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Spin-current instability at a magnetic domain wall in a ferromagnetic superfluid:
A generation mechanism of eccentric fractional skyrmions
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Spinful superfluids of ultracold atoms are ideal for investigating the intrinsic properties of spin current and
texture because they are realized in an isolated, nondissipative system free from impurities, dislocations, and
thermal fluctuations. This study theoretically reveals the impact of spin current on a magnetic domain wall in
spinful superfluids. An exact wall solution is obtained in the ferromagnetic phase of a spin-1 Bose-Einstein
condensate with easy-axis anisotropy at zero temperature. The bosonic-quasiparticle mechanics analytically
show that the spin current along the wall becomes unstable if the velocity exceeds the critical spin-current
velocities, leading to complicated situations because of the competition between transverse magnons and
ripplons. Our direct numerical simulation reveals that this system has a mechanism to generate an eccentric
fractional skyrmion, which has a fractional topological charge, but its texture is not similar to that of a meron.
This mechanism is in contrast to the generation of conventional skyrmions in easy-axis magnets. The theoretical
findings can be examined in the same situation as in a recent experiment on ultracold atoms. In terms of the
universality of spontaneous symmetry breaking, unexplored similar phenomena are expected in different physical
systems with the same broken symmetry.
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I. INTRODUCTION

Membranal topological defects, called domain walls
(DWs), are formed when a discrete symmetry is sponta-
neously broken in a phase transition. They occur in every
branch of physics, ranging from condensed matter fields, such
as magnetism [1] and optics [2], to cosmology and field the-
ory [3]. DWs are also important in engineering because they
appear in electronic and spintronic devices and magnetic ma-
terials, e.g., twisted nematic liquid crystals [4], submicrometer
ferromagnetic structures [5], and ferromagnetic metals [6].

DWs in fermionic superfluids and superconductors with
internal orbital and spin degrees of freedom have attracted
increasing interest. Chiral symmetry breaking has been con-
firmed in superfluid 3He-A [7–9], and chiral domain structures
have been observed in a slab geometry [10]. Superfluid 3He-B
is also capable of domain formation in a slab [11], and an
exotic DW that terminates on a half-quantum vortex as a
nexus [12,13] has been realized in porous media [14]. As
fermionic quasiparticles form anomalous bound states at a
DW or interface [15–20] due to a spatial modulation of the
order parameter, the bound quasiparticles in superfluids and
superconductors cause unconventional responses of currents
[21–26] and magnetic fields [27–30].

In contrast, DWs in bosonic superfluids and the prop-
erties associated with quasiparticle-bound states are less
apparent. Recently, composite defects of nematic-spin DWs
and half-quantum vortices have been experimentally realized
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through the symmetry breaking phase transition in spin-1
Bose-Einstein condensates (BECs) of 27Na atoms [31]. The
mass-current field around a composite defect is theoretically
shown to form an anomalous elliptic structure in equilib-
rium [32]. Magnetic-domain formation has been realized in
a strongly ferromagnetic spinor BEC of 7Li atoms [33].
Spinor or multicomponent superfluids are suitable systems
for exploring the intrinsic effect of spin currents because
they are realized in isolated systems free from impurities and
dislocations. A spin current (countersuperflow) has been ex-
perimentally shown to be intrinsically unstable without energy
dissipation [34,35] when the spin-current velocity exceeds the
criteria [36,37]. While these spin-current instabilities occur
in the bulk without the involvement of DWs, the following
fundamental questions have not been answered yet: How do
spin currents influence a magnetic DW? What is the role of
quasiparticle-bound states?

In this study, we theoretically investigate the properties of
magnetic DWs with spin currents in the ferromagnetic phase
of spin-1 BECs. The DWs in this system are classified into
antiferromagnetic (AF)-core and broken axisymmetry (BA)-
core DWs according to the local magnetization at the wall
(Fig. 1). The bosonic-quasiparticle mechanics reveal that a
spin current causes spin-intrinsic instability in an AF-core
DW, causing the condensation of the transverse magnon in a
bound state to form a BA-core DW. The instability dynam-
ics have several channels to different results owing to the
competition between the magnon condensation and Kelvin-
Helmholtz instability (KHI), which occur above the critical
spin-current velocities. Finally, our direct numerical simu-
lation reveals that the instability at a BA-core DW causes
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FIG. 1. Schematic profiles of (a) an AF-core DW and (b) a BA-
core DW. Left: The curves show the cross-sectional profile of the
density f 2

m (m = 0, ±1) and amplitude of the spin-current velocity
vspin parallel to the DWs for V + = 0. The arrows represent the spin
texture. Right: Two-dimensional profiles of spin density s (arrow)
and density n (gray scale).

eccentric fractional skyrmions, which are topological struc-
tures distinct from conventional skyrmions and merons.

This paper is organized as follows. We introduce the the-
oretical formalism basic to this study in Sec. II. Section III
is devoted to the investigation of the static properties in
the stationary state of a flat DW. The excitation spectrum
of a quasiparticle-bound state is investigated analytically in
Sec. IV and the critical spin-current velocity is computed in
Sec. V. In Sec. VI, it is numerically shown that eccentric frac-
tional skyrmions are generated in quantum KHI of a BA-core
DW. A summary and prospects are made in the last section.

II. BASIC FORMULATION

Spin-1 BECs of dilute Bose gases at very low temperatures
are described in the mean field theory, where the boson field
operator �̂ (†)

m is replaced by the macroscopic wave function
� (∗)

m in the many-body Hamiltonian. Here, �m(r, t ) is the
complex scalar field of the |m〉 Zeeman (m = 0,±1) compo-
nent. The dynamics in a uniform system are described by the
Lagrangian functional of �� = [�+1, �0, �−1]T in the Gross-
Pitaevskii (GP) model [38] as L = ∫

d3x(
∑

m ih̄�∗
m∂t�m −

G), with G( �� ) = h̄2

2M

∑
m(∇�∗

m) · (∇�m) + U and

U = cn

2
n2 − μn + cs

2
s2 − psz + ��†

(
qσ̌ 2

z + Ǔ
) ��. (1)

Here, we used the density n = ∑
m |�m|2 and the spin density

s = [sx, sy, sz]T = ∑
mm′ �∗

m(σ̌)mm′�m′ with the spin-1 matri-
ces σ̌ = [σ̌x, σ̌y, σ̌z]T,

s =
⎛
⎝sx

sy

sz

⎞
⎠ =

⎛
⎝

√
2Re[(�+1 + �−1)�∗

0 ]√
2Im[�0(�+1 − �−1)∗]

|�+1|2 − |�−1|2

⎞
⎠. (2)

The Lagrange multipliers μ and p are associated with the
conservation of the particle number and longitudinal magne-
tization, respectively. We neglect the external potential Ǔ =
diag(U+1,U0,U−1), unless otherwise noted. Spin-1 BECs
have four different phases: polar (P), AF, ferromagnetic (F),
and BA phases [38]. Magnetic DWs are realized in the F phase
with ferromagnetic interaction −cn < cs < 0 and a negative
quadratic Zeeman shift q < 0.

The ground state �� = ��F± in the F phase for p ≷ 0 has
a magnetization sz = ±n and is represented as the F± state,

�±1 =
√

μ−q±p
cn+cs

eiθG and �∓1 = �0 = 0. Here, θG = const is

the global phase according to the U(1)-symmetry breaking.
The energy densities G( ��F±) = UF = − 1

2
(μ−q±p)2

cn+cs
of these

states have the same value for p = 0, corresponding to the
spontaneous breaking of the discrete symmetry with respect
to the spin inversion sz ↔ −sz. Magnetic DWs are topolog-
ical defects associated with discrete symmetry breaking, in
addition to quantized vortices with U(1)-symmetry breaking.
The DW separates the domains in the two ground states with
opposite magnetizations. The bulk ordered state is suppressed
in the core of the DW, in which the macroscopic wave func-
tions vary continuously between the two states. The core of a
topological defect in spin-1 BECs has been revealed to exhibit
complicated states [32,39–49]. Similarly, there are different
possibilities for the local states at the wall in our system.

To approach the problem systematically, we introduce a
general rule on the mass and spin currents along a DW. This
rule is a natural extension of the vortex winding rule for a
rotational flow around an axisymmetric vortex [32,48,50]. The
rule is applicable when all Zeeman components have finite
population.

In the presence of currents along a flat DW normal to the x
axis, the wave function in the stationary state is expressed as
�m(r, t ) = fm(x)ei�m with the real function fm and the phase

�m = h̄

M
V m · r + ϑm, (3)

where we used the current velocity V m⊥x̂ of the m component
defined by the current density jm = h̄

M Im(�∗
m∇�m) = f 2

mV m.
By substituting this formula into the equation of motion ob-
tained from the Lagrangian, we have the coupled equations

h̄2

2M
f ′′
0 = g0 f0 + cs f0

(
f 2
+1 + f 2

−1 + 2 f+1 f−1eiδ�
)
, (4)

h̄2

2M
f ′′
±1 = g±1 f±1 + cs f 2

0 ( f±1 + f∓1e−iδ�), (5)

with δ� = �+1 + �−1 − 2�0, f ′′
m = d2

dx2 fm, and

gm = cnn + mcssz − μ − mp + m2q + 1
2 MV 2

m.

When fm(x) is nonzero for all components by satisfying
f+1 f0 f−1 
= 0 at a certain place, δ� must be an integer multi-
ple of π for satisfying the coupled Eqs. (4) and (5). We may
set as δ� = 0 when the factor eiπ = −1 is included into the
real function fm by changing its sign. In this way, we have
V +1 + V −1 = 2V 0 with ϑ+1 + ϑ−1 − 2ϑ0 = 0, equivalent to
the current velocity rule

V m = V + + mV −, (6)

with V ± = 1
2 (V +1 ± V −1). By substituting Eq. (6) into

Eqs. (4) and (5) with δ� = 0, one obtains

0 = Hm fm + cs( f+1 + f−1)2−m2
f 1+m2

0 , (7)

with Hm = − h̄2

2M
d2

dx2 + cnn + mcssz − μ̃ + mp̃ + m2q̃ and the
hydrostatic variables [48],

μ̃ = μ − 1
2 MV 2

+, (8)

p̃ = p − MV + · V −, (9)

q̃ = q + 1
2 MV 2

−. (10)
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Equation (7) is equivalent to Eqs. (4) and (5) with δ� = 0
and V m = 0 when (μ̃, p̃, q̃) are replaced by (μ, p, q); the
solution fm(x) of the former is equal to that of the latter when
(μ̃, p̃, q̃) = (μ, p, q). Accordingly, we readjust the condition
of the hydrostatic variables as μ̃ > 0 and q̃ < 0 for realizing
the F states in the bulk.

The bulk density is determined by the pressure balance
between the two domains with opposite magnetization. The
hydrostatic pressure in a domain is computed in a similar
manner as a scalar BEC [51]. Since the hydrostatic pressure
in a domain with sz = ±n is given by P± = 1

2
(μ̃−q̃±p̃)2

cn+cs
, the

pressure equilibrium with a flat DW is realized under the
condition p̃ = 0,

P+ = P− = PF ≡ 1

2

(μ̃ − q̃)2

cn + cs
, (11)

with

n(x → ±∞) → nF = μ̃ − q̃

cn + cs
(12)

or, equivalently, sz(x → ±∞) → ±nF.

III. STATIC PROPERTIES

A DW solution in the F phase is obtained under the bound-
ary condition of Eq. (12) for −1 < cs

cn
< 0 and q̃ < 0. It is

noted that a flat DW can be realized even for nonzero p in
the presence of currents by satisfying p̃ = 0. The Galilean
invariance allows us to set the center-of-mass velocity to be
zero (V + = 0) without loss of generality in an isolated system.
In this work, hence, we consider the case with p = 0 with
V + = 0, and then the DW solution is determined by the two
parameters cs/cn and q/μ (or q̃/μ̃) after rescaling the length,
time, and wave function by

ξ = h̄√
M(μ̃ − q̃)

,

τ = h̄

μ̃ − q̃
,

and
√

nF, respectively.
By changing cs/cn and q̃/μ̃ widely, we found two types of

DW solutions, classified by the local ordered states at the cen-
ter x = 0: the AF-core DW with the local AF state [ f+1(0) =
f−1(0) and f0(0) = 0] and the BA-core DW with the local BA
state [ f+1(0) = f−1(0) and f0(0) 
= 0] in Figs. 1(a) and 1(b),
respectively. Here, we demonstrate the details of analytical
and numerical results of DW solutions.

To discuss solutions of a AF-core DW, we first introduce
the useful correspondence between binary BECs and spin-1
BECs in the absence of the m = 0 component, which enable
us to obtain some analytical expressions. After the replace-
ment of (�+1, �−1) → (�1, �2) and (μ + p − q, μ − p −
q) → (μ1, μ2), the Lagrangian of spin-1 BECs with �0 =
0 is rewritten as L = ∑

j=1,2

∫
d3x[ih̄�∗

j ∂t� j − h̄2

2M (∇�∗
j ) ·

(∇� j ) − U j] with

U j = −μ j |� j |2 +
∑

k=1,2

g jk

2
|� j |2|�k|2. (13)

This is just the Lagrangian of binary BECs with the intra- and
intercomponent coupling constants g = g11 = g22 = cn + cs

FIG. 2. (a) Numerical plots of density profiles f 2
+1 (red

mark) and f 2
−1 (blue mark) of an AF-core DW for cs/cn =

−0.8, −0.5, −0.2, −0.03. The dimensionless plots are independent
of q̃/μ̃. Solid curves show the exact solution ( f ex

±1)2 for cs/cn = −0.5
given by Eq. (14). (b) Numerical plots of f 2

m (m = 0, ±1) of the
lowest-energy DW for q̃/μ̃ = −1, −0.5, −0.25, −0.1 with cs/cn =
−0.5.

and g12 = g21 = cn − cs, respectively. The ferromagnetic in-
teraction (0 > cs > −cn) satisfies the immiscible condition of
binary BECs, 0 < g < g12, while the antiferromagnetic one
(cs > 0) does the miscible condition, 0 < |g12| < g [51].

Joseph et al. pointed out that there is an exact solution of
a DW in a segregated binary BEC with g12/g = 3 [52]. This
case corresponds to cn/cs = −1/2 in spin-1 BECs according
to the above correspondence. Then the exact solution of the
AF-core DW is given by

f±1 = f ex
±1 =

√
nF

2

[
1 ± tanh

(
x

ξ

)]
. (14)

This solution is practical because the spin-1 BECs of 7Li
atoms have cs ≈ −cn/2 [33]. An exact DW solution with
ferromagnetic interaction is also available for the BA phase
[53,54].

Figure 2(a) shows typical solutions of the AF-core DW
obtained numerically by solving Eq. (12) for several values
of cs/cn. A stationary solution of a flat DW is obtained under
the Neumann boundary condition at the x = ±Lx/2 with the
system size Lx = 256ξ . For details of the numerical method,
see Appendix A. The solutions of AF-core soliton depend
on q̃ just through the rescaling parameters, ξ and nF , of the
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FIG. 3. (a) The maximum transverse spin density max s⊥
and (b) the tension α of the lowest-energy DW for cs/cn =
−0.03, −0.2, −0.5, −0.8. (a) The lowest-energy DW is a BA-core
DW with max s⊥ > 0 when q̃ is larger than a critical value q̃C(cs ) <

0. The positions of the transition points are indicated by arrows
schematically. (b) The analytical results, αex [Eq. (18)] and αweak

[Eq. (19)], for AF-core DWs are compared with the numerical
results.

horizontal and vertical axes. The m = ±1 components are
likely to overlap and the density is almost homogeneous (n ≈
nF) in the small-negative limit cs/cn → 0, corresponding to
the weak segregation limit with g12/g → 1 in binary BECs.
The overlap is suppressed as |cs|/cn increases. The strong
segregation limit g12/g → ∞ is realized for cs/cn → −1, and
then the overlap vanishes with f+1(0) f−1(0) → 0. In the fol-
lowing, we will focus mainly on the case of cs/cn = −1/2 and
explain the numerical results only briefly for cs/cn 
= −1/2.

The transverse-spin density s⊥ =
√

s2
x + s2

y is finite in the
core of a BA-core DW with f0 
= 0, while s vanishes at the
center x = 0 of an AF-core DW with f0 = 0 [see Eq. (2)].
Figure 2(b) shows numerical solutions of a BA-core DW for
several values of q̃/μ̃ with cs/cn fixed to be −1/2. A contin-
uous transition between BA-core and AF-core DWs occurs at
q̃ = q̃C(cs/cn = −1/2) = −μ̃, which is predicted by the the-
oretical analysis demonstrated later. Figure 3(a) demonstrates
that the magnitude of s⊥ is universally asymptotic to nF in
the limit of q̃ → 0, while the transition point, above which s⊥
is nonzero, depends sensitively on cs/cn. Therefore, the spin
density s rotates but its amplitude is not so suppressed in a
BA-core DW with small |q̃|/μ̃.

The presence of the m = 0 component in the core causes
a difference in the profile of the spin-current velocity too
(see left panels in Fig. 1). The spin-current velocity vspin ≡
jspin

n , defined by the spin-current density jspin = ∑
m m jm with

jm = h̄
M Im(�∗

m∇�m), is computed as

vspin = f 2
+1 − f 2

−1

n
V + + f 2

+1 + f 2
−1

n
V −. (15)

In our case of V + = 0, the velocity reduces to vspin(x) =
f 2
+1+ f 2

−1

n V −. In an AF-core DW with f 2
+1 + f 2

−1 = n with f0 =
0, the velocity is homogeneous, vspin = V − = const. In the
BA-core DW, on the other hand, the spin-current velocity is

locally suppressed in the core with
f 2
+1+ f 2

−1

n < 1. Since s rotates
about the z axis as �±1 varies, the spin texture takes a spiral
structure on a BA-core DW in the presence of a finite spin
current, as shown schematically in the right panel of Fig. 1(b).

The transition between BA-core and AF-core DWs occurs
because the energy of the former is lower than that of the
latter above the critical point: q̃ > q̃C. The energy of a DW
is evaluated by the DW tension α, which is important to
determine its static and dynamic properties. The tension α is
defined by the excess energy in the presence of a DW of area
S as

α = S−1
∫

d3x(G − Ũb)

=
∫ ∞

−∞
dx

(
h̄2

2M

∑
m

f ′2
m + Upot

)
, (16)

where Ũb = −PF is the energy density in the bulk. The sec-
ond line is obtained by substituting �m = fmei�m into the
first line and composed of the kinetic energy associated with
the spatial gradient f ′

m = d
dx fm and the residual term Upot.

Equation (7) is represented as f ′
m

h̄2

M
d2

dx2 f ′
m = f ′

m
∂Upot

∂ fm
. By the

integration and summation of this equation with respect to
x and m, one obtains h̄2

2M

∑
m f ′2

m = Upot with the boundary
conditions f ′

m(±∞) = 0 and Upot[ fm(±∞)] = 0. By using
this result, the tension is represented by the formula

α = 2
∫ ∞

−∞
dxUpot = h̄2

M

∑
m

∫ ∞

−∞
dx f ′2

m . (17)

From the form on the rightmost side, the energy density at the
wall is generally higher than that in the bulk and thus n(x = 0)
is smaller than nF.

The tension αAF of an AF-core DW is evaluated analyti-
cally for some cases. The tension αex for the exact solution of
Eq. (14) is computed as

αAF = αex = 2

3
(μ̃ − q̃)nFξ

(
cs

cn
= −1

2

)
. (18)

According to the correspondence with binary BECs, we obtain
the formulas of the tension in the weakly (strongly) segregat-
ing regime of g12

g − 1 � 1 ( g12

g − 1 → ∞) [52,55,56] as

αAF = αweak =
√ −cs

cn + cs
(μ̃ − q̃)nFξ

( |cs|
cn

� 1

)
, (19)

αAF = 4

3
(μ̃ − q̃)nFξ

(
cs

cn
→ −1

)
. (20)
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FIG. 4. Bogoliubov excitation spectrum of the first and second lowest-energy excitations at an AF-core DW for cs/cn = −1/2 and V + = 0.
Circles show the real part (black circle) and the imaginary part (red circle) obtained numerically by solving the BdG equation. Solid curves
represent the analytical plots of Re ω̃+ (green) and Im ω̃+ (orange) in Eq. (35) and Re ωKH (blue) in Eq. (39) with α = αex.

The tension αBA of a BA-core DW is computed by nu-
merically minimizing α or, equivalently, solving Eq. (7).
Figure 3(b) shows the q̃ dependence of αBA for some typical
values of cs together with the plot of the peak value (max s⊥)
of the transverse spin density at the DW. For a fixed cs/cn,
the tension αBA is smaller than αAF and approaches it for
q̃ → q̃C, at which a BA-core DW becomes an AF-core DW
with max s⊥ = 0. Therefore, the density n in the core of a
BA-core domain wall is less suppressed than a AF-core DW.
In the critical regime of q̃/μ̃ → 0, the tension is universally
asymptotic to the scaling behavior α

(μ̃−q̃)nFξ
∝ √|q̃|/μ̃ inde-

pendent of cs/cn and then the density n is almost constant,
n ≈ nF.

IV. EXCITATION SPECTRUM

The linear stability of a flat DW is evaluated by inves-
tigating the excitation spectrum of bosonic quasiparticles.
Here, we will demonstrate that excitations localized at the
DW induces different types of spin-current instability. De-
pending on the properties of the localized excitations, called
transverse magnons and ripplons, we introduce two different
approaches. In particular, the analytical computations based
on the two approaches give a quantitative prediction without
fitting parameters for the 7Li case of cs/cn = −1/2, as shown
in Fig. 4. An approach for transverse magnons is a theo-
retical extension of the semiclassical approximation and the
perturbation theory in quantum mechanics, simply called the
bosonic-quasiparticle mechanics in this paper. The other for
ripplons is based on the low-energy effective theory that is a
natural extension of the theoretical analysis of quantum KHI.
We first discuss how a spin current influences the excitation
spectrum for an AF-core DW based on the former approach.
Then the latter one is introduced for describing the instability
for AF-core and BA-core DWs in a unified manner.

A. Bosonic-quasiparticle mechanics

We obtain the excitation spectrum by solving the eigen-
value problem, derived by linearizing the equation of motion
with respect to the Bogoliubov modes δ�m(r, t ) = �m(r, t ) −
�m(r) = ei�m [um(x)eik·r−iωt − vm(x)∗e−ik·r+iω∗t ] with k⊥x̂.

As the instability is induced by modes with nonpositive ex-
citation energy, we investigate the behavior of low-energy
excitations. For f0 = 0, we have two independent eigen-
value equations for the vector fields �u0 = (u0, v0)T and
(u+1, u−1, v+1, v−1)T. The problem with the latter is the same
as quantum KHI in segregated binary BECs without external
potentials [57], where the lowest-energy excitations of rip-
plons, the quanta of ripple waves on a DW, are described by
the low-energy effective theory in Sec. IV B.

The distinction from binary BECs is caused by the excita-
tions of �u0, called transverse magnons. The magnons obey the
eigenvalue equation

h̄ω̃�u0 =
(

h0 + hp hp

−hp −h0 − hp

)
�u0, (21)

with ω̃ = ω − k · V +, h0 = h̄2k2

2M + H0 + cs( f+1 + f−1)2, and
hp = −2cs f+1 f−1. In our isolated system with Galilean in-
variance, we do not explicitly consider the center-of-mass
motion causing the term −k · V + on the right-hand side of
the equation of ω̃.

Transverse magnons form bound states at the wall as

follows. In the classical limit of − h̄2

2M
d2

dx2 → P2
x

2M in the semi-
classical approximation of bosonic-quasiparticle mechanics
[58,59], we obtain the classical energy Eclassic(Px, x) as the
eigenvalue for k = 0 as

E2
classic =

(
P2

x

2M
+ V+

)(
P2

x

2M
+ V−

)
, (22)

with V±(x) = (cn + cs)n ± 2cs f+1 f−1 − μ̃ and the classical
momentum Px in the x direction. This approximation is a
natural extension of the semiclassical approximation in quan-
tum mechanics for a single-particle problem. In this analogy,
the eigenvalue equation (21) corresponds to the “Schrödinger
equation” in quantum mechanics. The classical energy can be
lower than the energy gap |q̃| of the magnon in the bulk,

Eclassic(0, x) = Veff (x) � |q̃|, (23)

with

Veff (x) ≡
√

[(cs + cn)n − μ̃]2 − 4c2
s f 2

+1 f 2
−1. (24)
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Here, we used the inequalities n < nF and f+1 f−1 
= 0 at the
wall. As the magnons must have an energy higher than |q̃|
to propagate in the bulk, the bulk is the classically forbidden
region for magnons with Eclassic < |q̃|, forming bound states
at the wall.

The bound magnons can have even nonpositive or imagi-
nary eigenvalues, indicating instability leading to its sponta-
neous excitation and the local condensation of the magnons.
Therefore, the instability causes the transition of the DW
to a BA-core DW by making the population of the m = 0
component finite in the core. The stability was evaluated using
the criterion Veff = 0 in the classical limit. The semiclassical
theory is applicable for the spin-1 BECs of 87Rb and 41K
with a small-negative cs/cn, where the spatial variations of
n and Veff are small, with n ≈ nF. Therefore, we may apply
the approximation Veff (0)2 ≈ q̃2 − ( cs

cn+cs
)2(μ̃ − q̃)2 for cs →

0, and then the system becomes dynamically unstable with
Eclassic(0, x) imaginary if q̃ > q̃C, where the critical value is
given by

q̃C ≈ cs

cn
μ̃

( |cs|
cn

� 1

)
. (25)

This result qualitatively explains the behavior of the tran-
sition point in the numerical plot of Fig. 3(a) for small
|cs|/cn. This suggests that dynamic instability is induced by
the quasiparticle-bound state under a spin current. The critical
spin-current velocity will be defined in Sec. V.

To provide a quantitative understanding of this phe-
nomenon beyond the semiclassical perspective, we focus
on the excitations at the exact DW solution (14) in 7Li
condensates with cs = − cn

2 . The perturbation theory of
bosonic-quasiparticle mechanics [48,59–61] is extended to
calculate the criterion q̃C(cs = − cn

2 ). This is a theoretical ex-
tension of the perturbation theory in quantum mechanics for a
single-particle problem.

We consider the perturbation expansion in the following:

h̄ω̃�u0 = (ĥ0 + δĥ)�u0, (26)

with ĥ0 = (h0 0
0 −h0

) and δĥ = ( hp hp
−hp −hp

). The unperturbed
solution is given by the equations

εu0 = h0u0

εv0 = −h0v0 (27)

with the unperturbed eigenvalue ε. These equations are solved
exactly for the case of cs = − cn

2 . Then, substituting the exact
DW solution of Eq. (14), Eqs. (27) are reduced to

ε+u0 =
[
−1

2

d2

d (x/ξ )2
− sech2

(
x

ξ

)]
u0,

(28)

ε−v0 =
[
−1

2

d2

d (x/ξ )2
− sech2

(
x

ξ

)]
v0,

with ε± = μ̃−cnnF/2−ek±ε

cnnF/2 and ek = h̄2k2

2M with k = |k|. The
eigenvalue solution of Eq. (28) is given by solving the single-
particle problem in the Pöschl-Teller potential [62]; ε± = − 1

2
and u0, v0 ∝ sech( x

ξ
). Accordingly, we have

ε = h̄ω± = ±(ek − μ̃ + cnnF/4). (29)

It is expected that the instability is induced by these bound
states and the perturbed solution could be constructed by a
combination of them in the two-mode approximation,

�u0 = C+�u+ + C−�u−, (30)

where we used the eigensolutions (ε, �u0) = (h̄ω±, �u±),

�u+ =
[

1√
2ξ

sech

(
x

ξ

)
, 0

]T

,

�u− =
[

0,
1√
2ξ

sech

(
x

ξ

)]T

. (31)

By inserting Eq. (30) into Eq. (26) and solving the resulting
secular equation, one obtains

h̄ω̃ = ε̃+ + ε̃−
2

±
√( ε̃+ − ε̃−

2

)2

+ M−+M+−, (32)

with ε̃± = h̄ω± + M±±. Here, Mαβ is defined as

Mαβ = Nαα

∫
d3x�u†

ασ̂zδĥ�uβ, (33)

with Nαβ = ∫
d3x�u†

ασ̂z�uβ = ±δαβ and σ̂z = diag(1,−1). The
matrix elements Mαβ were computed by using the normaliza-
tion condition N±± = ±1 as

M++ = −M−− = M+− = −M−+ = cnnF

6
. (34)

Finally, we have ω̃ = ±ωmag:

h̄ωmag =
√(

h̄2k2

M
− μ̃ − q̃

)(
h̄2k2

4M
+ μ̃ − 7q̃

12

)
. (35)

Figure 4 shows that the dispersion relation of Eq. (35) quan-
titatively explains the results of the numerical diagonalization
of the Bogoliubov–de Gennes (BdG) equation [63], which is
obtained after linearizing the equation of motion with respect
to um(x) and vm(x). See Appendix A for details of the method
of the numerical diagonalization.

Our theoretical analysis indicates that the system becomes
dynamically unstable when the plus and minus branches of
Eq. (35) collide at k = 0 by making a bubble of instability
[64] when q̃ exceeds the critical value,

q̃C = −μ̃

(
cs

cn
= −1

2

)
. (36)

The dispersion (35) is almost perfectly consistent with the
numerical results near the critical point q̃ = −μ̃. This con-
sistency comes from the fact that the perturbed eigenvector �u0

with C+ = −C− gives an exact solution for ω̃ = k = 0 at the
critical point at which we have hp = 0.

B. Low-energy effective theory

To investigate another dynamic instability induced by
ripplons, we introduce the low-energy effective theory that
describes the hydrodynamic aspect of a DW. This theoretical
framework is applicable to both the AF-core and BA-core
DWs regardless of the internal structure of the core. More
specifically, the difference between the two is described
through the tension α by neglecting the thickness of the DW.
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A similar theory has been applied to a DW in binary BECs
for describing quantum Kelvin-Helmholtz instability (KHI)
[57] and Nambu-Goldstone (NG) modes with the fractional
dispersion [65]. Here, we extend the theory to spin-1 BECs.

The low-energy effective theory is constructed by consid-
ering the degrees of freedom associated with the NG modes
and neglecting higher-energy Bogoliubov excitations. We first
consider excitations that propagate in the bulk far from the
DW. An excitation in the bulk is described as a collective
fluctuation δ �� = �� − ��F = �u − �v∗ with the Bogoliubov co-
efficients �u and �v. The excitations can be classified by the
coefficients, and we have three types of excitations; e.g., in
a magnetic domain with sz = +n, (i) �u ∝ [1, 0, 0]T and �v ∝
[1, 0, 0]T, (ii) �u ∝ [0, 1, 0]T and �v = 0, and (iii) �u ∝ [0, 0, 1]T

and �v = 0. Mode (i) is a gapless mode whose excitation
spectrum ε(k) does not have an energy gap for zero wave
number (k = 0): ε(0) = 0. This mode is called phonon, corre-
sponding to the NG mode associated with the U(1) symmetry
breaking. The other two modes have energy gaps in the excita-
tion spectrum: (ii) ε(0) = |p| − q > 0 and (iii) ε(0) = 2|p| −
2csn > 0. Mode (ii) is equivalent to the transverse magnon,
whose bound state was discussed in the bosonic-quasiparticle
mechanics. The Bogoliubov coefficients of (ii) and (iii) are
composed of only the m = 0 or m = −1 component, while
those of (i) are composed of the m = 1 component. There-
fore, we neglect the fluctuations of the m = 0 and m = −1
components in the low-energy effective theory. Similarly, in a
domain with sz = −n, the degrees of freedom associated with
the m = 0 and m = +1 components are neglected approxi-
mately.

There exists another NG mode, called the ripplon, corre-
sponding to the vibration mode of a DW. According to the
above consideration, we describe the state in a domain with
sz = ±n by a single wave function �±1 in the effective theory.
Representing the position of the DW between two magnetic
domains by the single-valued function x = η(y, z, t ), we in-
troduce the effective Lagrangian,

Leff =
∫

dydz

(∫ +∞

η

P+1dx +
∫ η

−∞
P−1dx

)
− αS,

with the area S and the tension α of the DW. The
Lagrangian density P±1 in the domain with sz = ±n is ob-
tained by neglecting the contributions from the m = 0 and
m = ∓1 components in the original Lagrangian L: P±1 =
ih̄�∗

±1∂t�±1 − h̄2

2M

∑
m(∇�∗

±1) · (∇�±1) − U±1 with U±1 =
1
2 (cn + cs)|�±1|4 − (μ ± p − q)|�±1|2.

By writing S = ∫
dxdy

√
1 + (∂yη)2 + (∂zη)2 ≈∫

dxdy[1 + 1
2 (∂yη)2 + 1

2 (∂zη)2] for a small fluctuation
from a stationary state of η = 0, one obtains the equation of
motion with respect to η from the effective Lagrangian,

P+1(η) − P−1(η) = α
(
∂2

y + ∂2
z

)
η. (37)

This equation is an analog of the Young-Laplace equation in
fluid mechanics, where the Laplace pressures P+1 − P−1 bal-
ance the effect of the shape of the wall represented by the
right-hand side of Eq. (37). In the stationary state of η = 0,
the pressures in the two domains are equal with P+1 = P−1 =
PF. The phonon is decoupled with the ripplon in the first
approximation. This is because the low-energy phonon can

propagate through the wall without disturbance, associated
with the anomalous tunneling effect of a DW [66]. Hence,
the translational motion of a wall is treated independently
from the bulk fluctuation and we mainly focus the former as a
vibration mode of a DW.

The vibration of a DW is determined by Eq. (37) under a
proper boundary condition on the wall. The boundary condi-
tion can be different between our system and binary BECs,
while the theoretical treatment of the bulk wave function is
identical to each other. A possible mechanism to make the
difference is the spin interaction. The number of particles is
conserved for each component in binary BECs, which de-
mands the kinematic boundary condition [67], whereas the
population transfer occurs between different spin components
via the spin interaction in spinor BECs. However, we neglect
the transfer in the effective theory for the following reason.
The mechanism of the transfer originally comes from the
operator ∝ cs�̂

†
0 �̂

†
0 �̂+1�̂−1 and its Hermitian conjugate in

the spin interaction in the many-body Hamiltonian. The par-
ticle transfer can happen together with a pair annihilation or
creation of the m = 0 component, resulting in a fluctuation
of the wave function �0. Such a process is forbidden at the
DW in the low-energy effective theory because it can cost an
extra energy by changing the internal structure of the wall,
except for the bound magnon discussed above. Moreover,
the ripplon is the NG mode associated with the spontaneous
breaking of translational symmetry, and the fluctuation due
to a ripple excitation makes a translational shift, expressed by
δ �� ∝ η d

dx
�� by conserving the population of each component.

We hence apply the same boundary condition as the one used
in segregated binary BECs.

Once the correspondence between binary BECs and our
system is established on the level of the effective theory, we
can use the result of the dispersion relation of ripplons in
binary BECs. Here, the roles of the first and second compo-
nents in Refs. [57,65,68] are played by the m = −1 and m =
+1 components in our system, respectively. The dispersion
ωrip(k) of a ripplon mode η ∝ cos(k · r − ωript ) is given by

ωrip(k,V +,V −) = k · V + + ωKH(k,V −), (38)

with the KH dispersion

ωKH(k,V −) =
√

α|k|3
2MnF

− (k · V −)2. (39)

The first term on the right-hand side of Eq. (38) comes from
the so-called Doppler effect induced by the center-of-mass
motion related to the thermodynamic (or Landau) instability
of the ripplon [57].

In the sense that the low-energy effective theory of KHI
in binary BECs is identical to that for an AF-core DW in
spinor BECs, it can be said that the validity of the latter
has been established partly by the numerical analyses in the
previous works [57,65]. Here, for the purpose of reference,
the prediction of the low-energy effective theory is evaluated
just for V + = 0 as plotted in Fig. 4, where q̃ is changed
with V − fixed to be zero. As αAF

(μ̃−q̃)nFξ
is independent of q̃/μ̃

[see Fig. 3(b) for q̃ > q̃C], the rescaled spectrum ωKHτ with
V − = 0 is independent too. The theory breaks down when
the wavelength becomes comparable to the thickness ξ of an
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AF-core DW. Accordingly, we see a little discrepancy be-
tween the numerical and theoretical plots for kξ � 1.

V. CRITICAL SPIN-CURRENT VELOCITIES

As phenomena described by the low-energy effective the-
ory in our spinor BECs are the same as that in binary BECs, no
additional discoveries are expected even if we further proceed
on the level of the linear stability analysis. We find unique-
ness rather when the core structure of the DWs undergoes a
transition between AF-core and BA-core DWs in nonlinear
or nonequilibrium dynamics beyond the linear regime of the
instability. In this section, we illustrate that the competition
between the transverse-magnon condensation and quantum
KHI leads to an interesting scenario of the instability de-
velopment depending on the difference between their critical
spin-current velocities.

A. Criterion for transverse magnons

The critical spin-current velocity for the transverse-
magnon condensation is interpreted from the perspective of
spin-current instability in the AF phase (q < 0 and cs > 0)
[35,37]. The spin current in the AF state is dynamically unsta-
ble when the spin-current velocity is higher than [37]

VAF(q) =
√

2|q|
M

, (40)

leading to the nucleation of the m = 0 component owing to the
collisional annihilation of the m = ±1 components. A similar
interpretation is applicable to the critical spin-current velocity
Vmag for the local AF state at an AF-core DW. By substituting
q̃ = q̃C and V− = Vmag into Eq. (10), we have

Vmag =
√

2q̃C

M
+ VAF(q)2 (q � q̃C). (41)

An AF-core DW becomes dynamically unstable for V− >

Vmag and then the transverse-magnon condensation leaves a
BA-core DW by the phase transition from the local AF state
to the BA state in the core with s⊥ 
= 0. This is in contrast
to the spin-current instability in the AF phase [35], which is
interpreted as a phase transition from the AF phase (q̃ < 0) to
the P phase (q̃ > 0) by “quenching” (rapidly increasing) the
spin-current velocity (V−).

The critical spin-current velocity (41) is concretely com-
puted for spinor condensates of 87Rb, 41K, and 7Li atoms. For
87Rb or 41K atoms, the result (25) by the semiclassical theory
yields

Vmag =
√

2

M

(
|q| + cs

cn
μ̃

) ( |cs|
cn

� 1

)
. (42)

This formula is consistently asymptotic to the criterion (40) by
approaching the AF phase in the limit cs → 0. By substituting
Eq. (36) into Eq. (41), the criterion for the 7Li condensate is
given by

Vmag =
√

2

M
(|q| − μ̃)

(
cs

cn
= −1

2

)
. (43)

These results suggest that the critical point q̃C and thus Vmag

are monotonically increasing functions of cs
cn

for given q. This
is because the transverse-magnon condensation is energeti-
cally preferred more for larger-negative cs.

B. Criterion for ripplons

The critical spin-current velocity for quantum KHI is com-
puted both for AF-core and BA-core DWs. Equation (39)
is regarded as the dispersion relation of capillary waves in
fluid dynamics. Our system also supports an analog of the
gravity-capillary waves more generally by introducing exter-
nal potentials. Such situations can be realized for a domain
wall under a small magnetic-field gradient and a closed do-
main wall that surrounds a giant (multiply quantized) vortex
[69]. Here, we consider the former case, where the potential
for the m component is represented as

Um(x) = −m
F

2nF
x,

which plays the role of a restoring force to stabilize the mag-
netic DW at the equilibrium position η = 0. According to the
correspondence between binary and spinor BECs, the critical
spin-current velocity for KHI is given by

Vrip(α) =
√√

Fα

MnF
. (44)

A flat DW becomes dynamically unstable for V− > Vrip.
The concrete formulas of Vrip are demonstrated for several

cases as follows. The critical spin-current velocity Vrip(αAF)
for an AF-core DW is computed by using Eqs. (19) and (18)
as

Vrip(αweak ) = ξ

τ

(√
|cs|

cn + cs

τξ

nF h̄
F

) 1
4 ( |cs|

cn
� 1

)
, (45)

Vrip(αex) = ξ

τ

(
2

3

τξ

nF h̄
F

) 1
4

( |cs|
cn

= −1

2

)
. (46)

For computing the criterion for an-BA-core DW, we need to
read the data of the tension αBA of a BA-core DW in Fig. 3(b).
It is convenient to use the critical behavior of the rescaled
tension for |q̃|/μ̃ � 1,

αBAτ

h̄nFξ
∼

√
|q̃|
μ̃

. (47)

This scaling behavior is universally observed for different val-
ues of cs/cn. As a result, one obtains the critical spin-current
velocity for a BA-core DW,

Vrip(αBA) ∼ ξ

τ

(√
|q̃|
μ̃

τξ

nF h̄
F

) 1
4 ( |q̃|

μ̃
� 1

)
. (48)

C. Competition between two dynamic instabilities

When only ripplons are excited at an AF-core DW in the
spin-current instability and a BA-core DW is never formed,
the nonequilibrium development of the spin-current instability
follows the regular scenario of quantum KHI; according to

013328-8



SPIN-CURRENT INSTABILITY AT A MAGNETIC DOMAIN … PHYSICAL REVIEW A 105, 013328 (2022)

FIG. 5. Dynamics of the spin-current instability at a BA-core DW for (cs/cn, q̃/μ̃,V±1τ/ξ ) = (−0.5, −0.05, ±0.368). The arrows show
the spin density s. The distributions of sz and n0 = |�0|2 are represented by the arrow color and background grayscale, respectively. (a) t/τ = 0:
The wall is flat in the initial state. (b) t/τ = 200: The KHI makes the flutter-finger pattern. (c) t/τ = 625: The vortices are released as DW
loops, and then spin singularities appear along the DWs at which spin density vanishes locally. (d) t/τ = 1100: A spin singularity survives
even on a released loop, forming a fractional skyrmion. The spin texture of skyrmions is schematically illustrated for (e) Ns = 0, (f) Ns = 1/2,
and (g) Ns = 1, together with the distribution of local ordered states (BA, AF, F±). The phases arg�−1 and arg�+1, of (d) are plotted in (h)
and (i), respectively. The black regions represent m = ±1 domains, in which arg�∓1 is highly fluctuated. The position of the domains with
Nv = 1, 2 is indicated by arrows.

Ref. [57], quantized vortices are released from the DW in
the nonequilibrium dynamics of KHI and the spin-current
velocity (the relative velocity between superfluids in the two
domains) decreases locally, leading to suppression of further
instability. However, the possibility of the BA-core formation
due to the transverse-magnon condensation creates irregular
scenarios. The scenarios are generally complicated by the
competition between the BA-core formation and KHI.

Let us consider the nonequilibrium development from the
initial state of an flat AF-core DW. As shown in Fig. 3(b), the
tension αBA of a BA-core DW, realized for (q̃ > q̃C), is lower
than that (αAF) of an AF-core DW. Therefore, if the BA-core
formation occurs initially, the critical spin-current velocity
becomes smaller than before: Vrip(αBA) < Vrip(αAF). Then,
KHI never occurs for V− < Vrip(αBA) and the instability stops,
whereas it can occur again for V− > Vrip(αBA). On the other
hand, if ripplons rather than transverse magnons are excited
initially with V− > Vrip(αAF), quantized vortices are nucle-
ated by following the regular scenario and the spin-current
velocity is decreased to V ′

−(< V−). The BA-core formation
can occur when V ′

− > Vmag and the system follows the sce-
nario mentioned first; otherwise, for V ′

− < Vmag, the magnon
condensation never occurs and the instability stops with V ′

− <

Vrip(αAF).

VI. SKYRMION GENERATION

Finally, we present an anomalous phenomenon as an in-
cidental effect of the spin-current instability, found by the
numerical experiments of quantum KHI at a BA-core DW.
We note that the spiraling spin texture along a BA-core DW
[right panel in Fig. 1(b)] is identical to the texture along a
magnetic DW in the presence of a spin current in a magnet
[70], where the spin current is metastable, leading to the

generation of skyrmions with a unit topological charge. The
skyrmion generation from a magnetic DW in the magnetic
system corresponds to the generation of skyrmions from a
BA-core DW in our system. However, interestingly, our spin-
current instability generates not only skyrmions with a unit
charge, but also those with fractional charges.

To demonstrate this anomaly effectively, we numerically
simulate quantum KHI at a flat BA-core domain wall in a
uniform system with Um = 0 by solving the coupled GP equa-
tions for spin-1 BECs [38], the equation of motion obtained
from the Lagrangian L. The initial state [Fig. 5(a)] of the time
evolution is prepared by adding a small random fluctuation to
the DW solution (see Appendix A for details of the numerical
method). In the simplest case of quantum KHI with a small
Weber number [71], the flutter-finger pattern of DW waves
appears in the early stage [Fig. 5(b)].

An important distinction becomes apparent after the vor-
tices are nucleated from the fingertips of DW waves. The
vortex nucleation causes numerous spin singularities along the
wall at which BA-core DWs are locally broken and replaced
by AF-core DWs (the local AF state with s = 0 and �0 = 0)
[Fig. 5(c)]. Surprisingly, such singularities exist for a long
time and survive even on the DW loops released into the
bulk [see, e.g., a DW loop on the far-right side of Fig. 5(d)].
The time evolution of the whole system is demonstrated in
Appendix A, including the explanations on the attached movie
files of the animation in the Supplemental Material [72]. It can
be said that this phenomenon, caused by the density modula-
tion of the m = 0 component in the DW core, is unique to this
system and cannot occur in quantum KHI in binary BECs.

To explain the topological peculiarity of this phenomenon
compared with the magnetic system [70], we consider an iso-
lated m = ∓1 domain immersed in a sea of m = ±1 domains.
The topology of the domains is classified by computing the
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Mermin-Ho relation [73],

Ns = 1
2 Nv, (49)

between the skyrmion charge [74],

Ns = 1

4π

∫
S

dxdys · (∂xs × ∂ys),

and the vortex winding number [38],

Nv = M

2π h̄

∫
S

dxdy(∇ × vmass)z = M

2π h̄

∮
C

dr · vmass.

Here, S is the surface enclosed by a closed contour C that sur-
rounds the isolated domain, and vmass = h̄

Mn

∑
m Im(�∗

m∇�m)
is the mass-current velocity.

Although conventional skyrmions have an integer Ns under
the boundary condition s(|r| → ∞) ‖ ±ẑ, we may recognize
the existence of a fractional skyrmion with Ns = 1/2 cor-
responding to the unit vortex charge Nv = 1. We typically
observed isolated domains with Nv = 0, 1, 2 in the numeri-
cal simulations, and the corresponding skyrmions with Ns =
0, 1/2, 1 are illustrated in Figs. 5(e)–5(g). Domains of the
integer skyrmion (Nv = 2) and fractional one (Nv = 1) dis-
played in Fig. 5(d) are indicated in the phase plots of Figs. 5(h)
and 5(i). For example, the solid angle covered by the spin tex-
ture in the m = +1 domain at the lower-left side of Fig. 5(c) is
4π (i.e., Ns = 1), which can be understood from the fact that s
winds the equator once along the DW loop. In contrast, for an
isolated domain with Ns = 1

2 on the far-right side of Fig. 5(d),
s winds half of the equator along the BA-core DW. Such a
spin texture is realized in the presence of a spin singularity
at the local AF state [see, also, Fig. 5(f)], where an energy
divergence due to the spin singularity is avoided locally by
removing the spin density with n0 = |�0|2 = 0 while the den-
sity n stays finite. Since BA-core DWs are destroyed locally
with spin singularity in a fractional skyrmion [Fig. 5(f)], a
fractional skyrmion will be observed as an image of “C” in the
atomic cloud of the m = 0 component or the transverse-spin
distribution, which is distinct from a conventional skyrmion
that forms “O” [Figs. 5(e) and 5(g)] (see, also, movie S4 in
the Supplemental Material [72]).

Fractional skyrmions with spin singularity are in contrast to
the meron or Mermin-Ho texture [75–83]. The former exists
as an isolated object, whereas fractional charges in the latter
are embedded in a periodic texture or realized only in pairs
under the same boundary condition, e.g., recent observations
in antiferromagnets [84,85]. Fractional skyrmions may be as-
sumed to be unstable because spin singularity increases the
energy cost. However, the cost is suppressed by the local
AF (nematic-spin) order at the singularity. Furthermore, the
splitting of an integer skyrmion with Ns = 1 into two isolated
fractional skyrmions with Ns = 1/2 is preferred with respect
to kinetic energy since two isolated vortices with Nv = 1 have
lower kinetic energy than a vortex with Nv = 2 in the first ap-
proximation [51]. Energetics are of fundamental importance
because the relationship between the skyrmion charge and
the vortex state with off-centered or eccentric spin singularity
in Fig. 5(f) reminds us of that between the vortex winding
rule and the nonaxisymmetic vortex [32,48], which is related
to the stability of the eccentric skyrmions. It is noted that
similar objects have been discussed in superfluid 3He-A; “SV”

(singular vortex) in the phase diagram of vortices [75,86] (see,
also, [87–91]). Further discussion is beyond the scope of this
work.

VII. SUMMARY AND PROSPECTS

In summary, we found two types of stationary solutions
of a flat magnetic DW, called AF-core and BA-core DWs,
in the F phase of spin-1 BECs. The bosonic-quasiparticle
mechanics based on the Bogoliubov theory revealed that the
bound states of transverse magnons cause the spin-current
instability at an AF-core DW, leading to the formation of a
BA-core DW above the critical spin-current velocity for the
magnons. We also extended the low-energy effective theory of
ripplons to spinor BECs and predicted the critical spin-current
velocity of quantum KHI for the ripplons. The existence of
two criteria for the spin-current velocity makes complex sce-
narios of the nonequilibrium development in the spin-current
instability. We numerically found that quantum KHI of a
BA-core DW generates skyrmions of fractional topological
charges with off-centered spin singularity, called eccentric
fractional skyrmions. Thanks to the universal applicability of
the topological classification in terms of spontaneous sym-
metry breaking, a similar but unexplored phenomenon is
expected in different systems with the same broken symmetry.

Our theoretical predictions are expected to be examined
with current experimental techniques. As demonstrated in the
experiment of spin-current instability in the AF phase [35], a
magnetic-field gradient induces a spin current along a mag-
netic DW in the F phase, which causes the transverse-magnon
condensation and quantum KHI at the DW. Additionally, DWs
are nucleated in the nonequilibrium process of spontaneous
symmetry breaking in domain-coarsening dynamics in the
F phase [92–95] and spin currents occur in a complicated
manner there. The occurrence of KHI there is justified by the
quantum anomaly of the dynamic scaling behavior induced
by vortex sheets (DWs with spin current) [95–97]. Such a
domain-coarsening dynamics is feasible if the ferromagnetic
condensates are quenched into the deep F phase in the experi-
ment [33]. If there exist only AF-core DWs in the early stage,
the transverse-magnon condensation will be observed as the
emergence of the m = 0 component along the DW network in
the atomic cloud.
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APPENDIX A: NUMERICAL METHODS

Here, we explain the method of numerical simulations used
in this work. All simulations are done by rescaling the length,
time, and wave function by ξ , τ , and

√
nF, respectively.

First, we describe how to obtain the DW solutions in Fig. 2.
The stationary solution of a magnetic DW is obtained by
solving Eq. (7) with the steepest descent method under the
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FIG. 6. Snapshots of the phases arg �±1 and the transverse spin density s⊥ in the time evolution of Fig. 5. The display range of Fig. 5 is
shown by red broken lines in the bottom panels. Black areas in the top and middle panels represent the region of sz > 0 and sz < 0, respectively.
The transverse spin density s⊥ has a similar distribution to the background images of n0 in Fig. 5. In the later stage of the dynamics, a lot of
“notches” appear as white spots along the DWs in the distribution of s⊥, which correspond to the spin singularities in the spin density. The
number of branch cuts (jump from arg �±1 = −π to π ) terminated by an isolated domain wall is equal to Nv(= Ns/2). A spin singularity exists
along a closed DW surrounding an isolated domain, at which a branch cut is terminated. The closed DW with a spin singularity looks like a
“C” mark in the distribution plot of s⊥ or n0. No singularity happen if the domain contains an even number of terminated branch cuts. Some
examples of domains with Ns = 0, 1/2, 1 are denoted by red arrows in the lower right.

Neumann boundary condition dfm

dx |x=±Lx/2 = 0 at the system
boundary x = ± Lx

2 . The space coordinate is discretized as
x → xi = − Lx

2 + �(i − 1/2) (i = 0, 1, 2, . . . , Nx + 1) with
Nx = 1024 and � = 0.25ξ . The spatial derivative of fm is
computed with the finite difference approximation; d2 fm

dx2 is
computed by the central difference of the second order. The
solutions of AF-core DWs are obtained by imposing the con-
dition f0 = 0.

The excitation spectrum in Fig. 4 is obtained by numeri-
cally diagonalizing the full BdG equations with respect to the
eigenvector [u+1(x), u0(x), u−1(x), v+1(x), v0(x), v−1(x)]T

around the DW solution obtained above. The spatial
discretization, the spatial derivative, and the boundary
condition for the eigenvector field are done in a similar
way as described above. The numerical diagonalization is
performed with the double precise by using the Intel Fortran
Compiler with the Linear Algebra PACKage (LAPACK).

The result of Fig. 5 (Fig. 6 and the movie files; see
Supplemental Material [72]) is obtained by solving the
GP equation in two dimensions. The space coordinate is
discretized as (x, y) → (xi, y j ) = (− L

2 + �(i − 1/2),− L
2 +

�( j − 1/2)) (i, j = 0, 1, 2, . . . , N + 1) with N = 512 and
� = 0.5ξ . Here, we impose the periodic boundary con-
dition in the y direction as �m(xi, yN+1) = �m(xi, y1) and
�m(xi, y0) = �m(xi, yN ). The spatial derivative is done in a
similar way as described above. The initial state of the time
evolution is prepared by the steepest descent method. The
time t is discretized as t = �tnt with �t = 0.0025τ . A small
random fluctuation is added to the initial state to seed the
instability. The time evolution is computed by utilizing the
Crank-Nicolson method.

APPENDIX B: INSTABILITY DYNAMICS
OF A BA-CORE DW

Here, we explain the detailed information on the numerical
result of the spin-current instability demonstrated in Fig. 5.
The images in Figs. 5(a)–5(d) are magnified snapshots of a
numerical simulation. Figure 6 shows the time evolution of
the phases arg �±1 and the transverse spin amplitude s⊥ in the
same simulation.
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The attached movie files (see Supplemental Material [72])
demonstrate the animations of different quantities made with
51 snapshots from t/τ = 0 to t/τ = 1250 in the same sim-
ulation. The box size is the same as the system size of the
simulation. Figures 5(a)–5(d) are magnified images of some
snapshots in the animation of movie S1. The top (arg �−1),
middle (arg �+1), and bottom (s⊥) panels in Fig. 6 are some
snapshots in the animations of movie S2, movie S3, and movie
S4, respectively. The plot area of Figs. 5(a)–5(d) is implied by
dashed squares in the bottom panels in Fig. 6.

Some isolated domains with different topological charges
are implied by arrows in the bottom right in Fig. 6. Accord-
ing to Eq. (49), we can convert the number Nv of branch
cuts (jump from arg �±1 = −π to π ), which are terminated
by an isolated domain, to the skyrmion charge Ns(= 2Nv)

of the domain. We see that a branch cut passes through an
isolated domain corresponding to the case of Ns = 0 from the
comparison between the distributions of arg �+1 and s⊥ at
t/τ = 1100. Two branch cuts end at a domain by forming a
conventional skyrmion with Ns = 1. An isolated domain that
terminates a branch cut corresponds to an eccentric fractional
skyrmion with Ns = 1/2. The spin singularities appear in the
form of cut points of a BA-core DW or white spots in the dis-
tribution of s⊥ in the bottom panels of Fig. 6. According to this
property, an eccentric fractional skyrmion will be observed as
an image of “C” in the atomic cloud of the m = 0 component
or the distribution of s⊥. In contrast, skyrmions with integer or
zero charges make images of “O.” This contrasting behavior
between the novel and conventional skyrmion is easily ob-
served in movie S4 (see Supplemental Material [72]).
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