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Resonant generation of electromagnetic modes in nonlinear electrodynamics: Classical approach
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The paper explores a theoretical possibility of resonant amplification of electromagnetic modes generated by a
nonlinear effect in Euler-Heisenberg electrodynamics. Precisely, we examine the possibility of the amplification
for the third harmonics induced by a single electromagnetic mode in a radio-frequency cavity as well as the
generation of the signal mode of combined frequencies induced by two pump modes (ω1 and ω2) in the cavity.
Solving inhomogeneous wave equations for the signal mode, we formulate two resonant conditions for a cavity
of arbitrary shape and apply the obtained formalism to linear and rectangular cavities. We explicitly show that
the third harmonics as well as the mode of combined frequency 2ω1 + ω2 are not resonantly amplified whereas
the signal mode with frequency 2ω1 − ω2 is amplified for a certain cavity geometry.
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I. INTRODUCTION

The self-interaction of an electromagnetic field, being ab-
sent in classical theory, appears in quantum theory due to
radiative corrections which include the contribution of vir-
tual electrons. At low frequency of the electromagnetic field
the quantum effect is described in terms of the effective
Euler-Heisenberg Lagrangian [1,2] (the detailed historical re-
view is presented in Ref. [3]). The most distinctive effect of
Euler-Heisenberg nonlinear electrodynamics is the process of
photon-photon scattering [1]. Other nonlinear electrodynam-
ics effects include vacuum birefringence and dichroism for an
electromagnetic wave in a classical intense electromagnetic
background [4,5]. Besides the Euler-Heisenberg contribution,
effective nonlinear interactions in electrodynamics appear if
the full theory contains scalar or pseudoscalar particles inter-
acting with the electromagnetic field [6–8].

No effect, predicted in nonlinear electrodynamics, has been
experimentally observed to this moment. The reason is the
extreme smallness of the self-coupling for the electromag-
netic field. Nevertheless, several experimental attempts to
probe it with high-intensity electromagnetic fields have been
performed. The experiment which comes closest to the Euler-
Heisenberg limit is the polarization experiment with intensive
laser fields polarization of vacuum with a laser (PVLAS)
[9,10]. The final PVLAS experimental sensitivity to photon
self-coupling is one order of magnitude weaker than the pre-
diction of Euler-Heisenberg [10].

Another experimental proposal referred to high-intensity
electromagnetic modes in cavities instead of laser fields. The
idea of such an experiment was suggested in the early 2000s
[11,12]. The proposed setup consists of a single supercon-
ducting cavity filled with two nonequal “pump” modes. In
the presence of self-interaction, one expects an excitation of a
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third “signal” mode whose frequency is a linear combination
of the pump modes’ frequencies. Due to the smallness of the
nonlinear effect, the signal mode can be detected only if it is
resonantly amplified. The application of a single cavity setup
to the searching for pseudoscalar axionlike particles was pro-
posed in Ref. [13]:1 If the particle is heavy (the mass is much
greater than the frequencies of the pump modes),2 the problem
is reduced to the aforementioned nonlinear electrodynamics.

In papers [11–13], the solutions of nonlinear wave equa-
tions describing the resonant growth of a signal mode have
not been provided explicitly. In a recent paper [18], that
nonlinear wave equation was exactly solved in a simplified
one-dimensional (1D) model. It was shown that, contrary to
the naive estimates, signal mode with triple frequency is not
resonantly generated in a one-dimensional “cavity;” the only
resonant amplification is observed at the pump mode’s fre-
quency. The goal of the current article is to generalize these
calculations to realistic three-dimensional cavities.

The paper is organized as follows. Section II is devoted to
nonlinear Maxwell and wave equations. In Sec. III we intro-
duce our general formalism of searching for resonant modes
in an arbitrary cavity. In Sec. IV, we apply the formalism to a
one-dimensional cavity filled by one or two pump modes. In
Sec. V, we generalize the results of the previous section to the
three-dimensional rectangular cavity. In Sec. VI, we discuss
obtained results.

II. NONLINEAR MAXWELL AND WAVE EQUATIONS

In this section, we briefly review the field equations ap-
peared in nonlinear electrodynamics. The Euler-Heisenberg

1The generalization to scalar particles and the CP-violating term
was considered in Ref. [14].

2In the case of small mass of an axionlike particle, the similar
experiments with two cavities have been proposed [15–17].
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Lagrangian in the limit of weak electric and magnetic-field
[E , cB � m2

ec3/(eh̄) ∼ 1018 V/m] takes the form

L = −ε0

4
F + κε2

0 (F2 + βG2), κ = α2
e h̄3

90m4
ec5

, β = 7

4
,

(1)

where αe ≈ 1/137 is the fine-structure constant, me and −e
are the electron’s mass and charge, ε0, and μ0 are the electric
and magnetic constants, h̄ is the reduced Planck’s constant,
and c is the speed of light in vacuum. In the presence of
hypothetical scalar or pseudoscalar particles in theory, the
coefficients κ and β are modified [8,14]. The electromagnetic-
field invariants have the standard form;

F ≡ FμνFμν = −2(E2 − c2B2),

G ≡ Fμν F̃μν = −4(E · cB). (2)

The electromagnetic-field equations obtained from the La-
grangian (1) have the form analogous to Maxwell equations
in a medium [2],

rot B = 1

c2

∂E
∂t

+ μ0

[
∂P
∂t

− rot M
]
, div B = 0,

rot E = −∂B
∂t

, div E = 1

ε0
[− div P], (3)

where P and M denote vacuum polarization and magnetiza-
tion, respectively,

P(x, t ) ≡ 16κε2
0[(E2 − c2B2)E + 2β(E · cB)cB],

M(x, t ) ≡ 16κε2
0c[(E2 − c2B2)cB − 2β(E · cB)E]. (4)

The field equations (3) yield modified wave equations both
for amplitudes for electric and magnetic fields,

�E = μ0

[
∂

∂t
rot M + c2 grad div P − ∂2P

∂t2

]
,

�B = μ0

[
∂

∂t
rot P − grad div M + 	M

]
. (5)

Note that the plane electromagnetic wave is a solution of mod-
ified wave equations (5) since both electromagnetic invariants
vanish at the plane-wave configuration F = G = 0. However,
a linear combination of plane waves is no longer a solution of
Eqs. (5) and so becomes unstable, leading to the production
of new modes.

III. GENERAL FORMALISM OF SEARCHING
FOR RESONANT MODES

One of the interesting features of modified wave equations
(5) is the possibility for generation of higher-order harmon-
ics by one or two initial electromagnetic modes in vacuum.
Traditionally [11–13], we consider the following setup de-
voted to the search for higher-order harmonics. We take a
superconducting radio-frequency cavity filled with one or two
pump modes of very high amplitudes Epump, Bpump, and look
for generation of a signal mode of different frequencies with
amplitudes Esig, Bsig which are expected to be small due the
smallness of nonlinear coupling coefficient κ . Treating the
signal mode as a small perturbation in Eq. (5) and assuming
the hierarchy of scales |Esig| ∼ κε0(|Epump|)3 � |Epump|, one
obtains in the zeroth-order trivial wave equations for the pump
modes �Epump = 0, �Bpump = 0, and in the first order,

�Esig = μ0

[
∂

∂t
rot M(Epump, Bpump) + c2 grad divP(Epump, Bpump) − ∂2P(Epump, Bpump)

∂t2

]
,

�Bsig = μ0

[
∂

∂t
rot P(Epump, Bpump) − grad div M(Epump, Bpump) + 	M(Epump, Bpump)

]
. (6)

Here the polarization and magnetization vectors (4) are com-
puted on the pump mode configuration. Instead of nonlinear
Eq. (5), Eq. (6) is a linear wave equation on the signal mode
amplitudes with the nonzero right-hand side. The solution of
Eq. (6) determines the evolution of the signal mode at the
classical level.

Equations (6) are to be solved in a given cavity D of
finite volume. Furthermore, in order to take into account small
dissipation, we introduce the dissipative term which includes
the first-order time derivative and the damping coefficient 
,(

� − 1

c2

∂t

)
Esig(x, t ) = F(x, t ), x ∈ D, t > 0,

Esig(x, 0) = 0, x ∈ D,

n × Esig(x, t ) = 0, x ∈ S. (7)

Here S denotes the surface of the cavity D, n is the normal
to the surface S. F(x, t ) denotes the right-hand side of the
electric equation in (6). The boundary conditions refer to an

ideal conducting surface. The similar system should be written
for magnetic component of the signal mode Bsig, however, we
will further skip it for the sake of shortness.

The signal field Esig(x, t ) can be expanded into the cavity
eigenmodes,

Esig(x, t ) =
∑

k

E sig
k (t )Ek (x). (8)

Here E (x) comprise the full system of eigenfunctions with

eigenvalues ωk , satisfying the equation (	 + ω2
k

c2 )Ek (x) = 0
and boundary conditions given in the last line of Eq. (7).

TABLE I. Examination of the resonance criterion for a single
pump mode in the 1D cavity.

n 3n

Fel ωn, ω3n ωn

Fmg ωn, ω3n ωn
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Substituting expansion (8) to the first equation of (7) and
integrating over the whole cavity with a mode En(x), one
obtains

Ë sig
n (t ) + 
Ė sig

n (t ) + ω2
nE sig

n (t ) = Fn(t ),

Fn(t ) ≡ c2

∫
D dV F(x, t ) · En(x)∫

D dV E2
n(x)

≡ c2 (F,En)

‖En‖2 . (9)

Here we made the following notations:
∫

D dV for the inte-
gration over the volume of the cavity D, (F,E ) for the inner
product of two vector functions F and E , and ‖E‖ = √

(E, E )
for the norm of function E . All frequency components of Fn(t )
lead to the generation of a signal mode with a certain am-
plitude. If Fn(t ) includes the component Fn(t ) ⊇ Re(F 0

n e−iωt ),
the signal field of the amplitude,

E sig
n (t ) = Re

F 0
n e−iωt

−ω2 − iω
 + ω2
n

(10)

is generated in the steady regime. If the frequency ω coincides
with one of the cavity eigenfrequencies, ω = ωn, the first and
the third terms in the denominator of (10) cancel each other,
and so the amplitude of such a signal mode is resonantly
enhanced E sig

n (t ) = Re[iF 0
n e−iωt/(
ω)].

Let us summarize aforementioned expressions in a more
strict way as a criterion for resonant amplification of the signal
mode. Assume that the right-hand side of one of the six scalar
wave equations (6) contains the frequency component ωsig.
The signal mode with the frequency ωsig is resonantly ampli-
fied if both of the following conditions hold simultaneously:

(1) Frequency ωsig belongs to the cavity spectrum (∃n ∈
N: ωsig = ωn,

(2) The scalar product Fn(t ) of the right-hand side of the
considered scalar wave equation from (6) with the nth cavity
eigenmode contains the frequency component ωsig = ωn.

Note that even if F(x, t ) contains a frequency component
ωn, it may disappear from Fn(t ) due to the integration with or-
thogonal cavity mode. An example supporting this statement
will be provided in the next section.

IV. ONE-DIMENSIONAL CAVITY

In this section, we consider a model of one-dimensional
cavity directed along the Ox axis, D = (0, a). The y and z
dimensions of the cavity are assumed to be significantly larger
than the x-dimension Ly, Lz � Lx ≡ a. The cavity system3

of eigenfunctions assuming ideal conducting walls takes a
simple form

En(x) = sin(knx)e−i π
2 ey

Mn(x) = cos(knx) ez

, kn = πn

a
, ‖En‖2 = ‖Mn‖2 = a

2
, n ∈ N. (11)

The dynamics of a cavity mode with wave-number kn and magnetic amplitude B0 is just an oscillation with frequency ωn = knc,

Epump(x, t ) = cB0 Re
[
En(x)eiωnt

] = cB0 sin(knx) sin(ωnt ) ey,

Bpump(x, t ) = B0 Re
[
Mn(x)eiωnt

] = B0 cos(kny) cos(ωnt ) ez. (12)

A. Single pump mode

First, we consider an excitation of the one-dimensional cavity with a single pump mode of frequency ωn, see (12). At the pump
mode configuration (12) the invariant F �= 0 whereas the second invariant G vanishes. Substituting the pump mode fields (12) to
the expression for the inhomogeneities of nonlinear wave equation (6) and performing a simple but cumbersome trigonometric
calculation,4 we obtain inhomogeneous wave equations for signal modes (see Ref. [18]),(

� − 1

c2

∂t

)
Esig = 8κε0c3B3

0k2
n [2 sin(knx) sin(ωnt ) + sin(3knx) sin(ωnt ) − 3 sin(knx) sin(3knt )] ey = Fel(x, t ),

(
� − 1

c2

∂t

)
Bsig = 8κε0c2B3

0k2
n [2 cos(knx) cos(ωnt ) + 3 cos(3knx) cos(ωnt ) − cos(knx) cos(3knt )] ez = Fmg(x, t ). (13)

Note that both Eqs. (13) contain terms sin(knx) sin(ωnt ) or cos(knx) cos(ωnt ), which obviously result in a resonant en-
hancement of the signal mode with frequency ωn. However, the right-hand side of (13) do not contain terms, such as
sin(3knx) sin(3ωnt ), which would produce a signal mode of triple frequency. Formally, let us use the resonance criterion
formulated in the previous section. The projections of the right-hand side of (13) on the cavity eigenfunctions are as follows:

F el
n (t ) ≡ c2 (Fel,En)

‖En‖2 = c2 2

a

∫ a

0
F el(x, t ) sin(knx)dx = 8κε0c3B3

0ω
2
n[2 sin(ωnt ) − 3 sin(3ωnt )],

F mg
n (t ) ≡ c2 (Fmg,Mn)

‖Mn‖2 = c2 2

a

∫ a

0
F mg(x, t ) cos(knx)dx = 8κε0c2B3

0ω
2
n[2 cos(ωnt ) − cos(3ωnt )],

3For mathematical completeness, one has to add a constant mode (with zero frequency) to the system (11).
4The calculations were additionally verified in the computer algebra system WXMAXIMA 21.02.0, see Ref. [19].
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F el
3n (t ) ≡ c2 (Fel,E3n)

‖E3n‖2 = c2 2

a

∫ a

0
F el(x, t ) sin(3knx)dx = 8κε0c3B3

0ω
2
n[sin(ωnt )],

F mg
3n (t ) ≡ c2 (Fmg,M3n)

‖M3n‖2 = c2 2

a

∫ a

0
F mg(x, t ) cos(3knx)dx = 8κε0c2B3

0ω
2
n[3 cos(ωnt )]. (14)

As the amplitudes are on the same order [as small as F el, cF mg ∼ κε0(cB0)3ω2
n], for the sake of shortness, we organize the

computed projections into a table.
Table I is to be interpreted as follows: The upper row contains mode numbers (on which projections were computed), the

leftmost column enumerates the right-hand side of nonhomogeneous wave equations for signal modes. Then, every cell contains
those frequencies, which have been found in a projection of the right-hand side from the corresponding row onto an eigenmode
with the number from the corresponding column. In the case of the one-dimensional cavity being excited with a single pump
mode, one can easily correlate the four projections computed right above with the four cells in the table. The understanding of
how the examination of the resonance criterion is presented in the table will be important later for more complex configurations,
where the direct calculations result in formulas too long to be listed entirely.

As we see from Table I, the new triple frequency does not belong to a spectrum of any projection onto the 3n eigenmode.
Thus, condition 2 of the resonance criterion is not satisfied, and, therefore, the signal mode with triple frequency is not resonantly
enhanced.

B. Two pump modes

The next configuration we consider is the excitation of the one-dimensional cavity with two pump modes of frequencies
ωn and ωp. Since the linear cavity exposes rotational symmetry along axis Ox, we introduce an arbitrary angle α between the
polarization planes of the pump modes,

Epump(x, t ) = cB0 Re
[
En(x)eiωnt + R̂x(α)E p(x)eiωpt

]
,

Bpump(x, t ) = B0 Re
[
Mn(x)eiωnt + R̂x(α)Mp(x)eiωpt

]
,

R̂x(α) =
⎛
⎝1 0 0

0 cos α − sin α

0 sin α cos α

⎞
⎠. (15)

The eigenmodes En(x) and Mn(x) are given by (11). In contrast to the case of a single pump mode, both electromagnetic
invariants (2) are nonzero at the current configuration. The inhomogeneous wave equations for the signal mode read

(
� − 1

c2

∂t

)
Esig(x, t ) = Fel(x, t ) =

⎛
⎝ 0

F el
y

F el
z

⎞
⎠,

(
� − 1

c2

∂t

)
Bsig(x, t ) = Fmg(x, t ) =

⎛
⎝ 0

F mg
y

F mg
z

⎞
⎠, (16)

Here the inhomogeneities Fel(x, t ) and Fmg(x, t ) are calculated by the substitution of the field configuration (15) to the general
expression (6). This calculation was performed in the computer algebra system WXMAXIMA; the resulting expressions are too
long to be listed here explicitly, see Ref. [19].

Nevertheless, the restrictions on the set of signal modes can be obtained taking a look at the structure of the inhomogeneities
Fel(x, t ) and Fmg(x, t ). Since the expressions are cubic [see Eq. (4)] relative to the pump modes which are simple trigonometric
functions, one can expect at most the following frequencies for signal modes in (16):

ωsig ∈ {ωn, ωp, 3ωn, 3ωp, 2ωn ± ωp, 2ωp ± ωn}. (17)

The possible wave numbers for the signal mode belong to the similar set,

ksig ∈ {kn, kp, 3kn, 3kp, 2kn ± kp, 2kp ± kn}. (18)

It follows from condition 1 of the criterion that the wave-numbers (18) have to match with the corresponding frequencies (17).
At the following step, we examine condition 2: We project the inhomogeneities of Eqs. (16) onto cavity eigenmodes, whose

frequencies may hypothetically appear due to cubic nonlinearities (17). This stage of calculations was also carried out in THE

WXMAXIMA system (see Ref. [19]); the results are presented in Table II which is constructed analogously to that in the previous
section.

Condition 2 of the resonance criterion is satisfied only for the signal frequencies ωn and ωp, which are shadowed by the pump
modes. Thus, in the case of two pump modes in the one-dimensional cavity, resonant amplification of signal modes with mixed
frequencies does not occur.

TABLE II. Examination of the resonance criterion for two pump modes in the 1D cavity.

n 3n 2n − p 2n + p p 3p 2p − n 2p + n

Fel

Fmg ωn, ω2p±n, ω3n ωn ωp, ω2n+p ωp, ω2n−p ωp, ω2n±p, ω3p ωp ωn, ω2p+n ωn, ω2p−n
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TABLE III. Examination of the resonance criterion for a single pump mode in the rectangular cavity.

TM(· · · ) n, p, q 3n, p, q n, 3p, q n, p, 3q n, 3p, 3q 3n, p, 3q 3n, 3p, q 3n, 3p, 3q

Fel

ωnpq, 3ωnpq ωnpqFmg

TE(· · · ) n, p, q 3n, p, q n, 3p, q n, p, 3q n, 3p, 3q 3n, p, 3q 3n, 3p, q 3n, 3p, 3q

Fel

ωnpq, 3ωnpq ωnpqFmg

V. RECTANGULAR CAVITY

In this section, we proceed with a rectangular cavity D = (0, Lx )(0, Ly)(0, Lz ). Within the approximation of perfectly
conducting walls the system of eigenfunctions separates into two subsets (relative to the Oz axis)—TE modes and TM modes
[[20], pp. 25–28],

ETM
npq(x), MTM

npq(x) ⊥ ez, n, p ∈ N, q ∈ N0

ETE
npq(x) ⊥ ez, MTE

npq(x), n, p ∈ N0, q ∈ N
, knpq =

(
πn

Lx
,
π p

Ly
,
πq

Lz

)
, ‖E i‖2 = ‖Mi‖2 = LxLyLz

8
. (19)

Time evolution of npq modes is an oscillation with the frequency ωnpq = c|knpq| = πc
√

n2

L2
x

+ p2

Ly2 + q2

L2
z
.

A. Single pump mode

Let us consider a single pump mode with an eigenfrequency ωnpq. Since the division into TE and TM modes is purely artificial
in the case of the rectangular cavity, we arbitrarily choose the TMnpq pump mode,

Epump(x, t ) = cB0 Re
[
ETM

npq(x)eiωnpqt
]
,

Bpump(x, t ) = B0 Re
[
MTM

npq(x)eiωnpqt
]
. (20)

At the single mode configuration (20), the electromagnetic invariant G vanishes, similar to the one-dimensional case; the
invariant F is still nonzero. As previously, the right-hand side parts of the linearized wave equations are calculated using Eqs. (4)
and (5), (

� + 1

c2

∂t

)
E(x, t ) = Fel(x, t ),

(
� + 1

c2

∂t

)
B(x, t ) = Fmg(x, t ). (21)

For arbitrary integers (n, p, q), all components of the obtained inhomogeneities are nonzero. In order to examine the resonance
criterion, their spatial projections on corresponding eigenfunctions are calculated (for instance, Fel is to be projected on ETM

and ETE). The temporal spectra of all nonvanishing projections are listed in Table III.
From Table III, one concludes that only the lowest-frequency ωnpq is amplified, whereas the higher-order harmonics remain

suppressed. Note that, in contrast to the case of the one-dimensional cavity, the modes with intermediate sets of wave numbers
[e.g.. (n, 3p, q)] do appear in the rectangular cavity. However, neither the pump mode frequency nor the triple frequency fits
these sets of wave numbers (condition 1 of resonance criterion fails), so these modes are not resonantly amplified.

B. Two pump modes

The last configuration being considered includes two pump modes (for certainty, one TM and one TE mode) excited in a
rectangular cavity. The electric and magnetic fields of this configuration read

Epump(x, t ) = cB0 Re
[
ETM

n1,p1,q1
(x)eiω1t + ETE

n2,p2,q2
(x)eiω2t

]
,

Bpump(x, t ) = B0 Re
[
MTM

n1,p1,q1
(x)eiω1t + MTE

n2,p2,q2
(x)eiω2t

]
. (22)

Here the subscript 1(2) refers to the TM (TE) mode, ω1 = ωn1,p1,q1 and ω2 = ωn2,p2,q2 . Now, Eqs. (21) are to be solved, where
the right-hand side is computed at the pump field (22).

Since the right-hand side. of the wave equation for the signal modes is cubic relative to the pump modes [see (4)] and the
latter are simple trigonometric functions, the right-hand side of (21) may contain terms only of the following form:

A h(ωsigt ) h(ksig,xx) h(ksig,yy) h(ksig,zz),
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TABLE IV. Examination of the resonance criterion for two arbitrary pump modes in the rectangular cavity.

Modes:
n1

p1

q1

3n1

p1

q1

n1

3p1

q1

n1

p1

3q1

n1

3p1

3q1

3n1

p1

3q1

3n1

3p1

q1

3n1

3p1

3q1

F el
z on TM

ω1, 3ω1, 2ω2 + ω1, 2ω2 − ω1 ω1, 3ω1 ω1F mg
z on TE ω1, 3ω1 ω1

Modes:
2n2 ± n1

p1

q1

n1

2p2 ± p1

q1

n1

p1

2q2 ± q1

2n2 ± n1

2p2 ± p1

q1

2n2 ± n1

p1

2q2 ± q1

n1

2p2 ± p1

2q2 ± q1

2n2 ± n1

2p2 ± p1

2q2 ± q1

F el
z on TM

ω1, 2ω2 + ω1, 2ω2 − ω1F mg
z on TE

where the notation h(·) stands just for trigonometrical functions sin(·) and cos(·), whereas the signal mode frequency ωsig and
wave-vector components ksig,x, ksig,y, and ksig,z can take arbitrary values at most from the following sets:

ωsig ∈ {ω1, ω2, 2ω1 ± ω2, 2ω2 ± ω1, 3ω1, 3ω2},
ksig,x ∈ {k1x, k2x, 2k1x ± k2x, 2k2x ± k1x, 3k1x, 3k2x},
ksig,y ∈ {k1y, k2y, 2k1y ± k2y, 2k2y ± k1y, 3k1y, 3k2y},
ksig,z ∈ {k1z, k2z, 2k1z ± k2z, 2k2z ± k1z, 3k1z, 3k2z}. (23)

For instance, some mixed combinations, such as sin(3ω1t ) cos[(2k1x − k2x )x] cos(k1yy) sin(3k2zz) might hypothetically appear
within the right-hand side of wave equations (21). However, to search reliably for the resonant components, we have to check
the conditions of the criterion. The first condition reads

ω2
sig = (

k2
sig,x + k2

sig,y + k2
sig,z

)
c2. (24)

Before the direct test of the second condition in order to simplify computer algebra computations, we make some additional
theoretical statements concerning possible generation of a signal mode with the frequency ωsig = 2ω1 + ω2. First, one can write
the triangle inequality for the wave vectors of the pump modes,

ωsig = 2ω1 + ω2 = c(|2k1| + |k2|) � c|2k1 + k2| = c
√

(2k1x + k2x )2 + (2k1y + k2y)2 + (2k1z + k2z )2. (25)

The equality holds if the two pump mode wave vectors are parallel k1 ‖ k2. Condition (24) for this case is satisfied automatically.
In the case of nonparallel wave vectors, the triangle inequality implies that, at least, one of the components of ksig (say, ksig,x)
should be larger than 2k1x + k2x. The only case is the triple maximal projection of wave-numbers ksig,x = 3 max(k1x, k2x ).

Now, we are to check the second condition of the resonance criterion. This involves, following the algorithm from Sec. III,
the calculation of (F,Enpq) = ∫

D FxEnpq,xdV + ∫
D FyEnpq,ydV + ∫

D FzEnpq,zdV where F ∈ {Fel, Fmg} and (npq) takes, at least,
63 = 216 possible combinations from (23). Full symbolic evaluation in WXMAXIMA requires too much computational resources.
Since we are going to prove the absence of resonant generation of the(2ω1 + ω2) signal mode, we slightly simplify the algorithm
described in Sec. III.

Instead of solving full vector system (7), we focus only on the z-component E sig
z (x, t ) of the signal mode. We expand E sig

z (x, t )
over the z components of cavity eigenmodes,

E sig
z (x, t ) =

∑
npq

E sig
z,k (t ) Enpq,z(x). (26)

Substituting expansion (26) into the z projection of Eq. (7), we obtain a second-order differential equation for E sig
z,k (t ) which

is completely similar to (9) with the only difference: its right-hand side contains only the z component of the scalar product
Fk (t ) ∝ ∫

D Fz(x, t )Enpq,z(x)dV ; the related calculations become ∼3 times simpler than before. Nevertheless, this partial treatment
is still sufficient to prove the absence of resonant amplification for a certain signal mode: The z component of the signal mode
induced by arbitrary pump modes should not be zero if such a signal mode is indeed resonantly amplified.

The result of the computer algebra calculations for the temporal spectra of nonzero projections is presented in the simplified
form in the Table IV. Note that these spectra relate only to the testing of condition 2, condition 1 remains still to be examined.
Here the signs “±” are independent from each other so that the table is compressed due to the lack of space. Table IV presents “an
upper limit” on possible spectra, in specific cases the coefficients before some harmonics vanish. Particularly, these include the
case of pump modes with parallel wave-vectors k1 ‖ k2. Thus, it turns out that the corresponding signal mode is not resonantly
amplified.

In addition, it is shown in Table IV that the frequency 2ω2 + ω1 does not appear in the spectra of projections on modes with,
at least, one triple wave number. Therefore, the only remaining case of nonparallel wave vectors which require, at least, one
triple wave number [see the paragraph after Eq. (25)] is ruled out by condition 2.
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TABLE V. Examination of the resonance criterion for two pump modes in the rectangular cavity.

TM(· · · ) 110 130 310 330 112 132 211 231

Fel ω110, 3ω110, 2ω011 ± ω110 ω110, 3ω110 ω110 ω110, 2ω011 ± ω110 ω011, 2ω110 ± ω011

Fmg

TE(· · · ) 011 031 013 033 112 132 211 231

Fel

ω011, 3ω011, 2ω110 ± ω011 ω011, 3ω011 ω011 ω110, 2ω011 ± ω110 ω011, 2ω110 ± ω011Fmg

As a result, we have shown by scanning all possible combinations that the signal mode with the frequency 2ω2 + ω1 is not
resonantly amplified.

However, as we demonstrate in the following subsection, resonant enhancement does occur for the signal mode of frequency
2ω2 − ω1.

Resonant solution for the 2ω2 − ω1 signal mode

Now, we return to the original algorithm of Sec. III and consider two certain pump modes TM110+TE011 in order to
demonstrate explicitly the resonant amplification of a signal mode with mixed frequency 2ω2 − ω1 (where ω1 ≡ ω110 and ω2 ≡
ω011).

The lowest and the pure triple frequencies trivially match cavity eigenvalues. However, some of 2ω011 ± ω110 and 2ω110 ±
ω011 might coincide with intermediate eigenfrequencies too (e.g., with ω130) if one carefully adjusts the cavity sides’ lengths.
Thus, we first project the right-hand side of (21) on every possible eigenmode from the lowest through the triple ones [even higher
frequencies are guaranteed to be absent in spectra of (21)]. Temporal spectra of all nonvanishing projections are presented in
Table V.

As usual, only the lowest harmonics ω011 and ω110 resonate unconditionally. Following the results of the previous subsection,
the third harmonics as well as the plus combined modes do not resonate. The two remaining options (up to the permutation of
indices) are 2ω011 − ω110 = ω130 and 2ω011 − ω110 = ω132. Substituting the expression via wave numbers [see Eq. (24)] to the
frequency matching conditions, one obtains the conditions to the cavity dimensions Lx, Ly, Lz. On one hand, no choice of the
cavity dimensions satisfy the second condition 2ω011 − ω110 = ω132. On the other hand, the first condition can be satisfied

2ω011 − ω110 = ω130 ⇔
(

Lz

Lx

)2(Lz

Ly

)2

+
(

Lz

Lx

)2

+ 3

(
Lz

Ly

)2

= 1. (27)

Assuming for simplicity the square section of the cavity Lx = Ly, we obtain from Eq. (27) the condition for the cavity length c,

Lz

Lx
= Lz

Ly
= ξ =

√√
5 − 2 ≈ 0.486. (28)

The resonantly enhanced signal mode ω130 (for shortness, the z component of the electric field) in the cavity satisfying Eq. (28)
reads

E sig
z (x, t ) = G

κε0(cB0)3π2Q

(Lzω130/c)2
sin(ω130t ) sin

(
πx

Lx

)
sin

(
3πy

Ly

)
, (29)

where Q = ω130/
 is the cavity quality factor related to mode ω130, and the geometric factor G reads

G = 1

ξ 2

(
ξ
√

2(1 + ξ 2) + 4 + ξ 2) − β

ξ 2

(
ξ
√

2(1 + ξ 2)3 + 1 − ξ 2) ≈ 8.517 for β = 7

4
. (30)

Note that for a certain critical β ≈ 2.92 the signal mode vanishes even for the resonant cavity geometry. However, for other
choice of pump and signal modes (say, ωsig = ω150 = 2ω130 − ω011), the resonant geometry configuration would be changed,
and the numerical value of critical β would be different.

It seems to be a counterintuitive result that one can resonantly enhance signal mode 2ω2 − ω1 (after certain adjustment of
cavity geometry), whereas mode 2ω2 + ω1 remains always suppressed.

VI. DISCUSSION

In the current paper, we have formulated the conditions
for the resonant amplification of a signal mode in a cavity
of arbitrary shape and applied them to the analysis of linear
and rectangular cavities. We have demonstrated that two pump

modes with frequencies ω1 and ω2 in a rectangular cavity
resonantly produce a signal mode with frequency 2ω2 − ω1

(2ω1 − ω2) for a certain cavity geometry. On the other side,
we have proved that the signal modes with frequencies 2ω1 +
ω2 (2ω2 + ω1) as well as the third harmonics 3ω1 (3ω2) are
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not resonantly amplified. Recall that the resonant amplifica-
tion means an enhancement in Q times, where Q is the cavity
quality factor which can achieve a numerical value up to 1012

[21].
The crucial point of our proof for the absence of resonance

in rectangular cavity is that the cavity eigenmodes include
only trigonometric functions which allows us to make analytic
calculations for arbitrary cavity modes. This stops working
for a cavity of arbitrary shape, in that case the numerical
calculations for specific cavity modes become necessary.

The absence of resonant amplification of the third harmon-
ics and combined plus modes seems to be connected with
the polarization structure of the vector gauge field. Consider-
ing the similar problem of higher-order harmonics generation
for massless scalar field with λϕ4 interaction instead of the
electromagnetic one, one first obtains the analog of the in-
homogeneous wave equation (5) which reads �ϕ = λϕ3.
Decomposing ϕ into the pump mode ϕpump which is a cavity

eigenmode, and the signal mode ϕsig of small amplitude, one
can easily check that the third harmonic does generate for
the scalar field. We hope that the reason for this difference
between scalar and electromagnetic field would become more
clear after considering aforementioned processes on a quan-
tum level.

To conclude, we have considered the problem of vacuum
generation of higher-order harmonics only from the theoreti-
cal side. Although the scheme of such an experiment for the
case of cylindrical cavity was, in general, studied in Ref. [13],
there are still several unsolved issues, including proper treat-
ment of nonlinearities from the cavity walls, etc.
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