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We investigate the optomechanically induced transparency (OMIT) in an optomechanical lattice. By control-
ling the frequency of the external drivings in a periodic manner, the optomechanical lattice can be regarded as a
Su-Schrieffer-Heeger model. By calculating the local photon density of states for the system, we investigate the
response of the system to a weak probe field. In the nondeep topological nontrivial phase, we find that the system
has two nondegenerate edge modes due to the finite size of the system. In this regime, a narrow transparency
window of the probe field, which is much narrower than the scale set by photon decay, can be observed due to
the destructive interference of the probe field absorption paths induced by the two nondegenerate edge modes.
In the deep topological nontrivial phase, the two edge modes become degenerate and the narrow transparency
window changes into a wide absorption window. The OMIT of the optomechanical array can also be observed in
the presence of large disorders of the many-photon optomechanical couplings. Our work generalizes the OMIT
of a single optomechanical cavity to a topological optomechanical system and might have potential applications
in quantum information processing and quantum optical devices.
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I. INTRODUCTION

Cavity optomechanical systems [1], in which optical cav-
ities couple to mechanical oscillators via radiation pressure,
have received considerable attention due to their potential
applications in various aspects, e.g., high-precision measure-
ment [2–7], exploration of the quantum-to-classical transition
[8,9], and quantum information processing [10–12]. Due to
the nonlinear optomechanical coupling, optomechanical sys-
tems provide a promising platform for the investigation of
various quantum phenomena, such as quantum entanglement
[13–18], photon and phonon blockade [19–25], ground-state
cooling of mechanical oscillators [26–31], and the generation
of squeezed light [32–34]. Among the various breakthroughs,
a particular phenomenon which is related to our work here
is optomechanically induced transparency (OMIT) [35–37],
which results from the destructive interference between the
anti-Stokes scattering field and the weak probe field. Re-
cently, OMIT has also been investigated in various kind of
optomechanical systems, e.g., quadratically coupled optome-
chanical systems [38,39], spinning optomechancial systems
[40,41], non-Hermitian optomechanical systems [42,43],
Laguerre-Gaussian rotational-cavity optomechanical systems
[44], multimode optomechanical systems [45–47], hybrid op-
tomechanical systems [48,49], and optomechanical lattice
[50].

*zhangxingyuan1@foxmail.com
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Over the past decades, topological systems [51–53] have
attracted increasing attention and interest due to the existence
of spatially localized edge states which are immune to fab-
rication imperfections and disorders. Topological protected
edge states have been proposed and realized in a variety of
systems, e.g., arrays of coupled resonators [54–57], ultracold
atomic gases [58–63], helical waveguide arrays [64,65], and
non-Hermitian systems [66–74]. Among the various proposed
models of topological systems, the simplest one-dimensional
topological model is the Su-Schrieffer-Heeger (SSH) model
[75,76], which is one of the most basic topological models
and provides intuitive ways to understand topological phe-
nomena such as topological invariant, phase transition, and
bulk-boundary correspondence [75–77]. Another merit of the
SSH model is that it can be easily realized in various quantum
systems and used to verify a variety of quantum phenomena
related to topology. The SSH model can be realized in the cold
atoms trapped in optical lattices [78–81], graphene ribbons
[82–84], superconducting circuits [85,86], and p-orbit optical
ladder systems [87]. Based on these platforms, a variety of
topological properties of the SSH model have been studied,
such as topological lasing [88–90], anomalous edge states
[91], quantum walks [92–94], and edge state and topological
phase transitions [95–97].

Recently, schemes realizing a topological SSH model in an
optomechanical array have been proposed in Ref. [98–100],
in which the authors have also investigated state transfer by
using the edge states of the SSH model. Based on these
schemes, in this paper we investigate another property of the
SSH model, i.e., the response of a finite optomechanical array,
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which can be mapped to a SSH model, to a weak probe field.
We investigate the response of the optomechanical array to
a weak probe field by calculating the local photon density of
states (DOS) of the system. In the topological trivial phase, the
local photon DOS of the system exhibits a two-band structure
with a gap. In the nondeep topological nontrivial phase in
which the intercell coupling is slightly larger than the intra-
cell coupling, in addition to the two-band structure the local
photon DOS has two additional narrow peaks in the gap,
which correspond to the two edge modes of the system. The
appearance of the two narrow peaks indicates that the two
edge modes are nondegenerate and have decay rates much
smaller than the photon loss. In the deep topological non-
trivial phase in which the intercell coupling is much larger
than the intracell coupling, the two additional narrow peaks
in the gap merge into one wide peak. This is because the
energy difference between the two edge modes decreases as
the intercell coupling strength increases. When the energy
difference between the two edge modes is smaller than the
decay rates of the two edge modes, the two edge modes can
be thought of as degenerate and only one peak appears in the
gap of the DOS. By calculating the transmission rate of the
probe field, we find that in the nondeep topological nontrivial
phase a narrow transparency window, i.e., OMIT, can be ob-
served in the middle of the two edge modes. However, in the
deep topological nontrivial phase, only one broad absorption
window appears. The reason for this phenomenon is that in
the nondeep topological nontrivial phase, each of the two edge
modes provides an absorption path for the probe field and the
destructive interference of the two absorption paths results in
the OMIT. In the deep topological nontrivial phase, the two
edge modes become degenerate and the probe field cannot
distinguish the two absorption paths. Hence, the destructive
interference of the two absorption paths cannot be formed and
the system exhibits only one broad absorption window. As the
energy difference between the two edge modes decreases as
the size of the optomechanical array increases, the OMIT can
only appear for a small finite array and disappears for a large
array. Due to the topology of the SSH model, OMIT with large
transmissivity can also be observed even in the presence of
large disorder in the intercell and intracell coupling.

The paper is organized as follows. In Sec. II, we discuss the
theoretical model of the optomechanical array considered in
this work. In Sec. III, we calculate the retarded Green function
of the system, through which we calculate the local photon
DOS of the system and the transmission rate of the probe
field. In this section, we also give out the physical mechanism
behind the OMIT phenomenon and discuss the dependence of
the probe field transmissivity on the parameters of the system.
The influence of the disorders on the OMIT is also discussed
in this section. At last, we summarize our results in Sec. IV.

II. THEORETICAL MODEL

We consider a one-dimensional optomechanical array con-
sisting of N unit cells [see Fig. 1(a)]. Each cell contains an
optical cavity and a mechanical oscillator, coupled via radia-
tion pressure. The jth cell couples to its adjacent cell j + 1
via the radiation pressure between the mechanical oscillator
in cell j and the optical cavity in cell j + 1. The total Hamil-

FIG. 1. (a) Schematic illustration of the one-dimensional op-
tomechanical array. The jth cavity is driven by an external laser with
the amplitude � j and the frequency ω j . (b) Schematic diagram of
the SSH model corresponding to Hamiltonian ĤSSH. The intercell
coupling strength between two adjacent cells is J . The intracell
coupling between the optical mode and the mechanical mode in cell
j is G.

tonian of the system can be written as (h̄ = 1)

Ĥtot = Ĥ0 + Ĥom + Ĥdri, (1)

with

Ĥ0 =
N∑

j=1

(ωa, j ˆ̃a†
j
ˆ̃a j + ωm, j

ˆ̃b†
j
ˆ̃b j ),

Ĥdri =
N∑

j=1

(� je
−iω j t ˆ̃a†

j + �∗
j e

iω j t ˆ̃a j ),

Ĥom = −
(

N∑
j=1

g j ˆ̃a†
j
ˆ̃a j −

N−1∑
j=1

g j ˆ̃a†
j+1

ˆ̃a j+1

)
( ˆ̃b†

j + ˆ̃b j ).

Here, ˆ̃a j ( ˆ̃b j) is the annihilation operator of the optical mode
(mechanical mode) in cell j with the frequency ωa, j (ωm, j). Ĥ0

represents the free Hamiltonian of the array. Ĥdri describes the
interaction between the optical driving fields and the system.
The cavity in cell j is driven by an optical laser with the
driving frequency ω j and the amplitude � j . Ĥom represents the
radiation pressure coupling between the optical cavities and
the mechanical oscillators. The coupling strength between the
jth mechanical oscillator and the two adjacent optical cavities
is g j . In the rotating frame with respect to the optical driving
frequency ω j , the above Hamiltonian, Eq. (1), becomes

Ĥ ′
tot =

N∑
j=1

(�a, j ˆ̃a†
j
ˆ̃a j + ωm, j

ˆ̃b†
j
ˆ̃b j + � j ˆ̃a†

j + �∗
j
ˆ̃a j )

−
(

N∑
j=1

g j ˆ̃a†
j
ˆ̃a j −

N−1∑
j=1

g j ˆ̃a†
j+1

ˆ̃a j+1

)
( ˆ̃b†

j + ˆ̃b j ),

where �a, j = ωa, j − ω j is the frequency detuning of the jth
optical mode with respect to its driving field. Under the
condition of strong optical drives, both the field amplitudes
of the cavity fields and the mechanical oscillators are large
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and the standard linearization process can be performed by

writing ˆ̃a j = α j + â j and ˆ̃b j = β j + b̂ j , where α j = 〈 ˆ̃a j〉 and

β j = 〈 ˆ̃b j〉, where â j and b̂ j are the fluctuation operators of
ˆ̃a j and ˆ̃b j , respectively. For simplification, we assume that
all the mechanical oscillators have the same frequency, i.e.,
ωm, j = ωm. The linearized Hamiltonian is given by

Ĥlin = ĤRWA + ĤCRWA, (2)

with

ĤRWA =
N∑

j=1

(�′
a, j â

†
j â j + ωmb̂†

j b̂ j )

−
N∑

j=1

(Gjâ
†
j b̂ j + G∗

j â j b̂
†
j )

+
N−1∑
j=1

(Jj â
†
j+1b̂ j + J∗

j â j+1b̂†
j ),

ĤCRWA = −
N∑

j=1

(Gjâ
†
j b̂

†
j + G∗

j â j b̂ j )

+
N−1∑
j=1

(Jj â
†
j+1b̂†

j + J∗
j â j+1b̂ j ).

The effective many-photon optomechanical couplings are
Gj = g jα j and Jj = g jα j+1. The periodic modulation of the
effective optomechanical couplings, i.e., Gj = G and Jj =
J , can be achieved by changing the frequencies of the
optical drivings in the way of periodic control [98–102].
As the phase of G and J can be tuned freely by chang-
ing the phases of optical driving amplitude, we assume
that G and J are real. The effective cavity detunings are
�′

a,1 = �a,1 − g1(β∗
1 + β1) and �′

a, j∈[2,N] = �a, j − g j (β∗
j +

β j ) + g j−1(β∗
j−1 + β j−1). For simplicity, we assume �′

a, j =
ωm, which can be achieved by tuning �a, j . In this case, the
term ĤCRWA is large detuned under the condition G, J � ωm

and can be neglected safely. The condition �′
a, j = ωm means

that a photon of the driving field has energy that is one phonon
less than a photon of the cavity. So, if a photon of the driving
field is absorbed by the jth cavity, the jth cavity must absorb
one phonon, which can be provided by the jth or the ( j − 1)th
mechanical oscillator, to compensate the energy difference.
In a similar way, if the jth cavity emits a photon with the
frequency of the driving field, one phonon is added to the
jth or the ( j − 1)th mechanical oscillator. It is in this way
that energy is exchanged between the optical cavities and
the mechanical oscillators. Hence, after dropping the counter-
rotating wave terms, the linearized Hamiltonian, Eq. (2), in
the rotating frame with respect to Ĥ0 = ∑N

j=1(�′
a, j â

†
j â j +

ωmb̂†
j b̂ j ), reduces to

ĤSSH = −G
N∑

j=1

(â†
j b̂ j + â j b̂

†
j )

+
N−1∑
j=1

J (â†
j+1b̂ j + â j+1b̂†

j ). (3)

In this way, the system can be thought of as a periodically
modulated SSH model with N unit cells, where G and J
are the intracell and the intercell coupling strength, respec-
tively [see Fig. 1(b)]. In this work, both the intracell and
the intercell coupling strength are much less than ωm due to
the rotating-wave approximation made to Ĥlin. However, in
Ref. [103] the authors have demonstrated that a SSH model
with large intracell and intercell coupling can still be achieved
in an optomechancial array by periodically modulating the
frequency of both cavity fields and mechanical modes. In spite
of this, in this work we still consider the case that G, J � ωm.
It is well known that the SSH model has two distinct phases
depending on the value of J/G. When J/G > 1, the system
is in the topological nontrivial phase and has two edge modes
which can be written formally as

f̂n =
N∑

j=1

(ψn, j â j + ϕn, j b̂ j ), (4)

with n = 1 and 2. f̂n represents the annihilation operator of
the nth edge mode. The population amplitudes ψn, j and ϕn, j

of Eq. (4) can be obtained by diagonalizing ĤSSH, i.e., Eq. (3).
For a small finite lattice, the two edge modes are nondegen-
erate and the energy difference between the two edge modes,
which can be obtained by diagonalizing ĤSSH, can be tuned
by mediating the ratio J/G. By saying that the two edge
modes are nondegenerate, we mean that the energy difference
between the two edge modes is larger than the damping rates
of the two edge modes, so that the two edge modes can be
distinguished by a weak probe field. It is the nondegeneracy
of the two edge modes that results in the OMIT. In Fig. 2(a),
we plot the energy difference between the two edge modes
as a function of J/G. From this figure, we can see that in the
nondeep topological nontrivial phase, e.g., J = 1.5G (point
A), the two edge modes are not degenerate. Although the
energy difference between the two edge modes is smaller than
the decay rate of the optical cavities, the two edge modes have
damping rates much smaller than the photon loss rate κ (see
below). This means that the two edge modes are phononlike
and can induce OMIT. When J is much larger than G, e.g.,
J = 2G (point B), the energy difference between the two
edge modes is so small that they can be seen as degenerate.
Figures 2(b) and 2(c) show the probability distributions of the
two edge modes with J = 1.5G (point A) and J = 2.0G (point
B), respectively. From this figure, we can see that, for the two
edge modes, energy only populates on the optical cavities on
the left boundary and populates on the mechanical oscillators
on the right boundary. This means that edge modes can be
excited by coupling the probe field to the cavity of the first cell
and cannot be excited by coupling the probe field to the cavity
of the N th cell. So in this work we investigate the response of
the SSH model to a weak probe field by coupling the probe
field to the cavity of the first cell.
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FIG. 2. (a) Energy difference between the two edge modes as
a function of J . The values of the intercell coupling strength for
points A and B are J = 1.5G and J = 2.0G, respectively. (b) Proba-
bility distributions of the edge modes with J/G = 1.5, i.e., point A.
(c) Probability distributions of the edge modes with J/G = 2.0, i.e.,
point B. As the probability distributions of the two edge modes are
the same, we only show the probability distribution for the first edge
mode. The blue (red) bars represent the probabilities that energy pop-
ulates on the optical cavities (mechanical oscillators). κ = 0.01ωm is
the decay rate of the optical cavities. The intracell coupling strength
is G = 0.02ωm. The lattice size of the system is N = 10.

III. OMIT OF THE OPTOMECHANICAL ARRAY

A. Calculation of local photon DOS

In order to investigate the response of the system to a weak
probe field, we follow the treatment of a one-dimensional
optomechanical lattice in Ref. [50]. We first calculate the local
photon DOS for an infinite optomechanical array, through
which we can get the DOS of a finite array by introducing
an effective potential to cut off the intercell coupling between
cell N and cell N + 1 and the intercell coupling between cell
0 and cell 1. The local photon DOS ρ(ω, j) for the jth cavity
of the lattice, which measures how hard it is to inject a single
photon with frequency ω to the jth cavity, is defined as

ρ(ω, j) = −2ImDR(ω; a j, a j ), (5)

where DR(ω; a j, a j ) is the retarded real-space Green function
of cavity photons in the frequency domain. DR(ω; a j, a j′ )
can be computed by Fourier transforming the retarded Green
function in the time domain, i.e.,

DR(a j, t ; a j′ , t ′) = −iθ (t − t ′)〈[â j (t ), â†
j′ (t

′)]〉,

DR(ω; a j, a j′ ) =
∫ ∞

−∞
dtDR(a j, t ; a j′ , 0)eiωt . (6)

For an infinite array, the local photon DOS ρ(ω, j) is not
dependent on j due to the translational invariance of the
system. This means that the retarded real-space Green func-
tion DR(ω, a j, a j ) can be obtained by calculating the retarded
Green function in k space and then transforming it back to
real space. In k space, the retarded Green function of the
optical modes can be obtained from the linearized Langevin
equations of the system and is given by (see Appendix A for

details)

DR(ω, k) = 1

ω − �a + i κ
2 − G2+J2−2GJ cos k

ω−ωm+iγ /2

. (7)

By transforming the above equation to real space, the re-
tarded real-space Green function for an infinite lattice can be
written as

DR(ω; a j, a j′ ) =
∫ π

−π

eik| j− j′ |DR(ω, k)dk

= eiq[ω]| j− j′ |

2iA sin q[ω]
, (8)

where A = GJ
ω−ωm+iγ /2 and the complex function q[ω] satisfies

ω − �a + i
κ

2
− G2 + J2 − 2GJ cos q[ω]

ω − ωm + iγ /2
= 0. (9)

The retarded Green function for a finite lattice with N cells
can be calculated by introducing an effective potential to the
infinite lattice, which cuts off the interaction between cell N
and cell N + 1 and the coupling between cell 0 and cell 1.
As we consider the situation that the waveguide couples to
the cavity in cell 1, we only concern the DOS of the first
cavity. The retarded Green function of the first cavity for a
finite lattice can be written as (see Appendix B for details)

DR
f (ω; a1, a1) = (ξe2iq[ω] − 1)(e(2N )iq[ω] − 1)

2iA sin q[ω](1 − ξe(2N+2)iq[ω] )
, (10)

where ξ is defined as

ξ = G − Je−iq[ω]

G − Jeiq[ω]
.

By using Eq. (10), the local photon DOS of the first cavity can
be calculated from the definition, Eq. (5), i.e.,

ρ(ω, 1) = −2ImDR
f (ω; a1, a1). (11)

Figure 3(a) shows the local photon DOS of the first cavity,
i.e., Eq. (11), for different intercell coupling strength J . From
this figure, we can see that when J/G < 1, which means that
the SSH model is in the topological trivial phase, the local
photon DOS exhibits a two-band structure, separated by a gap
which is centered on ω = ωm. When J is a little larger than G,
i.e., J = 1.2G, two additional narrow peaks, which indicate
the appearance of the two edge modes, appear in the gap. In
this case, the energy difference between the two edge modes
is larger than the linewidth of the two edge modes and the
two edge modes are nondegenerate. If the intercell coupling
strength increases further, the energy difference between the
two edge modes becomes so small that it is smaller than the
linewidth of the two edge modes. The two peaks of the DOS
near ω = ωm merge into one peak and the two edge modes
can be seen as degenerate.

B. OMIT of the system

In order to investigate the response of the system to a weak
probe field, we assume that an additional waveguide couples
to the cavity in the first cell. According to the standard input-
output theory [104], the additional waveguide increases the
decay rate of the first cavity from κ to κ + κex,1 ≡ κ1, where

013505-4



TOPOLOGICALLY PROTECTED OPTOMECHANICALLY … PHYSICAL REVIEW A 105, 013505 (2022)

-0.05 0 0.05
0

100

200

300

-0.1 -0.05 0 0.05 0.1
0

0.5

1
(a) (b) (c)

FIG. 3. (a) Local photon DOS ρ(ω, 1) for the first cavity of the lattice with different intercell coupling J . (b) Transmission rate of the
probe field as a function of the probe-control field detuning �p for different intercell coupling J . In panels (a) and (b), the intercell coupling
strength is J = 0.6G (red dash-dotted line), J = 1.2G (blue solid line) and J = 1.9G (black dashed line). The decay rates of the cavities and
the mechanical oscillators are κ = 0.01ωm and γ = 10−5ωm, respectively. The intracell coupling strength is G = 0.02ωm. The lattice size is
N = 10. (c) Illustration of the destructive interference in the edge mode picture. |0〉 represents the vacuum state of the system; i.e., all the
optical cavities and the mechanical oscillators are in their vacuum state. |e1〉 and |e2〉 are the states that there is one exciton in the first and
second edge mode, respectively. |Bj,U 〉 (|Bj,L〉) represents that there is one exciton in the jth bulk mode of the upper (lower) band of the SSH
model.

κex,1 represents the coupling strength between the cavity and
the probe waveguide. As the first cavity is coupled to a probe
field, the noise operator for the first cavity has a nonzero
average, i.e.,

〈â1,in(t )〉 = ā1,ine−i�pt , (12)

where �p = ωp − ω1 is the detuning between the probe field
and the driving field of the first cavity. ā1,in is the amplitude of
the probe field. According to the standard input-output theory
[104], the corresponding average output field of the first cavity
can be written as

â1,out = â1,in + √
κex,1â1. (13)

By using the above equation, the transmission rate of the
probe field is given by [50]

T =
∣∣∣∣ 〈â1,out〉
〈â1,in〉

∣∣∣∣
2

= |1 − iκex,1D̃R
f (�p; a1, a1)|2. (14)

D̃R
f (�p; a1, a1) is the “dressed” Green function of the first cav-

ity which incorporates the effects of the coupling to the probe
waveguide. D̃R

f (�p; a1, a1) can be calculated by introducing
an extra non-Hermitian potential for the first cavity [50], i.e.,

V̂ = −i
κex,1

2
â†

1â1. (15)

As the physical quantity, which determines T , is 〈â1〉, the in-
troduction of an extra non-Hermitian potential V̂ is sufficient
to take into account the influence of the probe waveguide
on the dynamics of 〈â1〉. By solving the Dyson equation
which including this extra potential Eq. (15), the formula of
D̃R

f (�p; a1, a1) can be written as (see Appendix B for details)

D̃R
f (ω; a1, a1) = (ξ ′e2iq[ω] − 1)(e(2N )iq[ω] − 1)

2iA sin q[ω](1 − ξ ′e(2N+2)iq[ω] )
, (16)

where ω = �p and the formula of ξ ′ is given in Appendix B.
In Fig. 3(b), we plot the transmission rate of the probe field
as a function of �p for different intercell coupling strength
J . When J = 0.6G, there is a wide transmission window
at �p = ωm. This is because the local photon DOS of the
system has a wide gap at �p = ωm and the system cannot
absorb the probe field. When J is a little larger than G, i.e.,
J = 1.2G, a narrow transmission window, the linewidth of

which is much smaller than the decay rate of the cavities,
appears. The sharpness of the transmission window indicates
that the transmission window demonstrates OMIT. As J in-
creases to a large value so that the two peaks of the DOS
near �p = ωm merge into one peak, the transmission win-
dow turns into a wide absorption window due to the large
value of the local DOS near �p = ωm. Similar to electro-
magnetically induced transparency in atoms which can be
explained by using dressed states [105,106], the appearance
of OMIT in the system can also be explained in the same way
[see Fig. 3(c)]. The nondegenerate two edge modes provide
two absorption pathways for the probe field. One absorption
pathway is that the probe field is absorbed by the first edge
mode, i.e., |0〉 → |e1〉. The other absorption pathway is that
the probe field is absorbed by the second edge mode, i.e.,
|0〉 → |e2〉. The destructive interference of the two absorption
pathways can cancel the absorption of the probe field, which
leads to the OMIT. From Fig. 3(b), we can also see that when
J = 1.2G, the transmission rate T also exhibits many small
wide transparency windows on both sides of the OMIT. These
transparency windows are induced by the bulk modes of the
SSH model [see Fig. 3(c)]. The decay rates of these bulk
modes are on the same order of magnitude as κ , which means
that the bulk modes of the system are photonlike. Hence,
the transparency windows induced by these bulk modes are
wide. In Fig. 4(a), we plot the transmissivity of the probe
field near �p = ωm as a function of J . In the topological
trivial phase, i.e., J < G, although the transmission rate of
the probe field is T = 1, the transmission window is wide
[see Fig. 3(b)]. In the nondeep topological nontrivial phase,
two nondegenerate edge modes emerge and the destructive
interference of the two absorption paths for the probe field,
which results in the phenomenon of OMIT, can be formed.
When J is much larger than G, the two edge modes become
degenerate and the destructive interference of the absorption
for the probe field cannot be formed. Hence, the transmissivity
of the probe field reduces to zero and OMIT disappears. This
confirms our previous discussion. The phenomenon that in the
topological nontrivial phase the transmission rate of the probe
field decreases from 1 to 0 as the value of J/G increases means
that perfect cancellation of the absorption of the probe field
can be achieved only near the boundary between the topolog-
ical trivial and nontrivial phases. In order to investigate the
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FIG. 4. (a) Transmissivity of the probe field at �p = ωm as a
function of J (blue solid line) with the lattice size N = 10. The
vertical black dash-dotted line is the boundary between the topolog-
ical trivial and nontrivial phases. The region J/G < 1 (J/G > 1) is
the topological trivial (nontrivial) phase. (b) Transmissivity of the
probe field as a function of the probe-control field detuning �p with
J = 1.2G (blue solid line), J = 1.3G (red dashed line), and J = 1.5G
(black dash-dotted line). Other parameters are the same as those in
Fig. 3.

dependence of the width of the transmission window on the
parameter J/G, in Fig. 4(b) we plot the transmission rate of
the probe field as a function of �p for different values of J/G.
From this figure, we can see that the width of the transmission
window decreases as the value of J/G increases. However, at
the same time the transmission rate decreases as well. This
means that a narrower transmission window can be obtained
with the sacrifice of the transmission rate.

Figure 5(a) shows the transmissivity of the probe field as a
function of the lattice size. From this figure, we can see that
the transmission rate T decreases as the lattice size increases.
This is because the energy difference between the two edge
modes decreases as the lattice size increases. When the lattice

10 20 30 40
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FIG. 5. (a) Transmissivity of the probe field at �p = ωm as a
function of the lattice size N . The inset shows the transmissivity of
the probe field as a function of �p with N = 30. (b) Transmissivity
of the probe field as a function of �p with N = 6 (blue solid line),
N = 10 (black dash-dotted line) and N = 20 (red dashed line). The
parameter J is J = 1.2G. Other parameters are the same as those in
Fig. 3.

size is so large that the energy difference between the two
edge modes is smaller than the damping rates of the two edge
modes, the two edge modes can be seen as degenerate and
the narrow transparency window becomes a wide absorption
window. Indeed, when the lattice size reaches N = 30, the
OMIT almost vanishes [see the inset in Fig. 5(a). In order
to investigate the range of the lattice size under which the
optomechanical array can exhibit experimentally observable
OMIT, we plot the transmissivity of the probe field as a
function of �p for different N in Fig. 5(b). From this figure,
we can see that when the lattice size is N = 20 the lattice can
still have an OMIT with a transmission rate of T ≈ 0.6. If
the lattice size increases further, i.e., N > 20, the transmission
rate of the OMIT is small such that the OMIT may not be
observable experimentally. Therefore, in order to generate
experimentally observable OMIT, the lattice size should be
N � 20. From this figure, we can also see that the width
of the OMIT increases as the lattice size decreases. For the
application of OMIT in quantum information processing, one
wants a transparency window which is narrow and has a high
transmission rate. However, from Fig. 5(b), we can see that
to achieve a high transmission rate one must sacrifice the
bandwidth of the transparency window. Fortunately, when the
lattice size is N = 10, we can still have a narrow OMIT with a
high transmission rate of T ≈ 0.98. Combining the results of
Figs. 4 and 5, we find that the optimal parameters, by which
we can have a narrow OMIT with high transmissivity, are
J/G = 1.2 and N = 10.

C. Influence of disorder

As is well known, topological systems are robust to dis-
order [107–111]. Now, we investigate the influence of local
disorder on the OMIT of the system. We introduce disorder
to the intracell and the intercell coupling strength via the
Hamiltonian

Ĥdis = −
N∑

j=1

ε j (â
†
j b̂ j + â j b̂

†
j )

+
N−1∑
j=1

ζ j (â
†
j+1b̂ j + â j+1b̂†

j ), (17)

where ε j and ζ j are random variables homogeneously dis-
tributed on [−σ, σ ]; σ quantifies the disorder strength. So the
intercell coupling strength between cell j and cell j + 1 is
J + ζ j and the intracell coupling of the jth cell is G + ε j . The
disorder breaks the translational invariance of the SSH model.
So we cannot use the method of Sec. III A to calculate the
retarded Green function which determines the transmissivity
of the probe field. However, we can still calculate the retarded
Green function numerically. Details of the numerical method
are given in Appendix C. In Fig. 6(a), we plot the transmissiv-
ity of the probe field as a function of the disorder strength.
From this figure, we can see that the transmissivity of the
probe field decreases first and then increases with the increase
of the disorder strength. In the regime of weak disorder, i.e.,
σ < G, the transmissivity of the probe field decreases with the
increase of σ . In the regime of strong disorder, i.e., σ > G, the
transmissivity of the probe field increases with the increase
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FIG. 6. (a) Transmissivity of the probe field at �p = ωm as a
function of the disorder strength σ . The inset shows the transmis-
sivity of the probe field as a function of �p with σ = 2G. (b) Local
photon DOS ρ(ω, 1) for the first cavity of the lattice near ω = ωm

with σ = 0 (black solid line), σ = 0.4G (red dashed line), and σ =
2.0G (blue dash-dotted line). In panels (a) and (b), all the curves
are obtained by taking the average over 104 disorder realizations. In
panels (a) and (b), the intercell coupling strength is J = 1.2G. Other
parameters are the same as those in Fig. 3.

of σ . In order to explain this phenomenon, in Fig. 6(b) we
plot the local photon DOS ρ(ω, 1) for the first cavity of the
lattice near ω = ωm with different disorder strengths. From
this figure, we can see that the disorder can have two effects
on the two edge modes of the system. One effect is that the
disorder can broaden the two peaks of ρ(ω, 1) near ω = ωm.
This means that the linewidth of the two edge modes increases
as the disorder strength increases. This effect can weaken the
transmissivity of the probe field. The other effect is that the
two peaks of ρ(ω, 1) move outward with the increase of the
disorder strength. This means that the disorder can increase
the energy difference of the two edge modes. This effect can
enhance the transmissivity of the probe field. In the weak dis-
order regime, the first effect, i.e., the increase of bandwidth, is
dominant and the transmissivity of the probe field decreases as
σ increases. In the strong disorder regime, the second effect,
i.e., the increase of the energy difference between the two
edge modes, dominates and the transmissivity of the probe
field increases as σ increases. It is the competition of the two
effects that results in the nonlinear dependence of T on σ .
Although the disorder can increase the linewidth of the two
edge modes, the influence of the disorder on the linewidth of
the two edge modes is small and the two edge modes are still
nondegenerate for large disorder strength. Hence, OMIT with
a large transmission rate can still be observed even for large
disorder strength [see the inset in Fig. 6(a)].

IV. CONCLUSION

We have investigated the OMIT of an optomechanical array
which can map to a SSH model. By calculating the transmis-
sion rate of the probe field, we find that a transparency window
can be observed at �p = ωm in the nondeep topological non-
trivial phase. The physical mechanism of this phenomenon is
that in this regime the system has two nondegenerate edge
modes which are phononlike. The two nondegenerate edge

modes induce two absorption paths for the probe field. De-
structive interference of the two absorption paths results in the
OMIT. In the deep topological nontrivial phase, the OMIT dis-
appears because the two edge modes become degenerate. As
the energy difference between the two edge modes decreases
as the size of the array increases, transmissivity of the probe
field decreases as the size of the array increases. When the
size of the array becomes very large, the OMIT disappears.
Similar to edge states of a topological system, the system can
still exhibit OMIT even if the disorder of the intercell and
intracell coupling is large. Our work extends the concept of
OMIT to a topological system and opens up a different path
to steer the performance of quantum optical devices based
on OMIT.
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APPENDIX A: THE RETARDED GREEN FUNCTION
OF CAVITY PHOTONS IN MOMENTUM SPACE

In this Appendix, we provide a brief derivation of the k-
space retarded Green function for an infinite optomechanical
array under the rotating-wave approximation. The linearized
Hamiltonian of an infinite lattice can be written as

Ĥinf =
∑

j

(�aâ†
j â j + ωmb̂†

j b̂ j − Gâ†
j b̂ j − Gâ jb̂

†
j

+ Jâ†
j+1b̂ j + Jâ j+1b̂†

j ). (A1)

Here, we have assumed that all the effective detunings of
the cavities are the same, i.e., �′

a, j = �a. By taking the
Fourier transformation ô j = 1√

N
eik j ôk (o = a and b) to Ĥinf,

the Hamiltonian in momentum space is given by

Ĥ ′
inf =

∑
k

(�aâ†
k âk + ωmb̂†

kb̂k )

−
∑

k

(Gâ†
k b̂k − Je−ik â†

k b̂k + H.c.).

Here, âk and b̂k are respectively the momentum-space pho-
tonic and phononic operators with k varying across the
Brillouin zone. According to the standard input-output theory
[104], the equations of motion for the photon and phonon
fields can be written as

i
∂ âk

∂t
=

(
�a − i

κ

2

)
âk − (G − Je−ik )b̂k − i

√
κ âk,in,

i
∂ b̂k

∂t
=

(
ωm − i

γ

2

)
b̂k − (G − Jeik )âk − i

√
γ b̂k,in,

(A2)

where âk,in and b̂k,in are the noise operators of the photonic
and phononic modes in momentum space, respectively. The
retarded Green function in momentum space is defined as.

DR(k; t, t ′) ≡ −iθ (t − t ′)〈[ψ̂k (t ), ψ̂†
k (t ′)]〉,
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where ψ̂k = [âk, b̂k]T . Using Eq. (A2), the equation of mo-
tions for DR(k; t, t ′) can be written as

i
∂

∂t
DR(k; t, t ′) = MkDR(k; t, t ′) + δ(t − t ′), (A3)

with

Mk =
(

�a, j − iκ/2 −G + Je−ik

−G + Jeik ωm − iγ /2

)
.

The retarded Green function in the frequency domain can be
acquired by Fourier transforming Eq. (A3), which gives

DR(ω, k) = (ω − Mk )−1. (A4)

The retarded Green function DR(ω, k) is a 2 × 2 matrix. The
(1,1) component of Eq. (A4) represents the retarded Green
function of photons in k space, i.e., Eq. (7).

APPENDIX B: THE RETARDED GREEN FUNCTION
FOR A FINITE OPTOMECHANICAL ARRAY

In this Appendix, we provide the method to calculate the
retarded Green function of cavity photons for a finite optome-
chanical array with N cells. The retarded Green function of a
finite array can be obtained from the retarded Green function
of an infinite array via introducing an effective potential to cut
off the coupling between cell 0 and cell 1 and the coupling
between cell N and cell N + 1. In order to figure out the

formula of the effective potential, we first write out the
equations satisfied by the retarded Green function of cav-
ity photons which can be obtained by using the quantum
Langevin equations corresponding to Ĥinf. The quantum
Langevin equations corresponding to Ĥinf can be written as

˙̂a j = −
(κ

2
+ i�a

)
â j + iGb̂ j − iJb̂ j−1 + √

κ â j,in,

˙̂b j = −
(γ

2
+ iωm

)
b̂ j + iGâ j − iJâ j+1 + √

γ b̂ j,in,

(B1)

where κ and γ are the decay rates of the optical cavities
and the mechanical oscillators, respectively, and â j,in and b̂ j,in

are the quantum vacuum noise of the jth cavity and the
thermal noise of the jth mechanical oscillator, respectively.
The zero-mean-value noise operators â j,in and b̂ j,in satisfy the
commutation relations

[â j,in(t ), â†
j′,in(t ′)] = [b̂ j,in(t ), b̂′

j′,in(t ′)] = δ j j′δ(t − t ′)

and the nonzero correlation functions

〈â j,in(t )â†
j′,in(t ′)〉 = δ j j′δ(t − t ′),

〈b̂†
j,in(t )b̂ j′,in(t ′)〉 = n j,thδ j j′δ(t − t ′),

where n j,th is the mean thermal phonon number of the thermal
reservoir of the jth mechanical oscillator.

In the time domain, the retarded Green functions of the
system satisfy the following equations:

i∂t D
R(a j, t ; a j′ , t ′) = i∂t {−iθ (t − t ′)〈[â j (t ), â†

j′ (t
′)]〉} = δ(t − t ′)〈[â j (t ), â†

j′ (t
′)]〉 − iθ (t − t ′)〈[i∂t â j (t ), â†

j′ (t
′)]〉,

i∂t D
R(b j, t ; a j′ , t ′) = i∂t {−iθ (t − t ′)〈[b̂ j (t ), â†

j′ (t
′)]〉} = δ(t − t ′)〈[b̂ j (t ), â†

j′ (t
′)]〉 − iθ (t − t ′)〈[i∂t b̂ j (t ), â†

j′ (t
′)]〉,

(B2)

where θ (t − t ′) is the Heaviside function. By substituting the Langevin equations into the above equations and taking Fourier
transformation for Eq. (B2), the retarded Green function defined in Eq. (6) satisfies the following coupled equations:

ga(ω)−1DR(ω; a j, a j′ ) = δ j j′ − GDR(ω; b j, a j′ ) + JDR(ω; b j−1, a j′ ),

gb(ω)−1DR(ω; b j, a j′ ) = −GDR(ω; a j, a j′ ) + JDR(ω; a j+1, a j′ ), (B3)

where

ga(ω)−1 = ω − �a + i
κ

2
+ iη,

gb(ω)−1 = ω − ωm + i
γ

2
+ iη. (B4)

During the derivation of Eq. (B3), we have used the integral
representation of the Heaviside step function, i.e.,

θ (t − t ′) = − 1

2iπ

∫ ∞

−∞
dω

e−iω(t−t ′ )

ω + iη
,

where η → 0+ is a positive infinitesimal real number. Elim-
inating DR(ω; b j, a j′ ), the equation satisfied by the retarded
Green function of cavity photons can be written as

ga(ω)−1DR(ω; a j, a j′ )

= δ j j′ + gb(ω)(G2 + J2)DR(ω; a j, a j′ )

− gb(ω)GJ[DR(ω; a j+1, a j′ ) + DR(ω; a j−1, a j′ )]. (B5)

It should be noted that the above equation is satisfied by an
infinite lattice. From Eq. (B5), the effective potential which is
used to cut off the coupling between cell 0 and cell 1 is

V1 =
(

V (0, 0) V (0, 1)
V (1, 0) V (1, 1)

)
=

(
0 gbGJ

gbGJ −gbJ2 − i 1
2 kex,1

)
.

The off-diagonal terms, i.e., gbGJ , are used to cut off the
coupling between cell 0 and cell 1. The term −gbJ2 in the
diagonal element is used to cancel the influence of the me-
chanical oscillator in cell 0 on the retarded Green function
of the cavity in cell 1. The term −iκex,1/2 in the diagonal
element takes into account the external decay rate due to the
coupling between the cavity of cell 1 and the probe waveg-
uide. The effective potential V1 can cut the infinite lattice into
a semi-infinite lattice. It should be noted that the introduction
of V1 (without the term κex,1) is equivalent to introduce the
extra term Ĥcut,1 = −J (â†

1b̂0 + â1b̂†
0) to the Hamiltonian of an

infinite SSH model. The role of Ĥcut,1 is to offset the intercell
coupling between cell 0 and cell 1. The retarded Green func-
tion DR

s (ω; a j, a j′ ) for a semi-infinite lattice can be obtained
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from the following Dyson equation [50]:(
DR

s (ω; a j, a j ) DR
s (ω; a j, a j′ )

DR
s (ω; a j′ , a j ) DR

s (ω; a j′ , a j′ )

)
−

(
DR(ω; a j, a j ) DR(ω; a j, a j′ )
DR(ω; a j′ , a j ) DR(ω; a j′ , a j′ )

)

=
(

DR(ω; a j, a0) DR(ω; a j, a1)
DR(ω; a j′ , a0) DR(ω; a j′ , a1)

)(
T (0, 0) T (0, 1)
T (1, 0) T (1, 1)

)(
DR(ω; a0, a j ) DR(ω; a0, a j′ )
DR(ω; a1, a j ) DR(ω; a1, a j′ )

)
, (B6)

with (
T (0, 0) T (0, 1)
T (1, 0) T (1, 1)

)
=

(
V (0, 0) V (0, 1)
V (1, 0) V (1, 1)

)[
1 +

(
DR(ω; a0, a0) DR(ω; a0, a1)
DR(ω; a1, a0) DR(ω; a1, a1)

)(
T (0, 0) T (0, 1)
T (1, 0) T (1, 1)

)]
.

Here, DR(ω; a j, a j′ ) is the retarded Green function for an infi-
nite lattice and is given in Eq. (8). After tedious calculations,
the retarded Green function for a semi-infinite lattice can be
written as

DR
s (ω; a j, a j′ ) = 1

2iA sin q[ω]
(eiq[ω]| j− j′ | − eiq[ω]| j+ j′ |ξ ′),

where q[ω] is the same as defined in Eq. (9) and ξ ′ is
defined as

ξ ′ = gbGJ − e−iq[ω]
(
gbJ2 + i 1

2 kex,1
)

gbGJ − eiq[ω]
(
gbJ2 + i 1

2 kex,1
) . (B7)

Following the same idea as above, the retarded Green func-
tion for the finite lattice with N cells can be calculated by
introducing an effective potential, which is used to cut off the
coupling between cell N and cell N + 1, to the semi-infinite
lattice. From Eq. (B5), the effective potential that is used
to cut the coupling between cell N and cell N + 1 can be
written as

V2 =
(

V (N, N ) V (N, N + 1)
V (N + 1, N ) V (N + 1, N + 1)

)
,

=
(

0 gbGJ
gbGJ 0

)
.

It should be noted that as the cavity in cell N does not couple
to the mechanical oscillator in cell N + 1 directly, both the
diagonal elements of V2 are 0. Following the same procedure
in Eq. (B6), the retarded Green function of the finite lattice is

given by

DR
f (ω; a j, a j′ ) = F (ω)

2iA sin q[ω]
, (B8)

with

F (ω) = (ξ ′e2i jq[ω] − 1)(ei(2N+2− j− j′ )q[ω] − ei| j′− j|q[ω] )

(1 − ξ ′e2i(N+1)q[ω] )
,

where ξ ′ is the same as defined in Eq. (B7). Equation (16) can
be obtained from Eq. (B8) by setting j = j′ = 1. By setting
κex,1 = 0 and j = j′ = 1, Eq. (B8) reduces to Eq. (10).

APPENDIX C: NUMERICAL METHOD
FOR THE RETARDED GREEN FUNCTION

As the waveguide is coupled to the cavity in cell 1, the
retarded Green function related to the transmission rate of the
probe field is DR

f (ω; a1, a1). So the transmissivity of the probe
field can be obtained by numerically simulating DR

f (ω; a1, a1).
In order to incorporate the influence of the probe waveguide
on the decay rate of the cavity in cell 1, we need to change
the decay rate of â1 in Eq. (B1) from κ to κ1 = κ + κex,1.
Following the same procedure for the derivation of Eq. (B5),
the closed equation satisfied by DR

f (ω; a1, a1), for the finite
lattice with N cells, is given by

MD1 = N, (C1)

where

D1 = [
DR

f (ω; a1, a1), DR
f (ω; a2, a1), · · · , DR

f (ω; aN , a1)
]T

,

N = [1, 0, 0, · · · , 0]T .

The coefficient matrix M is

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
g′

a
− gbG2

1 gbG1J1 0 · · · 0

gbG1J1
1
ga

− gbG2
2 − gbJ2

1 gbG2J2
. . .

...

0 . . .
. . .

. . . 0
...

. . . gbGN−2JN−2
1
ga

− gbG2
N−1 − gbJ2

N−2 gbGN−1JN−1

0 · · · 0 gbGN−1JN−1
1
ga

− gbG2
N − gbJ2

N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

with

g′
a = ω − �a + i

κ1

2
+ iη.

Here ga and gb are the same as defined in Eq. (B4), Gj

( j = 1, . . . , N) is the intracell coupling of the jth cell, and
Jj ( j = 1, . . . , N − 1) is the intercell coupling between cell j
and cell j + 1. The disorder of Eq. (17) can be easily added
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to Eq. (C1). This can be done by setting Gj = G + ε j and
Jj = J + ζ j . By solving Eq. (C1) numerically, we can get the

retarded Green function DR
f (ω; a1, a1), through which we can

obtain the transmissivity of the probe field.
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