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The generation of non-Abelian geometric phases from a system of evanescently coupled waveguides is
considered within the framework of nonorthogonal coupled-mode theory. Here, we study an experimentally
feasible tripod arrangement of waveguides that contain dark states from which a nontrivial U (2) mixing can be
obtained by means of an adiabatic parameter variation. We investigate the influence of higher-order contributions
beyond nearest-neighbor coupling as well as self-coupling on the stability of a non-Abelian U (3) phase generated
from an optical tetrapod setup. Our results indicate that, despite the mode nonorthogonality, the symmetry of dark
states protects the geometric evolution of light from distortion.
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I. INTRODUCTION

Abelian as well as non-Abelian gauge theories feature
prominently in modern theories of fundamental interactions.
They also occur frequently in a variety of geometric settings
and are therefore central to much of modern mathematics.
Their formulation in terms of gauge fields is deeply connected
to the notion of a geometric phase. These phase factors arise
naturally when considering the adiabatic evolution of a state
vector in Hilbert space [1–3]. Besides this deeper insight
into geometric and topological notions at an experimentally
feasible scale, non-Abelian phases (holonomies) are impor-
tant for holonomic and topological quantum computation,
where they offer parametric robustness to increase stability
of the computational process [4,5]. Consequently, there has
been increased interest in the study and implementation of
artificial gauge fields and symmetry groups [6]. Successful
implementations ranged from single artificial gauge fields in
photonic [7], superconducting [8], and atomic systems [9] to
experimental simulation of lattice gauge theories [10].

In recent years, a novel approach was put forward to realize
geometric phases in terms of integrated photonic structures
such as laser-written waveguides in fused silica. In such struc-
tures, adiabatic population transfer [11] can be simulated by
coherent tunneling between slowly varying waveguide ge-
ometries [12]. These optical structures have been proven to
be a versatile tool box that combines the proven capabili-
ties of modern optics with a high degree of interferometric
stability [13]. For instance, the emergence of a non-Abelian
Berry phase was observed when injecting coherent states of
light into topologically guided modes [14,15], whereas other
implementations made use of a tripod arrangement of evanes-
cently coupled waveguides [16,17]. In Ref. [18], a proposal
based on a photonic bus mode was studied with the view
to implement a controlled-NOT gate on single photons. An
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extension to an N-pod scheme with arbitrary photon-number
states injected was proposed in Ref. [19]. However, all the
above-mentioned proposals rely on power orthogonality of
transverse modes. In general, the deviations from mode or-
thogonality can significantly distort the dynamics of light in
coupled-mode systems.

In our present paper, we overcome the limitations of
the weak-coupling regime by investigating the properties
of geometric phases within the framework of nonorthog-
onal coupled-mode theory (NOCMT). In this setting, the
nonorthogonality of transverse modes comes to light when de-
creasing the separation between adjacent waveguides. In this
regime, the energy splitting between an adiabatic subspace
and excited states may be large, thus favoring the generation
of an adiabatic quantum holonomy. We present an optical
setup for the generation of U (2)-valued and U (3)-valued ge-
ometric phases arising from tripod and tetrapod arrangements
of waveguides, respectively, into which coherent light is being
injected. After an expansion of the system in terms of normal
modes, an analytical computation of the geometric phase re-
veals that the symmetry of dark states protects the state of light
from any distortion.

The paper is structured as follows. In Sec. II, we review the
NOCMT for a network of weak-index contrast waveguides.
Section III is dedicated to the study of a tripod arrangement of
waveguides in an experimentally feasible setting. We compute
its geometric phase from a normal-mode expansion of the dark
states and compare it to a numerical propagation of the longi-
tudinal fields, thus quantifying the diabatic error. In Sec. IV,
the influence of higher-order coupling and self-coupling is
illuminated using the example of a U (3)-valued geometric
phase generated from an optical tetrapod. Finally, Sec. V
contains a summary as well as some concluding remarks.

II. NONORTHOGONAL COUPLED-MODE THEORY

Since the inception of the concept of coupled modes in
electromagnetic systems [20,21], coupled-mode theory has
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become a well-established tool in the description of para-
metric nonlinear devices, waveguide structures, optical fiber
networks, and various other optoelectronic structures [22–24].
The starting point of our investigation is the propagation
of coherent light in a linear, lossless, and isotropic medium
patterned with an inhomogeneous lattice of N waveguides
with refractive-index profile n(r) = n0 + ∑

j �n j (r), where
n0 is the refractive index of the host material and �n j is the
refractive-index contrast of the jth waveguide. The dynamics
of an electromagnetic wave is determined by the inhomoge-
neous wave equation for the electric field E(r, t ):

∇2E − n2

c2
∂2

t E = −∇(E · ∇ln n2), (1)

where c denotes speed of light in vacuum. Under the assump-
tion of a weak refractive-index contrast, that is, ∇ln n2 ≈
0, Eq. (1) turns into a homogeneous wave equation. It fol-
lows that the Helmholtz equation for the paraxial propagation
(slowly varying envelope) of an electromagnetic plane wave
E(r, t ) = E(r)ei(ωt−βz) reads[∇2

⊥ + λ̄−2n2(r) − 2iβ∂z − β2]E(r) = 0 (2)

where λ̄ = c/ω, z denotes the propagation coordinate, β is
the propagation constant, and ∇2

⊥ denotes the Laplacian with
respect to the transverse coordinates r⊥. In a weak index-
contrast lattice we have �n j � n0, hence the vector character
of the Helmholtz equation can be neglected by factoring out a
constant unit vector ν, because polarization effects at the in-
terface of a waveguide become unimportant, and scalar wave
theory can be applied [25]. For the treatment of coupled-mode
theory that includes high-index contrast waveguides we refer
the reader to Ref. [26].

In the light of the assumption of weak index contrast, we
expand the wave packet in terms of tight-binding modes as

E(r) =
N∑

j=1

a j (z)w j (r)ν, (3)

where w j is the transverse field mode that is localized around
the waveguide �n j , and a j is the corresponding longitudinal
field amplitude determining the dynamics of the light field.
The former constitute a quasicomplete (complete for diver-
gence free fields) basis in which fields with compact support
over the transverse plane can be expanded. Here we assume
that the shape of the transverse field w j remains constant
throughout the propagation. However, because we consider
waveguides that vary their position in the transverse plane
along the propagation direction, the field w j (x − x j (z), y −
y j (z)) still depends on z, where (x j, y j ) marks the center of
the jth waveguide. On the other hand, in any typical setup the
waveguide position changes only very slowly over the propa-
gation length (paraxial approximation), i.e., ∂zx j ≈ ∂zy j ≈ 0,
so that we can safely assume w j (r) ≈ w j (r⊥)eiβ j z with an
individual propagation constant β j of the jth waveguide. The
latter ones can be neglected throughout this paper by noting
that they act merely as offsets when considering an identical
writing process for each waveguide.

We assume the transverse fields to satisfy their own
Helmholtz equation in the (x, y) plane in the absent of the

FIG. 1. Schematic front view of evanescently coupled waveg-
uides (black circles). Each site j supports a fundamental transverse
mode w j (shaded areas). The modes extend towards the nearest-
neighbor sites.

other waveguides, i.e.,

{∇2
⊥ + λ̄−2[n0 + �n j (r)]2 − β2}w j (r⊥) = 0. (4)

This puts the expansion (3) in the light of a weighted eigen-
mode expansion. We can simplify the above expression by
noting that for a weak index contrast we have [n0 + �n j]2 ≈
n2

0 + 2n0�n j and β2 ≈ n2
0/λ̄

2. It thus follows that Eq. (4)
takes the form(

λ̄2

2n0
∇2

⊥ + �n j (r)

)
w j (r⊥) = 0. (5)

Inserting the ansatz (3) into Eq. (2), making use of Eq. (5),
and employing the same assumptions as before, we obtain

N∑
j=1

⎛
⎜⎝iλ̄∂za jw j −

N∑
m=1
m �= j

�nmajw j

⎞
⎟⎠ = 0. (6)

When contracting Eq. (6) with w∗
k , we observe that the

transverse fields overlap with the surrounding waveguides
(sites) and their modes gives rise to transverse interactions
(see Fig. 1). Here, we distinguish between two different
contributions that occur in Eq. (6) after contraction, namely,

κ jk = 1

λ̄

N∑
m=1
m �= j

∫
S∞

�nmw∗
k w jd

2r⊥,

σ jk =
∫

S∞
w∗

k w jd
2r⊥,

(7)

where we integrate over the entire (x, y)-plane S∞. In Eq. (7),
κ jk ≈ 1

λ̄

∫
S∞

�nkw
∗
k w jd2r⊥ is the evanescent coupling be-

tween waveguides j and k, while σ jk describes the overlap
of their respective transverse modes. In particular, there is
also a self-coupling ν j = κ j j due to the presence of other
waveguides around the jth mode. The latter is usually the
smallest contribution to the dynamical propagation (6). This
can be seen from Fig. 2 where these quantities were computed
for two adjacent (identically written) cylindrical waveguides
as a function of their separation. We considered a scenario
in which each waveguide supports only its first transverse
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FIG. 2. Coupling κ (upper line) in mm−1, overlap σ (middle
line), and self-coupling ν (lowest line) in mm−1 between two ad-
jacent waveguides as a function of their separation δ (measured from
the center). The results are shown for cylindrical fibers of radius
R = 4.8 μm with bulk index n0 = 1.452 and weak contrast nI =
6.53 × 10−4 for the inside of each waveguide. The wavelength of
the injected light beam considered is λ = 633 nm. The interpolating
functions were obtained by evaluating Eq. (7) for several values of δ.

mode w j (r⊥), given in terms of Bessel functions [27]. These
assumptions are not too restrictive, as monomode operation
and mode synchronism are often required as operating con-
ditions. Furthermore, due to mode overlaps, the transverse
modes form a nonorthogonal basis for describing the light
propagation. The nonorthogonality can be neglected if the dis-
tance between adjacent waveguides is large. Then one works
in the regime of orthogonal coupled-mode theory (OCMT),
i.e., σ jk ≈ 0 for j �= k [13,28,29].

With the definitions from Eqs. (7) at hand, the coupled-
mode equations become

i
N∑

j=1

σ jk∂za j =
N∑

j=1

κ jka j . (8)

This form of the paraxial Helmholtz equation resembles a dis-
crete Schrödinger equation. Equation (8) can be reformulated
as a first-order matrix differential equation in z, with (�) jk =
σ jk and (K) jk = κ jk being the power and coupling matrix,
respectively. Because � and K do not commute in general, the
generator �−1K of the dynamics is not necessarily Hermitian,
and a†a would not be conserved throughout the propagation.
Particularly, we observe that these generators of the NOCMT
lie within the class of real-valued nonsymmetric matrices.
Nevertheless, the modified intensity distribution a†�a (pos-
itive operator-valued measurement) remains constant as long
as K is Hermitian, that is, dissipative effects are negligible as
assumed.

The non-Hermitian nature of Eq. (8) can even be lifted
completely by transforming to a set of longitudinal normal
modes (also referred to as supermodes in Refs. [16,26])
{b j (z)}N

j=1 such that the overall propagation is unitary [28].
Even though we did not start our derivation from power-
orthogonal modes, conservation of energy demands that such
normal modes always exist. Obviously, in contrast to the
waveguide mode a j , the corresponding normal mode b j will
contain contributions from adjacent waveguides. To be pre-
cise, their relation is given by the conserved quantity b†b =

a†�a. Moreover, because the power matrix � is positive defi-
nite, there exists a (nonunique) matrix Q such that � = Q†Q.
It follows that the normal modes are given by the transforma-
tion b = Qa. With these preparations, Eq. (8) can be rewritten
as

i∂zb = Hb, (9)

where H is given by [28]

H = (Q−1)†KQ−1, (10)

which is Hermitian as long as K = K†. From similarity with
Eq. (10) it follows that �−1K is always diagonalizable with
a real spectrum. Even though the matrix H in Eq. (10) can be
viewed as a generalized coupling matrix mediating population
transfer between the normal modes {b j} j , its off-diagonal
entries cannot be viewed as the usual evanescent couplings
as nonorthogonality of the waveguide modes {aj} j has a
fundamentally different distance behavior with decreasing
waveguide separation. In particular, the ansatz of exponen-
tially decaying coupling behavior as in Ref. [12] becomes
inappropriate. This distortion due to nonorthogonality was ob-
served in Ref. [30] by means of a fluorescence measurement.

Adiabatic propagation

While a general state vector �(z) evolves according to
Eq. (9), under the adiabatic assumption any initial prepara-
tion �(z0) in a dark subspace (zero-eigenvalue eigenspace)
will be mapped to a state �(z f ) = U(z0, z f )�(z0) that is also
in the dark subspace. Then, we can expand the state � at
every instance z in terms of the dark states, i.e., �(z) =∑

a Uab(z)da(z), with initial condition �(z0) = da(z0). Insert-
ing this ansatz into Eq. (9) and following Ref. [3], we obtain
(U−1∂zU)ba = (Az )ab where we used H� = 0 for states � in
the dark subspace. Here we defined the adiabatic connection
[31] as (Az )ab = d†

b∂zda. A formal solution for U is then given
in terms of the matrix exponential

U(z0, z f ) = T exp
∫ z f

z0

Az dz, (11)

where T denotes z ordering.
For a collection of coupled waveguides, the z dependence

of the system is functionally connected to the distances be-
tween the waveguides {δμ(z)}μ that form local coordinates of
an abstract parameter space M (control manifold). Then, the
propagation along the z direction can equivalently be viewed
as a parameter variation along a curve C : [z0, z f ] → M . In
the following sections we are not interested in arbitrary paths,
but only those that (approximately) form loops in M , i.e.,
C(z0) = C(z f ). Population transfer between waveguides asso-
ciated with such a loop appears to be robust against stochastic
fluctuations of the control parameter, as the transformation
U(z0, z f ) only depends on the area enclosed by the loop
C [32].

III. TRIPOD ARRANGEMENT OF WAVEGUIDES

In order to examine the properties of geometric phases in
relation to nonorthogonal modes more closely, we shall focus
on a benchmark example that can be implemented using the
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FIG. 3. Front view of the tripod arrangement; arrows indicate in-
teractions between the outer waveguides and the central waveguide.
Within NOCMT, this includes evanescent coupling as well as the
overlap of transverse modes. In OCMT, this overlap is neglected.
The interaction strength depends on the separation δiC between the
corresponding waveguides.

current state of technology. A schematic representation of the
waveguide network under investigation is shown in Fig. 3.
There, the outer waveguides L, R, and U interact only implic-
itly via the central waveguide C (nearest-neighbor coupling).
To be more precise, we consider a situation in which the
transverse fields of the outer waveguides have couplings and
overlaps that can be safely disregarded. Then, the coupling
matrix of the system is

K =
∑
j �=C

κ jC (w†
jwC + w†

Cw j ) +
∑

j

ν jw
†
jw j,

where j enumerates the waveguides {L, R,U,C}. Here, {w j} j

denotes the standard basis in C4 that forms an orthonormal
representation of the transverse eigenmodes of the jth waveg-
uide. For the moment, we neglect self-coupling on the matrix
diagonal, as it appears to be the smallest contribution to the
overall propagation. The corresponding power matrix of the
system then reads

� =
∑
j �=C

σ jC (w†
jwC + w†

Cw j ) +
∑

j

w†
jw j, (12)

where we assumed normalized transverse modes such that
σ j j = 1. The setup depicted in Fig. 3 is known as a tripod
system. The tripod scheme, arising in different physical set-
tings, is often used as a starting point for the generation of
U (2)-valued phases (see, e.g., Refs. [11,33,34]).

One possible transformation between waveguide and nor-
mal modes can be obtained by a Cholesky factorization of the
matrix (12), that reads

Q =
∑
j �=C

(σ jCw†
jwC + w†

jw j ) +
√

1 − σ2w†
CwC, (13)

where we introduced the vector σ = (σLC, σRC, σUC ). From
the matrix (13) we can compute the Hermitian generator for
the evolution of normal modes according to Eq. (10), and we
find

H =
∑
j �=C

sκ jC (w†
jwC + w†

Cw j ) − 2s2σ · κ w†
CwC,

with κ = (κLC, κRC, κUC ) and s = 1/
√

1 − σ2. The system’s
dark states

d1 = sin θwL − cos θwR,

d2 = cos θ sin ϕwL + sin θ sin ϕwR − cos ϕwU
(14)

satisfy Hda = 0, where we defined θ = arctan(κRC/κLC ) and
ϕ = arctan(κUC/

√
κ2

LC + κ2
RC ). Quite remarkably, as long as

the second-order (next-nearest-neighbor) contributions to the
coupling [35] as well as self-coupling are negligible, the in-
troduction of mode overlaps does not break the degeneracy
of the system, and still gives rise to a twofold degenerate
dark subspace similar to its counterpart in OCMT [17]. In
particular, the dark states of H have the same structure as the
ones found in OCMT but with their coefficients now giving
the population of the associated normal mode that differs from
the individual modes of each waveguide.

With the dark states known, computing the connection Az

becomes a straightforward task and, thus, the matrix exponen-
tial (11) can be evaluated analytically to

U(z0, z f ) =
(

cos φ sin φ

− sin φ cos φ

)
, (15)

written in the basis {da(z)}a. Here

φ(z0, z f ) =
∫ z f

z0

κUC (κLC∂zκRC − κRC∂zκLC )√
κ2

LC + κ2
RC + κ2

UC

(
κ2

LC + κ2
RC

)dz (16)

is a phase factor depending only on the geometry of the
associated parameter variation C. The holonomy matrix (15) is
the same unitary transformation as for the case of orthogonal
transverse modes [17]. This implies that the results of the
NOCMT and the OCMT predict the same output state as long
as the evolution takes place solely in the dark subspace. This
means that the geometric phase generated from the tripod is
robust against the nonorthogonal nature of transverse modes.
This is a remarkable result as, in general, the deviations from
mode orthogonality can significantly distort the dynamics
of light in a coupled-mode system. In contrast to Ref. [16]
where a normal-mode expansion for the tripod-well structure
was proposed, here we showed that the interaction of normal
modes is independent of the mode overlaps σiC as long as the
propagation appears to be adiabatic.

Propagation with Gaussian-shaped geometries

Here, we present an experimentally feasible parameter loop
C that can be realized by current laser-writing techniques [13].
Suppose one implements the geometry

δLC (z) = � − � exp

(
− (z − z − τ )2

T 2

)
,

δRC (z) = � − � exp

(
− (z − z + τ )2

T 2

)
, (17)

δUC (z) = �U ,

in which the central waveguide is assumed to remain at the
origin of the transverse plane, while the separation to the L
and R waveguide changes according to a Gaussian function.
In Eq. (17), z denotes half the total propagation length, and
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FIG. 4. Couplings κiC (in mm−1) and overlaps σiC between the
ith outer waveguide and the central waveguide as a function of the
propagation distance z for the case of the z-dependent waveguide
position (17). The first interaction with waveguide L is increased (red
left peaks) and then the interaction with waveguide R is increased
(blue right peaks) while the waveguide U is kept at constant distance.
The chosen parameters are � = 40 μm, �U = 14 μm, � = 26 μm,
T = 8 cm, and τ = 2 cm.

� − � is the minimal separation between waveguide L (R)
and the central waveguide C, with waveguide U having con-
stant distance �U . Furthermore, T is the width parameter,
and τ is the separation of the two Gaussian peaks from the
center at z. The relevant coupling strengths and overlaps of the
respective waveguides can be determined from their mutual
separation, shown in Fig. 2. Given the variation (17), the re-
spective coupling constants and overlaps are shown in Fig. 4.

A parameter loop starting at the initial point δ0 =
(�,�,�U ) will induce a nontrivial mixing of states

d1(δ0) ≈ wL, d2(δ0) ≈ wR.

After integration of the phase factor (16) and subsequent eval-
uation of the transformation (15), this mixing can be given
explicitly. The adiabatic limit is applicable if the loop C given
by Eq. (17) is traversed slowly enough compared to the energy
splitting between the dark subspace and the excited bright
subspaces [11,12]. We found that the separation between dark
and bright states is slightly shifted when compared to the
eigenvalue splitting known from OCMT, due to the contri-
bution from mode overlaps. In order to evaluate to which
extent the adiabatic approximation is justified in NOCMT, we
compute the (expected) gate fidelity 0 � F � 1 in terms of
input state fidelities

F�(z0 ) = |�̃(z f )†Q−1(z f )U(z f )�(z0)|2, (18)

with U(z f )�(z0) being the ideal output state predicted by the
holonomic theory (15) and �̃(z f ) obtained from a numerical
propagation subject to the paraxial Helmholtz equation (8).
For the scenario under study, the gate fidelity of the dark state
ensemble {{1/2, wL}, {1/2, wR}} amounts to approximately
F ≈ 98.6 %.

We can conclude that robust adiabatic parallel transport of
an initial wave packet can be achieved within the range of
experimentally feasible setups, despite the influence of mode
nonorthogonality. In fact, the expected distortion from close-
coupling dynamics comes to light when one of the bright
states wU or wC is excited. In Fig. 5 we compare the popula-

FIG. 5. Simulated propagation of �(z) in terms of waveguide
modes [subject to Eq. (8)] for the waveguide position (17) under
investigation. The four plots show the change of intensity throughout
propagation for different initial input states {w j} j . It can be seen that
the bright states (U and C) are subject to rapid intensity fluctuations
due to deviations from mode orthogonality. The parameter values are
� = 40 μm, �U = 14 μm, � = 26 μm, T = 8 cm, and τ = 2 cm.
(a) Intensity in site L for �(z0) = wL . (b) Intensity in site R for
�(z0) = wR. (c) Intensity in site U for �(z0) = wU . (d) Intensity in
site C for �(z0) = wC .

tion transfer between the waveguides for different initial input
states. One can clearly see the robustness of the dark states,
while the excited states are exposed to more rapid population
transfer. In fact, when adding the bright states to the input
ensemble, a gate error emerges that is not of diabatic nature,
but has its origin in the fact that the parameter variation (17)
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FIG. 6. Front view of the tetrapod arrangement; arrows indicate
interaction between the respective waveguides. Within the NOCMT
this includes evanescent coupling as well as the overlap of trans-
verse modes. In the case of OCMT the overlap is neglected. The
strength of interaction depends on the separation δiC between the
corresponding waveguides. Black arrows were chosen for nearest-
neighbor coupling (first order). Gray solid lines are reserved for
next-nearest-neighbor coupling (second order), while gray dotted
lines depict coupling between opposite placed waveguides (third
order).

does not form a perfect loop. This matching error of input and
output basis is rather small for the dark states but gets ampli-
fied for the bright states due to rapid intensity oscillations, thus
leading to a substantial decrease in gate fidelity, F ≈ 88.9%.
The relation between mode nonorthogonality and rapid in-
tensity oscillations was experimentally verified in Ref. [30].
In general, the robustness of dark states can be attributed to
their form given by Eq. (14) which is independent of σiC and
therefore identical to their counterparts in OCMT [17]. Hence,
despite the overlaps, absence of light in waveguide C can still
be used as a measure of adiabaticity.

IV. HIGHER-ORDER COUPLING IN THE TETRAPOD
ARRANGEMENT

We now turn to the influence of self-coupling and higher-
order contributions in a waveguide network which had been
neglected in our calculations thus far. These effects potentially
break the degeneracy structure of the system under investiga-
tion. We found numerically that, in the tripod arrangement,
these contributions are completely negligible for the propaga-
tion lengths investigated (|z f − z0| � 15 cm). However, this
result depends crucially on the distance behavior shown in
Fig. 2, and does not need to be valid beyond step-index
waveguides.

In order to show that coupling beyond nearest-neighbor
hopping as well as self-coupling can become relevant when
the distance between waveguides is substantially decreased,
we now turn to a tetrapod arrangement depicted in Fig. 6.

FIG. 7. Couplings (in mm−1) and overlaps between the northern
(N) waveguide and jth waveguide ( j ∈ {C, E , S}) of the tetrapod
arrangement as a function of the propagation distance z for the
waveguide geometry (21). Coupling to the central (C) waveguide is
of first order (upper lines), coupling to the eastern (E ) waveguide
is of second order (middle lines), and coupling to the south (S)
waveguide is of third order (lowest lines). The relevant parameters
are given by � = 38 μm, �W = 12 μm, � = 26 μm, T = 15 cm,
and τ = 5 cm.

Placing more waveguides around the central site will in-
evitably result in a system having no degeneracy at all. The
coupling and power matrices of the (ideal) tetrapod system
without self-coupling and higher-order effects are given by

K =
∑
j �=C

κ jC (w†
jwC + w†

Cw j ) (19)

and

� =
∑
j �=C

σ jC (w†
jwC + w†

Cw j ) +
∑

j

w†
jw j, (20)

where j runs through the alphabet {N, E , S,W,C}, and hence
{w j} j might be thought of as the standard basis in C5. For this
system, the adiabatic propagation of normal modes will gener-
ate a U (3)-valued mixing within the threefold degenerate dark
subspace. A geometric phase designed via the tetrapod will

FIG. 8. Intensity distribution for the tetrapod arrangement sub-
ject to the geometry (21). The solid lines belong to the ideal tetrapod
[Eqs. (19) and (20)], while the dashed lines describe propagation
including higher-order couplings as well as self-coupling. The results
were computed via a numerical simulation of Eq. (8) for an ini-
tial wave package wN , with parameters � = 38 μm, �W = 12 μm,
� = 26 μm, T = 15 cm, and τ = 5 cm for a network of 40-cm total
length.
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be not only matrix valued as the holonomy in Eq. (15), but
truly noncommutative in its nature due to the richer parameter
space. In a tripod arrangement, complex-valued couplings are
necessary in order to create non-Abelian characteristics [16].

Propagation with Gaussian-shaped geometries

Higher-order coupling becomes relevant as soon as the
propagation length of the evolution is substantially increased.
In this regime, we can assume adiabaticity to apply. Then,
the matrices in Eqs. (19) and (20) are no longer sparse, but
have only nonvanishing entries. The diagonal entries of K now
contain the self-couplings ν j . In the following, we will study
the influence of such contributions on a benchmark geometry:

δNC (z) = � − � exp

(
− (z − z − τ )2

T 2

)
,

δEC (z) = � − � exp

(
− (z − z)2

T 2

)
,

δSC (z) = � − � exp

(
− (z − z + τ )2

T 2

)
,

δWC (z) = �W .

(21)

In the chosen waveguide geometry, the evolution of coher-
ent light approximately starts and ends at the point δ0 =
(�,�,�,�W ), where the holonomy will generate a mixing
of dark states

d1(δ0) ≈ wN , d2(δ0) ≈ wE , d3(δ0) ≈ wS.

Given the geometry (21), we can derive the z-dependent
form of the relevant parameters from Fig. 2. Knowing these
parameters allows us, by simple geometric considerations
(see Fig. 6), to construct higher-order couplings and overlaps
as well. In Fig. 7, the coupling strengths of these different
contributions are shown for the waveguide N . One observes
clearly how the higher-order couplings have a substantially
smaller influence compared to the nearest-neighbor coupling.
Nevertheless, for longer propagation lengths (e.g., |z f − z0| =
40 cm) these contributions will lead to a deviation in the
intensity distribution from the evolution predicted by the prop-
agation through the ideal tetrapod system.

We also investigated the change of self-coupling ν j (z) of
each respective waveguide. There we observed that the order
of magnitude of the self-coupling in the outer waveguides lies
between those of the second-order and third-order contribu-
tions. However, the self-coupling νC is substantially larger, as
the central waveguide mode is closely surrounded by the other
waveguides.

In Fig. 8, the propagation through the ideal tetrapod (solid
line) is compared to a propagation including higher-order
couplings and self-coupling (dashed line). The state was prop-
agated numerically for an initial input wN . Our results show
that these additional effects (mostly second-order coupling
and self-coupling νC) lead to increased population transfer
between the waveguides. Due to symmetry breaking, this
additional population transfer will not be robust against para-
metric fluctuations and mode nonorthogonalities as it is no
longer described by a parallel transport in the degenerate dark
subspace of the tetrapod.

V. CONCLUSION

In this paper, we considered the generation of geometric
phases in integrated photonic waveguide structures within
the framework of nonorthogonal coupled-mode theory. Gen-
eral arguments show that including the nonorthogonality of
transverse modes leads to a set of tight-binding equations
governing an evolution in which the conventional intensity
distribution is not necessarily conserved. This issue was lifted
by means of a normal-mode expansion. An analytical compu-
tation of the geometric phase and a subsequent evaluation of
the intensity distribution for the tripod system showed a ro-
bustness of the adiabatic parallel transport against deviations
from mode orthogonalities as long as adiabaticity holds and
higher-order couplings are negligible. A subsequent study of
the tetrapod arrangement showed that higher-order coupling
as well as self-coupling can become relevant for longer prop-
agation lengths, eventually breaking the degeneracy of the
system, thus perturbing the generation of a U (3)-valued ge-
ometric phase. However, for appropriate propagation lengths
our numerical simulations of the population transfer between
the waveguides showed that high fidelity transformations can
be generated when working in the close-coupling regime.

Our paper paves the way for the study of adiabatic paral-
lel transport by photonic structures within the close-coupling
regime. The symmetry of the dark subspace leads to an
inherent robustness of geometric phases towards the distor-
tion of light by mode nonorthogonalities. Together with their
parametric stability, geometric phases can be considered a
powerful tool for the generation of stable population transfer
of light even within the realm of the nonorthogonal coupled-
mode theory.
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