by a pump

FIG. 7. Example of a third-order seed beam with A11
in = A30

in =
1/

√
2 . The coordinates on the Poincaré spheres for l = ±3 and ±1

are (θ3 = 45◦, φ3 = 0◦) and (θ1 = 60◦, φ1 = 90◦), respectively.

beam carrying OAM. In this case, a Poincaré representation
also applies to the pump beam. For example, let us consider
a pump beam prepared in a superposition of second-order
modes with l = ±2 and qp = 0 . The seed beam is assumed
to be a first-order superposition of modes with l = ±1 . The
pump and seed input amplitudes can be written as

Epin =Apin [cos (θp/2)ψ20 + eiφp sin (θp/2)ψ−20],

Esin =Asin [cos (θs/2)ψ10 + eiφs sin (θs/2)ψ−10], (33)

where (θp, φp) and (θs, φs) are the Poincaré sphere coordi-
nates of the input pump and seed beams, respectively. In
Fig. 10, we display the Poincaré representation of the pump
(left) and seed (right) input modes. The idler modes with
optimal intensity overlap and OAM conservation with the seed
are also first-order LG modes with l = ±1 and qi = 0 .

The time evolution of the pump, signal, and idler intra-
cavity amplitudes is governed by the following dynamical
equations:

β̇+
p = −γrβ

+
p + i�β+

s β+
i + βpin cos (θp/2),

β̇−
p = −γrβ

−
p + i�β−

s β−
i + βpin eiφp sin (θp/2),

β̇+
s = −β+

s + i�∗ β+
p β+ ∗

i + βsin cos (θs/2), (34)

β̇−
s = −β−

s + i�∗ β−
p β− ∗

i + βsin eiφs sin (θs/2),

β̇±
i = −β±

i + i�∗ β±
p (β±

s )∗,

where β±
p are the normalized pump amplitudes for l = ±2 ,

β±
s(i) are the normalized seed (idler) amplitudes for l = ±1 ,

and the time derivatives in the left-hand side are taken with
respect to the dimensionless parameter τ = γ t . The mode
coupling is mediated by the three-mode overlap

� =
∫ [

ψ±20
p (r)

]∗
ψ±10

s (r) ψ±10
i (r) d2r. (35)

The steady-state solutions are obtained by setting the time
derivatives equal to zero in the left-hand side of Eqs. (34) and
solving the resulting algebraic equations. From the last three
equations in (34), we have

β+
s = ξ+

s cos (θs/2), β−
s = ξ−

s eiφs sin (θs/2),

β+
i = ξ+

i cos (θs/2), β−
i = ξ−

i e−iφs sin (θs/2), (36)

where we defined

ξ±
s = η Asin/γ

1 − ∣∣�β±
p

∣∣2 ,

ξ±
i = iβ±

p �∗(ξ±
s )∗. (37)

The steady-state intracavity pump amplitudes are given by
the solutions of two independent quintic equations⎡

⎢⎣γr +
∣∣� Asin

∣∣2
cos2

(
θs
2

)
(

1 − ∣∣�β+
p

∣∣2
)2

⎤
⎥⎦β+

p = βpin cos

(
θp

2

)
,

⎡
⎢⎣γr +

∣∣� Asin

∣∣2
sin2

(
θs
2

)
(

1 − ∣∣�β−
p

∣∣2
)2

⎤
⎥⎦β−

p = βpin eiφp sin

(
θp

2

)
. (38)
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FIG. 8. Third-order OAM symmetry. On left side we can visualize the symmetry relation verified in the Poincaré sphere for l = ±3 and
on the right side the same symmetry is displayed on the independent sphere for l = ±1 .

From Eqs. (36) we immediately obtain the complete structure
of the intracavity signal and idler fields as

Es = ξ+
s cos (θs/2)ψ10

s + ξ−
s eiφs sin (θs/2)ψ−10

s ,

Ei = ξ+
i cos (θs/2)ψ10

i + ξ−
i e−iφs sin (θs/2)ψ−10

i . (39)

The Poincaré sphere representation of signal and idler de-
pends on both the seed and pump parameters. While the seed
parameters are explicit in the expressions above, the depen-
dence on the pump is implicit through ξ±

s,i .
Assuming weak pump and seed powers, the pump is not

significantly depleted by the parametric interaction and the
intracavity pump is essentially driven by the external input,

FIG. 9. Two-sphere symmetry for the numerical simulation of
the OPO dynamics under third-order injection. The spherical co-
ordinates for l = ±3 are θ3 = 0.73 rad and φ3 = 0 . For l = ±1
the coordinates are θ1 = 1.04 rad and φ1 = 1.57 rad . The pump,
seed, and decay parameters were set to βpin = 2 , A30

in = A11
in = 1/

√
2,

and γr = 1 , respectively. The free-running oscillation threshold is
βpth ≈ 2.7 .

leading to

β+
p ≈ βpin

γr
cos (θp/2),

β−
p ≈ βpin

γr
eiφp sin (θp/2). (40)

In this case, we can write the analytical solutions for signal
and idler as

Es = ξ+
s cos

(
θs

2

)
ψ+10 + ξ−

s eiφs sin

(
θs

2

)
ψ−10, (41)

Ei = ξ+
i cos

(
θs

2

)
cos

(
θp

2

)
ψ+10

+ ξ−
i ei(φp−φs ) sin

(
θs

2

)
sin

(
θp

2

)
ψ−10, (42)

where the amplitudes can be explicitly written in terms of the
pump parameters as

ξ±
s = ηAsin/γ

1 − |�βpin |2
2γ 2

r
(1 ± cos θp)

,

ξ±
i = iβ±

p �∗(ξ±
s )∗. (43)

In this regime, the Poincaré symmetry becomes more ev-
ident for special values of the pump and seed parameters.
First, for θp = π/2 and arbitrary φp , we easily obtain that
θi = θs and φi = φp − φs . This symmetry is displayed in
Fig. 11 for φp = 0 . The idler spatial structure is represented
by the specular image of the signal with respect to the great
circle φ = 0 .

Moreover, restricting the input pump power to values well
below the free-running oscillation threshold, such that

|�βpin |2
2γ 2

r


 1, (44)

one can take ξ+
s ≈ ξ−

s and ξ+
i ≈ ξ−

i . From Eqs. (41) and (42),
it is easy to see that the idler parameters are related to the
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FIG. 10. Poincaré sphere representations of the pump (l = ±2) and seed (l = ±1) beams.

pump and seed parameters as

φi = φp − φs, (45)

tan

(
θi

2

)
= tan

(
θp

2

)
tan

(
θs

2

)
. (46)

Therefore, the seed and idler beams are azimuthally symmet-
ric in the first-order Poincaré sphere with respect to the the
angle φp/2, while the idler polar location follows a nontrivial
relation with the pump and seed polar parameters. Another
interesting condition within this regime occurs for θs = π/2
and φs = 0 . In this case, the idler parameters become equal to
those of the pump, θi = θp and φi = φp . Therefore, the idler
spatial structure can be actively controlled by fixing either the

FIG. 11. Poincaré sphere representation of the intracavity signal
and idler structures when θp = π/2 and φp = 0 .

pump or the seed parameters and varying the others. In a real
experimental situation, this active control can be challenged
by the astigmatic effects caused by the crystal birefringence
[28]. However, this effect can be compensated for with a
two-crystal setup, as the one used in Refs. [38,39]. Active
control of signal and idler spatial structures exploring sym-
metry conditions can be useful for shaping spatial quantum
correlations generated in parametric amplification.

V. EXPERIMENTAL PROPOSAL

In this section, we propose an experimental setup to in-
vestigate the generalized OAM symmetry. In Fig. 12, we
present the sketch of the proposed setup. We consider a dual-
wavelength laser source that provides both the OPO pump at
visible (VIS) wavelength and the injection seed at the infrared
(IR). As we discussed, both wavelengths must be transverse
structured in order to maximize the spatial overlap between
pump, signal, and idler. This can be realized using spatial light
modulators represented as the mode preparation boxes on the
top of Fig. 12.

After the mode preparation stage, the structured pump and
seed beams pass through mode-matching lenses and are sent
to the OPO cavity. A quasiconcentric cavity configuration is
convenient since some extra space is needed for astigmatism
compensation with a half-wave plate (HWP) oriented at 45◦,
and a second crystal rotated by 90◦ with respect to the first one
[38,39]. Note that this wave plate must introduce a π (λ/2)
retardation at the down-converted wavelength and a 2π (λ)
retardation at the pump. In this manner the polarization of
the down-converted beam is rotated by 90◦, while the pump
polarization remains unchanged and the nonlinear process is
restricted to the first crystal. Under type-II phase matching,
we can separate the down-converted beams with a polarizing
beam splitter (PBS).

The cavity Airy peaks can be monitored with photodiode
detectors plugged to an oscilloscope, as the cavity length is
scanned by a piezoelectric (PZT) ceramic attached to the
output mirror and controlled by a function generator (FG).
The triple resonance condition can be achieved by adjusting
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FIG. 12. Sketch of the proposed experimental setup to inves-
tigate the OAM symmetry. After the mode preparation stage, the
pump and seed beams are mode matched to the OPO resonator. A
two-crystal scheme with a half-wave plate (HWP) is proposed for
astigmatism compensation. A dichroic mirror (DM) is used to filter
out the pump beam at the OPO output. Under type-II phase matching,
the down-converted beams can be separated with a polarizing beam
splitter (PBS) and independently imaged with a charge-coupled de-
vice (CCD) camera.

the crystal’s temperature with a peltier. The pump beam at
visible wavelength can be filtered out of the OPO output with

a dichroic mirror (DM), leaving the down-converted beams on
the path to intensity measurement and image acquisition.

VI. CONCLUSION

In conclusion, we derived a generalized Poincaré symme-
try for optical parametric amplification of beams carrying
orbital angular momentum. The first-order symmetry is ex-
tended to more complex mode structures involving the
superposition of different OAM components. We show that
the Poincaré symmetry is simultaneously verified in each
independent OAM subspace, thus establishing a set of sig-
nal and idler modes independently related by the symmetry
condition. Moreover, when the pump beam is structured with
OAM modes, a different kind of Poincaré symmetry is ob-
tained. In all cases, we have taken into account the numerical
values of the overlap integrals that determine the intermode
coupling strength and select the most adapted modes. These
symmetry and coupling conditions can be important for
establishing parallel channels for quantum information trans-
mission, a potentially fruitful subject for future investigation.
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