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Spherically polarized vector Bessel vortex beams
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A different type of Bessel-like vortex beams with their intensity spherically modified by a singular polar-
ization structure is introduced. Conventional vector Bessel-Gaussian beams are either linearly or radially (and
azimuthally) polarized and their transverse structure is preserved under propagation. In this work, the Bessel-like
beams with a Gaussian envelope are spherically polarized: the electric fields are oriented along the radius vector
or along with a combination of meridional and azimuthal vectors. For the implementation of such beams, we
investigate their vector spatial spectra. The intensity distribution of the beam can be controlled by a proper choice
of parameters such as the cone angles of individual plane-wave components and sizes of Gaussian apertures. In
the two limiting cases of axicon angles, spherically polarized Bessel beams form either two optical needles or
optical-bottle-like intensity patterns.
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I. INTRODUCTION

Laser beam shaping and the formation of exotic structured
beams are on a rise nowadays. A good example of struc-
tured illumination is a nondiffracting Bessel-Gaussian beam
[1,2] which exhibits a long focal line and is well known for
its self-reconstructing properties [3,4]. Additional degrees of
freedom are achieved in the transverse profiles of nondiffract-
ing beams, which have properties comparable to Bessel-beam
properties, with the introduction of the so-called Mathieu-
Gaussian [5,6] and parabolic-Gaussian (Weber-Gaussian)
[7,8] beams.

Usually, Bessel beams have low angular frequencies, so
we consider them as a scalar [9]. However, when the angle
of the Bessel cone is large enough, a scalar description is not
valid anymore and one needs to introduce a vector descrip-
tion [10]. Then, a Bessel beam becomes nonhomogeneously
polarized, and even the longitudinal component of the electric
field can appear [11,12]. Under tight focusing conditions, they
have a dominating longitudinal component of the electric field
[13,14]. This happens naturally in the beam as plane-wave
components are nearly perpendicular to the propagation axis
when they impinge on the focal spot [15].

Yet another degree of freedom appears if we consider non-
monochromatic superpositions of Bessel beams. Under these
conditions, there is a possibility to create an optical bullet—
a so-called focus wave mode (also known as an X-wave)
[16,17]. Fascinatingly, these optical bullets demonstrate not
only nondiffracting but also nondispersive properties [18,19].
Nondiffracting focus wave modes were realized at a variety
of electromagnetic frequencies—from optical [20] to mi-
crowaves [21]. Vector extensions to these scalar solutions are
also known [22]. Switching from nondiffracting Bessel beams
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to the basis of nondiffracting elliptical or parabolical beams
results in nonsymmetrically shaped optical bullets [23,24].

The influence of the nonhomogeneous polarization state
of the beam on its structure usually results in polarization
singularities [25,26], which are present in the vector beams
[27,28]. Various polarization singularities result in such ex-
otic photonic structures like Möbius strips [29–31], photonic
wheels [32–34], and various optical ribbon structures [35,36].
They distort the beam profile in the transverse plane by the
introduction of an intensity zero, which, as a rule, is cylindri-
cally symmetric both for azimuthally and radially polarized
beams [37,38].

For example, radial and azimuthal polarization change
the intensity distribution of the fundamental Gaussian mode
in the x-y plane but do not affect the longitudinal profile.
This is the manifestation of the fact that those two po-
larizations are naturally occurring while using cylindrical
coordinates during the separation of variables [9,10] in the
wave equation. To this end phase and polarization singularities
are mostly two-dimensional objects and their presence in-
duces one-dimensional structures in the beam—dark knots of
light [39,40].

Complex polarization states are analyzed and represented
using the extended concept of the Poincaré sphere and Stokes
parameters, adjusted to the beam’s topology [41–43]. Never-
theless, this generalization is mostly valid for paraxial fields
because it does not include the longitudinal component of
the electric field and is not suitable for the depiction of the
three-dimensional (3D) electromagnetic fields. In this case, a
generalization of Stokes parameters is introduced [44]. The
number of parameters increases from four to nine, so the
polarization state cannot be represented on the 3D sphere.

However, within electromagnetics, there are so-called vec-
tor spherical multipoles [9,45], which have two orthogonal
polarization states [46–48]. In what follows, we will call
them spherically polarized: when an electric field is oriented
radially (electric multipoles), i.e., along the radius vector
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or meridional—azimuthally (magnetic multipoles) when the
electric field has no spherical radial component. Those nonho-
mogeneous polarizations exhibit some intriguing properties:
(a) they are spherically symmetric and (b) they have a
so-called doughnut shape [49–51]. Yet another fascinating
property of these electromagnetic beams is the fact that, due
to the spherical symmetry, the polarization singularity resting
inside the beam is pointlike [45].

Polarization singularities and optical vortices have al-
ready received recognition as optical spanners [52], tweezers
[53], and traps [54]. Optical doughnut beams are considered
promising for optical manipulation systems, where structured
optical fields are employed to handle small objects [55]. These
beams have a zero intensity region at the center of the beam
[56]. Optical traps confine not only nanoparticles, but also
cells, molecules and atoms [57–60].

In this work, we investigate a Bessel-like beam, with a
nonhomogeneous polarization state, which can be classified
as spherically polarized [61]. Here, we consider this type of a
Bessel beam for two cases with two distinct types of intensity
distributions: (1) an optical doughnut, mentioned already, and
(2) a structure, which can be called a double needle [4,62].
We present analytical expressions for a spherically polarized
Bessel-Gaussian beam, investigate spatial spectrum and its
properties, and discuss the evolution of the spatial shape while
changing various parameters.

II. SCALAR NONDIFFRACTING BEAMS

Nondiffracting beams are scalar monochromatic solutions
of the Helmholtz equation maintaining their transverse inten-
sity profile unchanged during propagation [1,2,5–8]. One of
the examples is the Bessel vortex beam, which is defined in
cylindrical coordinates as [1,2]

E (ρ, ϕ, z, t ) = Jm(kρρ) exp (imϕ) exp [i(kzz − ωt )], (1)

where Jm is the mth order Bessel function of the first kind,
kρ = k sin θB, and kz = k cos θB are transverse and longitu-
dinal components of the wave vector k, θB is a half angle
of the Bessel cone and characterizes the Bessel beam, ω

is the angular frequency of light, t is time, m is the topo-
logical charge, which describes the phase-front modulation.
Bessel vortex beams are endless in space and their energy is
nonintegrable, what makes this type of nondiffracting beams
unphysical [1,2].

On the other hand, a Bessel-Gaussian beam represents
an example of an apertured nondiffracting beam with finite
energy, which maintains its properties over the length of the
so-called Bessel zone [1–4]. The complex amplitude of a
scalar Bessel-Gaussian beam is obtained in the paraxial ap-
proximation from the parabolic diffraction equation

E (ρ, ϕ, z, t ) = 1

Z
Jm

(
kρρ

Z

)
exp

(
− ρ2

d2
0 Z

)
exp

(
−i

k2
ρ

2k

z

Z

)

× exp (imϕ + ikzz − iωt ), (2)

where Z = 1 + iz/z0 and z0 = kd2
0 /2 is the Rayleigh length,

and d0 is the radius of the Gaussian aperture. These expres-
sions are usually considered to be valid only on the paraxial
conditions [3,63]. In general, a nonparaxial solution can be

obtained by using a paraxial solution in the context of a
Lax series [64,65]. A good question here is whether Eq. (2)
describes large half-cone-angle situations. The answer is that,
by limiting the range of the Bessel half-cone angles up to
70 degrees, the deviations from an exact solution that occur
at larger angles do not influence the main features of the
beam [66]. It turns out that the complicated summation of the
Lax series can be avoided because, even in the nonparaxial
regime, Eq. (2) describes the situation well enough and the
main aspects of the findings can be analyzed without loss of
generality.

The spatial spectrum of the scalar Bessel-Gaussian beam is
given by [67]

g(kr, φ) = d2
0 /2 exp

[−(
k2

r + k2
ρ

)
d2

0 /4
]

× Im
(
krkρd2

0 /2
)

exp(imφ), (3)

where Im is the modified Bessel function and kr = (kx + ky)1/2

is a radial vector in Fourier space. The spatial spectrum of the
Bessel-Gaussian beam is a ring of radius kρ and has a width of
1/d0. When |m| > 0, the spectrum is azimuthally modulated
with phase modulation of 2πm.

For the sake of clarity we introduce two normalization
constants:

zB = d0

sin (θB)
, DB = 2.405

k sin (θB)
, (4)

where the constant zB is the length of the Bessel zone, the
constant DB is the characteristic width of the Bessel beam,
and the θB is the half-angle of the Bessel cone.

III. VECTOR BESSEL BEAMS

Vector beams, which are solutions of the vector wave
equation, are obtained from scalar beams by using a vec-
torization method; see more in Ref. [68]. Two orthogonal
electromagnetic vector fields are possible in the free space:

M(r) = ∇ × [a E (r)], N(r) = 1

k
∇ × M(r), (5)

where a is some nontrivially defined vector [68], ∇ =
ê x∂

2/∂x2 + ê y∂
2/∂y2 + ê z∂

2/∂z2. When a = ê z, transverse
electric and transverse magnetic electromagnetic fields are
obtained. The electric field here is either azimuthally or ra-
dially polarized [10]. Linear and circular polarizations can be
derived either by a linear superposition of these two modes
or by selecting a = ê x, a = ê y. In this work, we propose to
create a vector Bessel beam with a being not a unit constant
vector but a radial vector in a spherical coordinate system:

a = R = x ê x + y ê y + z ê z. (6)

As noted by Stratton [9], this vector ensures that the field
described by Eq. (5) satisfy spherical boundary conditions. In
general, the electric field in TE mode M is tangential to the
surface of a sphere, and the electric field in TM mode N is
normal to the sphere surface; see Fig. 1.

We start with an example of an unapertured Bessel beam
and combine Eq. (1) with an Eq. (5). The electric field
of the resulting transverse electric mode M consists of the
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FIG. 1. Schematic depiction of the electric-field orientations in
the (a) transverse magnetic and (b) transverse electric spherically
polarized Bessel vortices with the topological charge m = 1. Electric
fields are plotted on the surface of the sphere with radius DB, which
is cut by two half planes at two values of the azimuth (φ = 0, π/2).

mth- and m ± 1st-order Bessel vortices whose relative inten-
sities depends on coordinates

Mm
B (ρ, ϕ, z, t )

=
{

i
mz

ρ
Jm(kρρ)ê ρ + [ikzρJm(kρρ) − zJ ′

m(kρρ)]

× ê ϕ − imJm(kρρ)ê z

}
eikzz+imϕ−iωt . (7)

When the topological charge m = 0, the electric field has
no longitudinal component Ez and is azimuthally polarized in
the transverse plane. When m �= 0, the electric field becomes
azimuthally and meridionally polarized in the transverse and
longitudinal planes, respectively. We observe an appearance

of the intensity minima at the center of the beam. This is the
first distinct manifestation of the effect caused by the spherical
polarization. When moving further from the center of the
beam the transverse intensity distribution is determined solely
by higher-order Bessel functions:

lim
z→∞ Mm

B (ρ, ϕ, z, t )

≈ zkρ

2
[Jm−1(kρρ)(i − 1) + Jm+1(kρρ)(i + 1)]

× (ê ρ − ê ϕ )eikzz+imϕ−iωt . (8)

The behavior in one particular case (when m = 1) can be
revealed from Eq. (7). The electric field in this case at the
center of the beam (ρ ≈ 0) increases linearly with propagation
distance M1

B(ρ, ϕ, z) ≈ zkρ (iê x + ê y). Thus, the electric field
is circularly polarized on the z axis, although the topological
charge in our derivations was m = 1. This situation can be
interpreted as orbital-to-spin angular-momentum conversion
and was observed for complex source vortices [47].

Yet another way to analyze polarization structures with
vortices and topologies is an introduction of a higher-order
(hybrid) Poincaré sphere [41–43]. Although spherically po-
larized Bessel beams exhibit inhomogeneous intensity, so
the first Stokes parameter S0 is not unitary, we can redefine
S1, S2, and S3 by normalizing (dividing by S0) them. See
Supplemental Material [69] for an animated depiction of three
normalized Stokes parameters representing M1

B for different
points in the x, z plane for different values of θB.

On the other hand, the electric field in the transverse mag-
netic mode is described by the expression for NB:

Nm
B (ρ, ϕ, z, t ) = 1

kρ

{[
Jm(kρρ)

(
m2 + ρ2k2

z

) + ρJ ′
m(kρρ)

× (1 + izkz )
]
ê ρ + m[Jm(kρρ)(i − kzz)

+ iρJ ′
m(kρρ)]ê ϕ + ρ

[
Jm(kρρ)

(
2ikz + zk2

ρ

)
+ ikzρJ ′

m(kρρ)
]
ê z

}
eikzz+imϕ−iωt . (9)

The electric field is spherically polarized with direc-
tions predominantly oriented along the radius vector. See
Supplemental Material [69] for an animated depiction of three
normalized Stokes parameters representing N1

B for different
points in the x, z plane for different values of θB.

In both cases, we observe that the very centers of both
beams are located on the south pole of the hybrid Poincaré
sphere. The polarization state moves to the equator of the
sphere for points further away from the center. A cone is
observed, on which the polarization state is located on the
opposite pole of the Poincaré sphere. The polarization state
rapidly moves to the equator in the focal plane. Thus, even for
the small angles of θB spherically polarized Bessel beams are
represented as a set of points on the Poincaré sphere, which
are complexly evolving during the diffraction of the beams.

We have performed a similar analysis for conventional
radially and azimuthally polarized Bessel beams and polariza-
tion states do not change that much during the propagation.
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FIG. 2. Distribution of the electric-field intensity in the xz-plane for different values of half-angles θB for (a) M0
BG, (b) N0

BG, (c) N1
BG,

and (d) N2
BG. The wave vector is k = 2π and the waist of the Gaussian envelope is d0 = 100. 90% of peak intensity is represented by the

red colored isosurface, 50% is represented by the yellow color, and 10% is represented by the blue color. The scale is piecewise linear, the
increment between pieces is adjusted to highlight the structure of the beam. The point z = 0 is not at the center to showcase the cross section
at one particular negative value z = −2/3zB.

IV. VECTOR BESSEL-GAUSSIAN BEAMS

In this section, we investigate the finite-energy versions
of spherically polarized Bessel beams. To calculate the
components of the vector Bessel-Gaussian beam, the scalar
Bessel-Gaussian beam (2) is written as a product of three
expressions:

E (ρ, ϕ, z, t ) = f1(z) f2(ρ, z)eimϕ−iωt , (10)

where f2(ρ, z) contains second and third multiplicands in (2)
and f1(z) is all remaining that depend on z.

Thus, the components of vector Bessel-Gaussian beams
are expressed in functions f1(z) ≡ f1 and f2(ρ, z) ≡ f2 and
their derivatives are given in the Appendix. Components of
the electric-field mode TE of vector Bessel-Gaussian beam in
cylindrical coordinates are⎡

⎣Mρ

Mϕ

Mz

⎤
⎦ = eimϕ−iωt

⎡
⎢⎣

izm f1 f2/ρ

[ f1(ρ f ′
2z − z f ′

2ρ ) + ρ f ′
1 f2]

−im f1 f2

⎤
⎥⎦. (11)

We start with a demonstration of the influence the half-
angle of the Bessel cone has on the total intensity profile in
one plane. The intensity distribution in the whole space can
be obtained by taking the cross section at one particular value
of θB and rotating it around the z axis. We use the previously
discussed considerations, see Sec. II, and limit the half-cone
angle θB at θB < 70◦. Although the use of Eq. (2) will not give
the exact expressions satisfying the wave equation, the end
result will be a good enough approximation [66]. We have
validated our choice by calculating the paraxiality estimator
[70] for the values we investigate.

The field distribution of the TE mode for the topological
charge m = 0 is presented in Fig. 2(a). In this case, we observe
that, for larger values of the angle θB, the intensity distribution
scales linearly with the zB and DB. Only at large values of θB is
the side structure observed. For small values of the half-angle
θB, the structure of the beam undergoes serious changes: the
hollow core disappears.

Expressions for the TM mode are obtained as

⎡
⎣Nρ

Nϕ

Nz

⎤
⎦ = eimϕ−iωt

kρ

⎡
⎢⎢⎣

f1(m2 f2 + ρ f ′
2ρ − ρ2 f ′′

2zz + ρz f ′′
2ρz ) + f ′

1(ρz f ′
2ρ − 2ρ2 f ′

2z) − ρ2 f ′′
1 f2

f1(zm2 f2/ρ − z f ′
2ρ + 2ρ f ′

2z + ρ2 f ′′
2zρ − zρ f ′′

2ρρ ) + f ′
1(2ρ f2 + ρ2 f ′

2ρ )

f1(zm2 f2/ρ − z f ′
2ρ + 2ρ f ′

2z + ρ2 f ′′
2zρ − zρ f ′′

2ρρ ) + f ′
1(2ρ f2 + ρ2 f ′

2ρ )

⎤
⎥⎥⎦. (12)

Here, derivatives of functions f1 and f2 are explicitly given in the Appendix.
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FIG. 3. Distribution of the electric-field intensity in the x-z plane
for different values of Gaussian envelope waist d0. The spherically
polarized Bessel beam is N0

BG with the half-cone angle (a) θB = 1◦,
(b) θB = 15◦. The wave vector is k = 2π . The scale is piecewise
linear, the increment between pieces is adjusted to highlight the
structure of the beam. The point z = 0 is not at the center to showcase
the cross section at one particular negative value z = −zB/2.

The field distribution of the TM mode for the same topo-
logical charge is depicted in Fig. 2(b). In this case, the
longitudinal component Ez is present, as the half-angle θB of
the Bessel cone increases, it even becomes dominant. This can
be easily noticed from Fig. 2(b). The hollow structure is filled
by the electric-field component Ez. Thus, the field structure
changes three times as the angle increases.

For this reason, in our next examples, we demonstrate the
influence of the topological charge only for the TM mode. In
Fig. 2(c) a typical situation for the topological charge m = 1
is presented. As we have noted in the previous section, the
on-axis polarization state is circular, see Fig. 2(c). No hollow
core is observed until the longitudinal component starts to
dominate at larger values of θB.

Our last example showcases the field distribution of the TM
mode for the topological charge m = 2, see Fig. 2(d). In this
case, the structure of the electric-field intensity undergoes also
three times. However, the hollow structure is preserved with
the only difference being in the absence of linear scaling and
respect to zB and DB.

Next, we choose the value of the topological charge m = 0
and investigate the influence of the Gaussian envelope d0 on
the intensity distribution of the electric field for the TM mode,
see Fig. 3. In the first picture [Fig. 3(a)], the half-cone angle
θB is small. We observe rather rich and complex changes.
For smaller values of the width of the envelope, an appear-

ance of side lobes is observed and the length of the Bessel
zone is decreased. This is a natural outcome because the
same happens for conventional Bessel beams. This situation
is caused by the Rayleigh length of the corresponding beam
being smaller than the Bessel zone for this particular angle. As
the width d0 increases we observe more-or-less linear scaling
in respect to the constants zB and DB. In the second case
[see Fig. 3(b)], the value of angle θB is larger. For this reason,
the length of the Bessel zone is smaller and we do not observe
the aforementioned situation for the values of d0, which we
plot. The choice of normalization constants zB and DB is
clearly proper, because the scale of the beam is invariant to
the half-cone angle θB and the Gaussian envelope width d0.

As the choice for the presentation of electric-field intensity
distributions might be complicated for the inexperienced eye,
we additionally present cross sections of the TM mode for one
particular value of d0 = 100 and topological charges m = 0,
1, 2, 3 (see Fig. 4). Here, a variety of structures is possible for
different values of angle θB, this is clearly seen in Fig. 5. In all
cases we observe three main changes in the structure which
additionally can be subdivided into five cases (see Fig. 4).
For small angles in the case of m = 1, see Fig. 4(b), the field
structure clearly reassembles an optical bottle, which slowly
transforms into a double optical needle. As the angle reaches
70◦, this double-needle additionally separates transversally
and resembles double hollow optical cylinder. For the topo-
logical charge of m = 0, see Fig. 4(a), the field structure for
small angles is rather simple. However, as the angle increases,
the beam transforms into a bottle-like structure, which slowly
disappears as the angle is further increased. The two last cases,
see Figs. 4(c) and 4(d), are more-or-less similar with the case
of a larger topological charge undergoing the same changes
for larger values of the angle.

The transverse intensity distribution for one example is
depicted in, see Fig. 5. Here, not only the total intensity of the
electric field is plotted but also its individual constituents. We
see that the field structure in this cross section is symmetric
and typical for vector type Bessel beams.

V. THE SPATIAL SPECTRUM OF BESSEL-GAUSSIAN
VECTOR BEAMS

For the experimental realization of spherically polarized
Bessel-Gaussian beams, it is crucial to investigate the prop-
erties of the spatial spectra. The spatial spectrum of the vector
Bessel-Gaussian beam is obtained as follows: The general
expression for the scalar electric field E is

E (x, y, z) =
∫∫ +∞

−∞
g(kx, ky)eikxx+ikyy+ikzzdkx dky, (13)

where g(kx, ky) is a spatial spectra of a scalar Bessel-Gaussian
beam, see Eq. (3). Now we use Eq. (5) to obtain

L(x, y, z) = ∇E (x, y, z)

=
∫∫ +∞

−∞
g(kx, ky)iei(kxx+kyy+kzz)

× (ê xkx + ê yky + ê zkz )dkx dky, (14)
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FIG. 4. Distribution of the electric-field intensity in the x-z plane for different values of topological charge m and half-cone angles θB in
the cross section of the N0

BG beam. The values of half-cone angles are given in the subplots and the values of the topological charge m are
(a) m = 0, (b) m = 1, (c) m = 2, (d) m = 3. The intensity maximum is normalized to the peak maximum of the beam. The wave vector is
k = 2π , the waist of the Gaussian envelope is d0 = 100, and the Bessel half-cone angle is θB = 1◦.

As a next step, we multiply Eq. (14) by R to obtain the
TE mode in terms of scalar Bessel-Gaussian spectra

MBG(x, y, z)|z=0 =
∫∫ +∞

−∞
g(kx, ky)ieik·R[−ê xykz

+ ê yxkz + ê z(ykx − xky)]dkx dky, (15)

FIG. 5. Distribution of the intensities for the total and individual
components (marked in subplots) of the electric field in various
planes for the beam N0

BG (m = 0). The longitudinal plane x, z is
presented in panel (a), the transverse plane is depicted in panel (b).
The intensity maximum is normalized to the peak maximum of the
beam. The wave vector is k = 2π , the waist of the Gaussian envelope
is d0 = 100, and the Bessel half-cone angle is θB = 1◦.

We use the Fourier transform of the Eq. (15) and derive the
spatial spectrum of TE mode of the vector Bessel-Gaussian
beam

GM
BG(kx, ky) = 1

4π2

∫∫ +∞

−∞
M(x, y, 0) e−i(k′

xx+k′
yy)dx dy,

(16)

Combination of Eqs. (15) and (16) is quite lengthy. For
this reason, we present only the derivation for one of the
components. As the other components are obtained in the
same manner. The spectral x component of the TM mode of
the vector Bessel-Gaussian beam is

GM
BG

(
k′

x, k′
y

)
x
= − 1

4π2

∫∫∫∫ +∞

−∞
g(kx, ky)iei(kx−k′

x )x

× ei(ky−k′
y )y y kz dx dy dkx dky, (17)

where kz = (k2 − k2
x − k2

y )1/2 is the z component of the wave
vector. Equation (17) is analytically expressible as follows:

GM
BG

(
k′

x, k′
y

)
x
= − ∂

∂k′
y

[
g(k′

x, k′
y)

√
k2 − k′2

x − k′2
y

]
, (18)

The same procedure gives expressions for the spectral
y and z components of GM

BG(kx, ky), see Eq. (16), so we get

GM
BG(kx, ky) =

⎡
⎢⎢⎢⎢⎣

− ∂
∂ky

[
g(kx, ky)

√
k2 − k2

x − k2
y

]
∂

∂kx

[
g(kx, ky)

√
k2 − k2

x − k2
y

]
kx

∂
∂ky

g(kx, ky ) − ky
∂

∂kx
g(kx, ky)

⎤
⎥⎥⎥⎥⎦. (19)
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FIG. 6. Distributions of the amplitudes and phases for spherically polarized vector Bessel-Gaussian vortex beams (a) M0
BG, (b) N0

BG,
(c) N1

BG, and (d) N2
BG. All individual components of the spatial spectrum are presented in the cylindrical coordinate system (individual

amplitudes are |Gρ |, |Gφ |, |Gz|, individual phases are ϕρ , ϕφ , ϕz). The wave vector is k = 2π , the waist of Gaussian envelope d0 = 100,
and the Bessel half-cone angle is θB = 1◦. The topological charges are (a), (b) m = 0, (c) m = 1, (d) m = 2. The first picture in each group is
the amplitude of the whole spatial spectrum, the spatial coordinates in all groups are the same as in the first picture of the group.

The spatial spectrum of the vector Bessel-Gaussian beam
in this case with different topological numbers is depicted
in Fig. 6(a). The spatial spectrum of the scalar Bessel-
Gaussian beam see Eq. (3) is a ring, however, the spatial
spectrum of the vector Bessel-Gaussian beam is mathemat-
ically obtained by performing differentiation in respect to
kx and ky coordinates. For this reason, a two-ring struc-

ture appears, see Fig. 6(a). In the first case, no Gρ and
no Gz component is present. The Gφ component is a
two-ring structure with a phase jump appearing between
rings.

Next, we repeat the derivations in Eqs. (15)–(19), but apply
them for the expression for the TM mode NBG. Its spatial
spectra GN

BG(kx, ky) can be expressed as

GN
BG(kx, ky) = i

k

⎡
⎢⎢⎢⎣

2g(kx, ky )kx − ∂
∂kx

[
g(kx, ky)

(
k2

z + k2
y

)] + ∂
∂ky

[g(kx, ky)kxky]

2g(kx, ky )ky + ∂
∂kx

[g(kx, ky)kxky] − ∂
∂ky

[g(kx, ky)(k2
z + k2

x )]

2g(kx, ky )kz + ∂
∂kx

[g(kx, ky)kxkz] + ∂
∂ky

[g(kx, ky)kykz]

⎤
⎥⎥⎥⎦,

Here our analysis focuses on the selected cases showcased
previously, see Figs. 4(b)–4(d). Topological charges once
again are m = 0 in Fig. 6(b). First, because of the transver-
sality of the magnetic field, we observe the disappearance of
the Gφ component, but the other two components Gρ and Gz

appear. They share the same distinct two-ring structure. The
Gρ and Gz components are π out of phase. This situation
is known in the literature when highly confined fields are
analyzed [71].

In Fig. 6(c), the topological charge is m = 1. In this case,
the Gφ component is nonzero, the amplitude is a single ring
with the topological vortex of charge m = 1 present. The other
two components are still out of phase and the topological
vortices do appear there also. The intensity profile is the same
two-ring structure.

Lastly, in Fig. 6(d), the topological charge is m = 2. The
situation here is similar to the previous case—the intensity
profiles are similar. However, as expected, for the phases of
Gρ and Gz we observe phase jumps between the rings when
the topological charges are increased to m = 2.

To this end, we investigate how different half-cone an-
gles θB and Gaussian envelope widths d0 are influencing
the spatial spectra of TE and TM modes. This inter-
play is expected to rebalance the ratio between the Gz

and other components as the half-angle of the cone de-
termines whether the vector Bessel-Gaussian beam is in
the paraxial regime when the Gz component is very small
or in the nonparaxial regime when the Gz component is
dominant. The result of this investigation is presented in
Fig. 7.
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FIG. 7. Depiction of the dependency of integrated individual
spectral amplitudes on the half-cone angle θB and widths d0 of
Gaussian envelope for (a) M1

BG and (b) N1
BG. The topological charge

is m = 1, the integration was performed over the whole spectral plane
and the individual amplitudes are normalized to the total amplitude.

First, in Fig. 7(a), three different integrated spectral plane
spectral components of the TE mode with topological charge
m = 1 are presented. In this case, the Gz component is neg-
ligibly small and has no influence on the beam structure.
However, the changes in half-cone angle and widths of the
envelope redistribute the energy between Gρ and Gφ compo-
nents. In the paraxial regime, for very small angles, θB the Gρ

dominates. Nevertheless, this region is characteristic only for
small angles and widths. In other cases, the Gφ component
contains the largest energy.

Lastly, in Fig. 7(b), the TM mode with topological charge
m = 1 is investigated. As expected, with the increase of
the half-cone angle θB the Gz component starts to dominate
in the region θB > 1 rad. For smaller values of the half-cone
angle, the situation observed in the previous case is repeated.
However, for small angles and small widths of the envelope,
the Gφ component is larger than the Gρ component. As the
angles and widths are increasing the energy is rapidly redis-
tributed from the Gφ component to Gρ component.

VI. CONCLUSIONS

Spherically polarized vector Bessel vortices were intro-
duced. In contrary to the already known polarization states
(linear, circular, radial, and azimuthal), these polarization
singularities are one dimensional and thus modify the axial
intensity profile of the Bessel beams. The transverse electric
state can be characterized as a combination of azimuthally and

meridionally dependent electric-field orientations. The trans-
verse magnetic polarization state is predominantly oriented
along the radius vector of the spherical coordinates.

Spherically polarized vector Bessel vortices can be repre-
sented on the hybrid Poincaré sphere as a complexly evolving
set of points corresponding to the different locations in the
real 3D space. An exact description of a spherically polar-
ized Bessel vortex requires an introduction of the 3D Stokes
parameters [44].

Although the scalar Bessel vortices have a nonzero topo-
logical charge associated with orbital angular momentum, the
spherically polarized Bessel vortices have topological charges
which are smaller due to the conversion of orbital angular
momentum into the spin angular momentum.

In the case of spherically polarized Bessel-Gaussian
beams, rather complicated structures can be observed depend-
ing on the values of the half-cone angles and the widths of
the Gaussian envelope. For the transverse electric beams, we
observe two regimes: low angle and high angle. Surprisingly,
the transverse magnetic beam undergoes structural changes
three times as we change the half-cone angle.

The spatial spectrum is quite complicated with all three
spatial components (x, y, z) present. However, in the cylindri-
cal coordinates expressions are simplified and some spectral
components are not present.

Our investigation has revealed a large variety of different
topologies appearing in the spherically polarized Bessel vor-
tices as the angle of the half-cone θB interplays with the width
d0 of the Gaussian envelope. We did observe an appearance
of optical bottles [59,72], needles, [4,62,73], and doughnuts
[49–51]. Such rich structural properties are becoming impor-
tant as structured light is increasingly employed in imaging
[74], super-resolution [75], maximal energy concentration
[76], particle [77,78] and atom trapping [79,80], and laser
microprocessing [81].
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APPENDIX

Functions f1(z) and f2(z, ρ) [see Eq. (10)] are

f1(z) = 1

Z
exp

(
−i

k2
ρ

2k

z

Z

)
exp (−ikzz), (A1)

f2(z, ρ) =Jm

(
kρρ

Z

)
exp

(
− ρ2

d2
0 Z

)
. (A2)

For simplicity, the argument of Bessel function is omitted:
Jm−1 ≡ Jm−1(kρρ/Z ). Expressions for the derivatives of func-
tions f1 are as follows:

f ′
1(z) = exp

(
−i

k2
ρ

2k

z

Z
+ ikz

)

×
(

ik

Z
− i

z0Z2
− ik2

ρ

2kZ2
− zk2

ρ

2kz0Z3

)
, (A3)
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f ′′
1 (z) = exp

(
−i

k2
ρ

2k

z

Z
+ ikz

)(
(z + iZz0)2k4

ρ

4k2Z5z2
0

− 2

Z3z2
0

− k2

Z
+ 2izk2

ρ

kZ4z2
0

+ 2kk2
ρ

Z4z0
− 2k2

ρ

kZ3z0
− izk2

ρ

Z3z0

)
. (A4)

First-order derivatives of functions f2 are

f ′
2(ρ, z)z = − iG

(
kρρ

z0Z2
Jm−1 − AJm

)
, (A5)

f ′
2(ρ, z)ρ =G

(
kρ

Z
Jm−1 − BJm

)
. (A6)

Second-order derivatives of functions f2 are

f ′′
2 (ρ, z)zz = G

[(
2kρρ

3

z2
0d2

0 Z4
− kρρ

z2
0Z3

)
Jm−1

+
(

k2
ρρ

2

z2
0Z4

+ 2ρ2

z2
0d2

0 Z3
+ m

z2
0Z2

− A2

)
Jm

]
,

(A7)

f ′′
2 (ρ, z)ρρ = −G

[(
4ρkρ

d2
0 Z2

+ kρ

ρZ

)
Jm−1

−
(

m

ρ2
− 2

d2
0 Z

− k2
ρ

Z2
+ B2

)
Jm

]
, (A8)

f ′′
2 (ρ, z)zρ = f ′′

2 (ρ, z)ρz

= iG

[
3kρρ

2

z0d2
0 Z3

Jm−1 +
(

k2
ρρ

z0Z3
+ 2ρ

z0d2
0 Z2

− AB

)
Jm

]
,

(A9)

where

G = exp

(
− ρ2

d2
0 Z

)
, (A10)

A =
(

ρ2

z0d2
0 Z2

+ m

z0Z

)
,

B =
(

2ρ

d2
0 Z

+ m

ρ

)
.
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