
PHYSICAL REVIEW A 105, 013506 (2022)

Ghost imaging as loss estimation: Quantum versus classical schemes
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Frequency correlations are a versatile and powerful tool which can be exploited to perform spectral analysis of
objects whose direct measurement might be unfeasible. This is achieved through a so-called ghost spectrometer
that can be implemented with quantum and classical resources alike. While there are some known advantages
associated to either choice, an analysis of their metrological capabilities has not yet been performed. Here we
report on the metrological comparison between a quantum and a classical ghost spectrometer. We perform the
estimation of the transmittivity of a bandpass filter using frequency-entangled photon pairs. Our results show that
a quantum advantage is achievable, depending on the values of the transmittivity and on the number of frequency
modes analyzed.
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I. INTRODUCTION

Accessing hardly reachable objects with light, while main-
taining the possibility of performing detailed analysis at the
output is a well-known conundrum, yet a task with sub-
stantial relevance. Correlations in multimode light constitute
a widely explored way to circumvent technical limitations.
These schemes rely on two sets of correlated modes, which are
employed to illuminate the object on one side and the analysis
apparatus on the other. Although the light that has actually en-
countered the object is not directly analyzed, the presence of
correlations allows to extract the information. When applied
to spatial analysis, this technique is able to produce an image
even if the object is physically removed from the detection
line, hence the name ghost imaging (GI) [1].

Although GI was initially considered as a quantum effect
produced in parametric down conversion [1], many results
and features can be replicated by multimode classical thermal
emission [2–4]. This has lead to an intense activity focused
on extending applications towards genuine remote imaging
[5], as well as extensions to the spectral [6,7] and polarization
domains [8]. Thermal GI requires less demanding equipment
than its quantum counterpart, and it typically allows to achieve
superior brightness. There exist, however, aspects of the quan-
tum technique that cannot be replicated with classical light,
in particular, when inspecting the optical resolution [9] and
the signal-to-noise ratio of the image [10]. In this article, we
discuss quantitative differences of the quantum and classical
scheme in the light of a different paradigm in quantum metrol-
ogy, viz. quantum parameter estimation [11–14].

We discuss the capability of a GI system in estimating
the image of an object, considered as a collection of trans-
mission parameters. The presence of quantum correlations is

well known to deliver subshot noise measurement of intensity
[15–21], and these can lead to quantum-enhanced applications
[22–31]. In particular, the authors of Ref. [32] discussed the
use of quantum light for the measurement of a single transmit-
tance, while the authors of Ref. [33] demonstrated how this
task benefits from adopting quantum correlations. We build
on these results to discuss resource counting in quantum GI in
comparison with its classical counterpart at fixed energy.

II. EXPERIMENTAL QUANTUM GI IN THE SPECTRAL
DOMAIN

In our approach, the object to be imaged, be it a genuine
spatial image or a spectral profile, is modeled as a collection
of K values of transmittivity Tk , 1 � k � K , each associated
to a mode. Our aim is then to estimate these values.

The quantum technique to implement GI uses the cor-
relations between single photons produced in spontaneous
parametric down-conversion (SPDC): a single incoming
pump photon creates a pair of photons strongly correlated
in their emission modes [34]. In the experiment, the spectral
profile is conveniently discretized, so that the effective number
of correlated mode pairs is equal to K .

All the modes in arm 1 arrive on the object, and are
then measured by a mode-insensitive bucket detector. Due
to the correlations in the pair production process, the anal-
ysis of the correlated photon in coincidence with the bucket
detector provides information about what has occurred to
its twin. This is the experimental approach we followed in
our investigation, but, differently from the most frequent
case, we explored the spectral domain. The photon reach-
ing the frequency-independent bucket detector passes through
a spectral object, an interference filter with full-width at

2469-9926/2022/105(1)/013506(6) 013506-1 ©2022 American Physical Society

https://orcid.org/0000-0001-9733-0740
https://orcid.org/0000-0002-7358-9624
https://orcid.org/0000-0003-2057-9104
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.013506&domain=pdf&date_stamp=2022-01-05
https://doi.org/10.1103/PhysRevA.105.013506


A. CHIURI et al. PHYSICAL REVIEW A 105, 013506 (2022)

FIG. 1. Experimental setup. A 30-mW CW diode laser at 405 nm
pumps a 3-mm barium borate (BBO) crystal cut for noncollinear
Type-I phase matching, producing degenerate photon pairs at 810 nm
through SPDC. One photon is then sent through an interference filter
with FWHM 7.3 nm and detected with a bucket detector. Frequency
detection is performed on the second photon: this is achieved through
a 1200-lines/mm grating and a collection lens with focal length
f = 30 cm. A multimode fiber on a translation stage allows for a
complete measurement of the spectral range under investigation. A
collimator, integral to the fiber mount, assists the photon’s collection.

half-maximum of 7.3 nm. The second photon was analyzed
using a spectrometer, as described in Fig. 1.

We reconstruct the spectral profile of arm 1, including the
filter, optical elements, and detector, by scanning the output

of the spectrometer in the analysis arm 2. This profile will
be dictated mostly by that of the filter. We collect a series
of Ns = 100 points, with a resolution of 0.33 nm, estimated
by comparing the obtained profile with the one measured in
Ref. [35] by means of a conventional spectrophotometer. We
can then define the spectral modes as K = Ns/ j, with j =
1–100, so that each single mode k is obtained by regrouping
j measured points. Different spectral resolutions were thus
achieved by summing the number of coincidences measured
for these groups of points and similarly for the single counts.
The transmission Tk , considering the spectral object as well
as the intrinsic loss of the arm, is calculated as a Klyshko
efficiency [36] Tk = Ck/Nk , with Ck being the coincidence
counts and Nk the total counts of the spectrometer detector
for the kth mode; this allows to obtain an estimation of each
Tk , independently of the other. In Figs. 2(a) to 2(c) we report
the obtained transmittivities Tk for K = 10, 50, 100.

The uncertainty on the transmittivity is calculated by con-
sidering that Nk events have been collected, a fraction Ck of
which lead to a coincidence. Thus, Nk is considered as fixed,
while Ck is a binomial variable, with variance Ck (1 − Tk ) [33];
error propagation leads to

�2Tk = Tk (1 − Tk )/Nk . (1)

The adoption of the Klyshko method makes the estimation of
Tk and its error independent of the efficiency η of the detec-
tion arm, within our single-photon approximation. However,
proper resource counting needs to include those events dis-
carded due to η < 1: for each value of Tk these are estimated

FIG. 2. Transmittivities evaluated as the Klyshko efficiency for (a) K = 10, (b) K = 50, and (c) K = 100 modes. Data are collected for the
spectral resolution of panel (c) in a 5-s window with a rate of 1100 coincidences/s at the maximum. The values of transmittivity are estimated
as the coincidence-to-single count ratio Ck/Nk . The points in panel (c) are obtained directly from the measured counts, while for the points in
panels (a) and (b), the reduced resolution is mimicked by summing the collected signals over multiple modes. The observed profile follows
closely the fourth-order super-Gaussian, previously measured by a spectrophotometer [35], with some deviations which can be ascribed to
other optical components in the arm. The experimental estimation errors for the quantum strategy are obtained by means of Eq. (1) and are
shown in green in panel (d) for K = 10, (e) K = 50, and (f) K = 100 modes. These correspond to the error bars in the panels (a) to (c).
The classical uncertainties (purple points) are evaluated via the error propagation in Eq. (8) and the described results of our calculation. We
considered Ntot = 80 000 per mode at the highest resolution, a value that accounts for the lost events due to the limited efficiency η = 0.35.
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as Ntot = 〈Nk〉/η, using the average number of events on all
modes. In our experiment we estimated η = 0.35 as the av-
erage efficiency of the frequency bins by a modified Klyshko
method that takes into account the multimode detection on
arm 1. This consists in evaluating η by taking the sum of
the coincidences across all frequency detection modes and
dividing it by the total counts of the bucket detector.

III. BENCHMARKING THERMAL GI

We derive the equivalent strategy based on multiple ther-
mal states as our classical benchmark. We assume we can
make use of a collection of independent modes, with the same
structure as our quantum source, each presenting thermal pop-
ulation. This multithermal emission is split on a 50:50 beam
splitter, with the measuring apparatus performing essentially
the same operation as above: one half of the beam reaches
the object and then the bucket detector, the other half the
analysis apparatus. Looking at the cross correlation between
the two detection signals, one observes a value of second-
order correlation g(2)(0) > 1 if the two are correlated and
g(2)(0) = 1 otherwise. The value of the second-order corre-
lation will depend on the transmission profile, thus making it
possible to obtain information on the object. Since g(2)(0) � 1
for classical light, the visibility of our signal is decreased
with respect to the quantum case [3,4,9,10]. Notably, this
mechanism cannot be replicated by means of coherent states
since no intensity correlations emerge when these are divided
on a beam splitter.

A multimode thermal state can be written in the diagonal
form in the Fock basis as [37]

νnth =
K⊗

k=1

∞∑
m=0

pth(m|nth ) |m〉k k〈m|, (2)

where the thermal profile is given by the photon-number
probability

pth(m|nth ) = 1

nth + 1

(
nth

nth + 1

)m

. (3)

Each thermal mode is taken to have mean photon number nth,
so that, on average, n̄ = nth/2 photons per mode reach the
object and allow for M repetitions of the measurement such
that n̄M = Ntot , to compare strategies with the same number
of total resources. Near-optimal working conditions are for
n̄ ∼ 1, as verified numerically. We should remark that this
comparison is carried out against the postselected scheme of
quantum metrology.

The thermal state is split in a balanced beam-splitter and,
as in the experiment described in Fig. 1, one half of the beam
reaches the filter and then the bucket detector, while the other
half reaches the analysis apparatus. The key quantity needed
to evaluate the classical benchmark for ghost imaging, that
is the error that one would obtain in estimating the same set
of transmittivities {Tk} describing arm 1, is the joint condi-
tional probability Pk (n1, n2|{Ti}) of detecting n1 photons in the
bucket detector and n2 photons in the mode k via the detector
placed after the frequency analyzer.

We start by considering the single-mode case, where our
object is thus described by a beam splitter with transmittivity

Tk that couples the photons in the arm 1 to a virtual mode “0”
prepared in a vacuum. By assuming to have control on this
virtual mode and thus to detect photons also in the correspond-
ing output port, the corresponding conditional probability of
detecting, respectively, {n1, n2, n0} in the three detectors reads

pk (n1, n2, n0|Tk ) =
(

n1 + n2 + n0

n1 + n0

)(
n1 + n0

n0

)

× pth(n1 + n2 + n0|nth )

(
1

2

)n1+n2+n0

× T n1
k (1 − Tk )n0 . (4)

To obtain the correct conditional probability corresponding to
the output of the two detectors in the actual experiment, where
one does not have control on the virtual mode, we have to trace
out this subsystem by averaging over all the possible values of
n0, obtaining the marginal probability

pk (n1, n2|Tk ) =
∞∑

n0=0

pk (n1, n2, n0|Tk ). (5)

As expected, by averaging also over the detector output
n2 one obtains the photon-number statistics of a thermal state
with Tknth/2 photons, i.e.,

∞∑
n2=0

pk (n1, n2|Tk ) = pth(n1|Tkn̄). (6)

In the multimode scenario, we have to consider two contri-
butions to the detection. When the detector on arm 2 is set to
observe mode k, the bucket detector can receive photons orig-
inating from the correlated mode on arm 1, or from the other
uncorrelated modes. In the first case, the detection probability
has the expression for pk (n1, n2|Tk ) calculated in Eq. (5) for
the single-mode scenario, while in the second case there will
be present multithermal noise, with each mode contributing
with its thermal statistics pth(n1|Tkn̄) in Eq. (6). Consequently
in the complete conditional probability Pk (n1, n2|Tk ) for the
multimode case, we have to account for the possibility of
generating the photons n1 in arm 1 from all these modes: of the
observed n1 photons, νk actually originate from mode k, and
n1 − νk from the others, parted among the remaining modes.
The overall probability corresponds to taking the discrete con-
volution of those for the individual modes

Pk (n1, n2|{Ti}) =
∑
{νi}:∑
i νi=n1

pk (νk, n2|Tk )
∏
j �=k

pth(ν j |Tjn̄), (7)

where the sum is indeed taken over all the possible set {νi} of
photons on the K modes hitting the bucket detector.

The conventional measurement estimates the correlation
C(k)

12 = 〈n1n2〉k , from which the transmittivities Tk can be
inferred (notice that each trasmittivity Tk will be estimated
separately by selecting only the clicks of the second detec-
tor corresponding to the kth frequency). The corresponding
uncertainties can thus be evaluated via error propagation as

�2T (c)
k = 1(

dC(k)
12 /dTk

)2

�2C(k)
12

M
, (8)
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where �2Ck
12 = 〈n2

1n2
2〉k − 〈n1n2〉2

k . However, the evaluation
of C(k)

12 and �2C(k)
12 directly from Eq. (7) is computationally

demanding. We thus adopted an approach based on the mo-
ment generating functions [38], defined as

Gk (x, y|{Ti}) =
∞∑

n1,n2=0

Pk (n1, n2|{Ti})en1x+n2y. (9)

In fact, by exploiting these objects, the moments of the distri-
butions are found as

〈nα
1 nβ

2 〉k = ∂α
x ∂β

y Gk (x, y|{Ti})|x=0,y=0. (10)

The key property we exploit to evaluate Gk (x, y|{Ti}) is that
for probabilities based on a convolution such as Eq. (7), the
total generating function is readily found as the product of the
individual functions

Gk (x, y|{Ti}) = gk (x, y|Tk )
∏
j �=k

gth(x|Tjn̄), (11)

that can be readily evaluated via the formulas

gk (x, y|Tk ) =
∞∑

n1,n2=0

pk (n1, n2|Tk )en1x+n2y (12)

= [1 + nth(1 + Tk − ey − Tkex )]−1, (13)

gth(x|nth) =
∞∑

n1=0

pth(n1|nth)en1x (14)

= (1 + nth − nthex )−1. (15)

By exploiting the results of our calculation it is possible to
obtain computable forms for the uncertainties in Eq. (8), this
is also true for large values of the number of modes K . We re-
mark that the comparison between the estimation errors for the
quantum apparatus described in the previous section and the
the classical strategy based on thermal light is conducted by
allowing the classical strategy to employ also those resources
that were wasted due to the loss in the quantum apparatus, as
quantified by the parameter η.

This classical strategy is inspired by the standard measure-
ment carried out for ghost imaging; furthermore, since there
is no coherence among the different photon number states, the
choice of the observable is bound to be optimal. However, the
estimator C12 may be not: a more suitable choice f (n1, n2),
while based on the same observable, may lead to improved
uncertainties. On the other hand, finding an explicit expres-
sion, due to the dissipative nature of the transmission process,
is not immediate, as we cannot apply the standard machinery
for unitary parameters. Anyhow, the ultimate limit on the error
in the estimation of each trasmittivity Tk via the experimental
setup described above is given by the Cramér-Rao bound
(CRB) [13]

�T 2
k � 1

MFk
, (16)

where M is the number of repetitions of the experiments,
while

Fk =
∞∑

n1,n2=0

Pk (n1, n2|{Ti})

(
∂

∂Tk
log Pk (n1, n2|{Ti})

)2

(17)

denotes the Fisher information corresponding to the estima-
tion of the parameter Tk . While this does not apply strictly to
a genuine multiparameter estimation of all {Tk} [14], it still
sets a lower bound to the attainable error in the general case
(accounting for statistical correlations among transmittivities
can only decrease the available information).

For large number of modes K the evaluation of the proba-
bilities in Eq. (17) is highly demanding. Hence, we employed
the approach described in the previous paragraph to evaluate
the Fisher information, and thus the corresponding CRB, only
numerically and for a small number of modes K , by exploiting
the exact relationship between the Fisher information and the
Hellinger distance [39]

Fk = lim
ε→0

4
(
DH [Pk (n1, n2|{Ti}), P(ε)

k (n1, n2|{Ti})]
)2

ε2
, (18)

where P(ε)
k is obtained from Pk by replacing the kth trasmittiv-

ity with Tk + ε, and where we defined the Hellinger distance
between two probability distributions as

DH [p1(x), p2(x)] =
√∑

x

(√
p1(x) −

√
p2(x)

)2
. (19)

IV. DISCUSSION

The errors evaluated for quantum and classical strategies,
as reported in Eqs. (1) and (8), respectively, are reported in
Figs. 2(d) to 2(f) for K = 10, 50, 100. This shows that, for
the conventional estimators, the quantum strategy, although
lossy, always outperforms the classical one, and that the en-
hancement increases with the number of modes, when the
transmittivities are estimated individually for each mode.

The comparison between the errors evaluated for the
quantum strategy [Eq. (1)], for the classical one through prop-
agation [Eq. (8)] and through the CRB [Eq. (16)] is reported
in Fig. 3, for modes K = 3, 5, 7, 9. In more detail, to obtain
the results shown in Fig. 3, we evaluated numerically the
probability distributions Pk and P(ε)

k via Eq. (7) with ε = 10−7,
numerically checking that the quantity

F̃k = 4
(
DH [Pk (n1, n2|{Ti}), P(ε)

k (n1, n2|{Ti})]
)2

ε2
(20)

is stable by further decreasing the value of ε, such that one
can safely assume that Fk ≈ F̃k .

The results show that quantum light does not provide an
advantage unconditionally. In fact, when only a few modes
are considered, an optimal classical estimator can outperform
the quantum strategy using the same number of resources, es-
pecially at higher transmittivities. When the number of modes
is increased, however, the quantum advantage is recovered,
hence the quantum estimation becomes the preferable choice
for every transmittivity value considered. It should be noted
that, to be optimal, the classical protocol requires nth ∼ 1, thus
prompting comparable experimental difficulties to those of the
quantum scenario. This is indeed quite a different regime than
the one for conventional thermal ghost imaging [4].
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FIG. 3. Comparison between the measured errors for the quantum strategy (green circles) and the estimated errors for the classical one
obtained by propagation (purple triangles) and by the CRB (pink squares), at a fixed number of cumulative resources Ntot for (a) K = 3,
(b) K = 5, (c) K = 7, and (d) K = 9 modes.

V. CONCLUSION

We investigated in which conditions a ghost imaging setup
may provide an enhanced parameter estimation of a collection
of transmittivity values representing the imaged object. We
illustrated this with an experiment of quantum ghost spec-
trometry performing the measurement of a bandpass filter.
We then compared the measurement precision with that of an
analogous classical scheme using thermal modes. Our analy-
sis shows that adopting the quantum strategy can be favorable
in specific conditions, dictated by the values of the transmit-
tivities at hand, and by resolution of the modes. The higher
the resolution and the lower the transmittivities, the greater
the enhancement that can be achieved through quantum

estimation, although, it should be emphasized that the details
do depend on the entire profile of the transmittivities.
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