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Engineering quantum phases with spontaneously broken symmetries is a major goal of research in different
fields. Trapped ultracold Rydberg-excited atoms in optical lattices are a promising platform for realizing quantum
phases with broken lattice translational symmetry since they are interacting over distances larger than the lattice
constant. Although numerous theoretical works on trapped Rydberg-excited gases have predicted such phases,
in particular, density wave or supersolid phases, their experimental observation proves to be difficult due to
challenges such as scattering processes and the limited experimentally achievable coupling strength. Most of
these previous studies have focused on isotropically interacting gases dressed with Rydberg s states, while the
effect of anisotropic interactions due to Rydberg-excited p states in trapped quantum gases remains much less
investigated. Additionally, it was shown that the excitation scheme used to excite Rydberg p states possesses
advantages regarding achievable coupling strengths and limitation of scattering processes compared to its s-state
counterpart, which makes the investigation of Rydberg p-state dressed quantum gases even more interesting. In
the present work we study the extended two-component Bose-Hubbard model, realized with a bosonic quantum
gas with Rydberg-excited p states trapped in an optical lattice, within the Gutzwiller mean-field theory. We
compute the ground-state phase diagram and investigate its different regimes. By comparison to the phase
diagram of the isotropic case, we find the anisotropic interaction to be more advantageous for the observation of
supersolid phases.
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I. INTRODUCTION

Due to their exaggerated properties, atoms coupled to
Rydberg states are prominent candidates for a manifold of
experimental setups, such as quantum computation [1–3] and
quantum simulation of lattice spin models [4–6] in optical
lattices and tweezers. Longer-range interactions of atoms in
optical lattices can be induced by the van der Waals in-
teraction, which is introduced through coherent coupling of
trapped atoms to Rydberg-excited states. Since the length
scale of the long-range interaction is typically larger than the
lattice constant, novel quantum phases such as lattice super-
solids, phases with simultaneously broken lattice translational
and U(1) symmetry [7–10], appear to be within reach.

Although theoretical studies of interacting atomic lattice
gases dressed with Rydberg s states found parameter regimes
for which supersolids should be experimentally observable
[11–13], different obstacles have so far made the experimental
realization of supersolids challenging. The lifetimes of these
systems are limited through scattering processes and were
shown to be much smaller than the typical single-particle
lifetime due to collective loss processes [4,14,15]. Further-
more, an additional ac Stark shift arising from the coupling
laser impedes possible coherent tunneling of particles and
shifts the necessary hopping amplitude to unreasonably high
values [16,17].
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One possibility to address these challenges is through co-
herent coupling to Rydberg p states. While one substantial
difference between Rydberg s states and p states is the geome-
try of the induced long-range interaction, which is anisotropic
between Rydberg p-state atoms [18–20], a crucial benefit lies
in the corresponding coupling scheme. Coupling a hyperfine
ground state to a Rydberg s state requires coupling schemes
with at least one intermediate state, due to the total angular
momentum conservation according to the dipole selection
rule, and thus several coupling lasers, which leads to smaller
achievable coupling strengths and additional losses [21,22]. In
contrast, the single-photon coupling scheme allows for larger
achievable coupling and ratio between interaction strength
and scattering rates, which is promising for the observation
of supersolid quantum phases.

In this work we investigate a bosonic quantum gas with
coherent coupling to a Rydberg p state trapped in a two-
dimensional optical lattice. In Sec. II we introduce the
extended two-component Bose-Hubbard model, explain its
Rydberg-physics-related features, and discuss its tunability
and limitations. We then introduce the Gutzwiller mean-
field theory and its application to the previously defined
Hamiltonian. We discuss the validity of the mean-field ap-
proximations, which are used to decouple nonlocal terms
and to derive a set of effective single-site Hamiltonians. We
conclude that within the parameter regime of the subsequent
calculations, the applied mean-field approximations are valid
and yield qualitatively good results.

In Sec. III we discuss and compare the various ground-state
phase diagrams obtained for the extended two-component
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FIG. 1. (a) Orientation of the magnetic field given by the angle
θ0. The magnetic field B serves as a reference axis for the anisotropic
interaction. (b) Interaction V (r, θ − θ0 ) for the full range of relative
angle θ − θ0, which is V0 at θ − θ0 = nπ and approximately V1 at
θ − θ0 = (m + 1/2)π with n, m ∈ N for V0 � V1. (c) Schematic of
the processes corresponding to the different terms in the Hamiltonian
(1). The particles are subject to on-site potentials given by μ and
�; on-site interactions with strengths Ug, Uge, and Ue; hopping with
strengths Jg and Je; and interstate conversion with Rabi frequency
�. (d) Single-photon coupling scheme characterized by the Rabi
coupling �, the transition frequency ω0, the laser frequency ωl , and
the detuning �.

Bose Hubbard model. In addition to the Mott-insulating and
superfluid phases, we find spatially modulated phases, e.g.,
density wave and supersolid phases, which arise from the
long-range interaction. Furthermore, we obtain a devil’s stair-
case of density wave phases and find a two-stage melting of
density wave phases. Finally, we compare the ground-state
phase diagram for nontilted anisotropic, tilted anisotropic,
and isotropic interactions and find a wider parameter regime
for the supersolid phases in the case of nontilted anisotropic
interactions.

II. SYSTEM AND METHOD

In this work we consider a bosonic quantum gas trapped
in a two-dimensional optical lattice, e.g., 87Rb [23] or 133Cs
[24,25], coherently coupled to a Rydberg p state through an
external coupling laser. The single-photon coupling scheme
in the single-atom basis is characterized by the Rabi coupling
� and the detuning � = ω0 − ωl , the difference between
the transition frequency ω0 and the laser frequency ωl (see
Fig. 1). We study the corresponding extended two-component
Bose Hubbard model. The corresponding Hamiltonian can be
written as

Ĥ = Ĥg + Ĥe + Ĥge, (1)

with the electronic ground-state (excited-state) Hamilto-
nian Ĥg (e) and the interstate Hamiltonian Ĥge. The atoms
in the electronic ground state are best described by the

single-component Bose-Hubbard model

Ĥg = −Jg
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with the ground-state hopping amplitude Jg, the on-site in-
teraction between ground-state atoms with strength Ug, and
the chemical potential μ. The Hamiltonian of the electronic
excited state is

Ĥe = −Je
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with the detuning � and the anisotropic van der Waals
interaction

Vi j = V0sin4(θ − θ0) + V1

|ri − r j |6 , (4)

whose strength is characterized by V0 and V1 [19]. The
reference axis of the anisotropic interaction is given by the
reference angle θ0 and is experimentally realized and tunable
through an external magnetic field B (see Fig. 1) [20,21,26].

The interstate Hamiltonian

Ĥge = Uge
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(5)

describes an interstate on-site interaction with strength Uge

and the coherent driving between the ground state and the
Rydberg-excited state with Rabi coupling �. The detun-
ing and the coherent coupling term are obtained within
the rotating-wave approximation (RWA) [27–29]. The RWA
holds for |�| � |ω0 + ωl |, which is typically satisfied in
experiments where values of the detuning are orders of mag-
nitude smaller than both laser and transition frequencies.

As the dimension of the many-body Hilbert space grows
exponentially with the number of atoms considered, a method
for reducing the computational effort and making the calcu-
lation feasible is required. In this work we treat the bosonic
lattice system within the Gutzwiller mean-field theory to ex-
plore the ground-state phases of the model [30–32]. Within
this theory, the many-body ground-state wave function |�〉
factorizes as a product |�〉 = ∏

i |�〉i over single-site wave
functions |�〉i such that we only need to self-consistently
solve a set of single-site Schrödinger equations Ĥi|�〉i =
Ei

0|�〉i, coupled through mean fields, in order to determine
the many-body ground state. To this end, we need to split the
Hamiltonian of the full system as a sum Ĥ = ∑

i Ĥi, where the
single-site Hamiltonians Ĥi have yet to be explicitly defined.
Although the local terms of the Hamiltonian Ĥ can be directly
split into single-site parts, we need to apply mean-field ap-
proximations to decouple the nonlocal terms, i.e., the hopping
and the longer-range interaction.

Within the Gutzwiller mean-field theory we decouple the
nonlocal kinetic terms, while the Hartree approximation is
applied to the long-range interaction term. For both approx-
imations, we expand an operator Ô ∈ {b̂ν

i , n̂e
i } through its

expectation value as Ô = 〈Ô〉 + δÔ, where δÔ = Ô − 〈Ô〉
is the quantum fluctuation. The approximation is made by
neglecting quantum fluctuations of second order or higher,
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i.e., (δÔ)n ≈ 0 for n � 2. We can thereby decouple the
Hamiltonian Ĥ into the single-site Hamiltonians
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with the occupation number operator n̂ = n̂g
i + n̂e

i , the
mean fields ξν

i = ∑
j∈NN(i)〈b̂ν

i 〉 with ν ∈ {g, e} and ηi =
2

∑
j �=i Vi j〈n̂e

j〉, and the energy offset Eoff
i resulting from

the decoupling (see the Appendix, Sec. 1). Each single-site
Hamiltonian and therefore its ground state depends on ex-
pectation values evaluated on other sites, which leads to
self-consistency conditions coupling all single-site problems.
Nevertheless, due to the reduced Hilbert space of each single-
site problem, numerical simulations become feasible even for
large lattices.

The validity of the Gutzwiller mean-field theory becomes
arguable in the vicinity of phase transitions. Even though in-
corporating the neglected quantum fluctuations can shift phase
boundaries, the mean-field approximation has been shown to
qualitatively describe phase boundaries in ground-state phase
diagrams well [33].

In order to check the validity of the Hartree approximation,
we determine the interaction potential of two atoms at a dis-
tance r, each coupled to a Rydberg-excited p state. It typically
takes the form of a soft-core potential and is analytically
given by

U (r) = U0

1 + (r/rc)6
, (7)

with the soft-core height U0 and the characteristic range of the
interaction rc. The soft-core potential is numerically obtained
through computation of the ground-state energy of the corre-
sponding two-body Hamiltonian. Since the Hamiltonian can
be treated either exactly or within the Hartree approximation,
the calculation of the soft-core potential provides a valuable
platform for benchmarking the Hartree approximation (see
the Appendix, Sec. 2). We compute the exact soft-core po-
tential Uex and the soft-core potential Uap within the Hartree
approximation, which we compare for varying detuning at
θ − θ0 = π/2 (see Fig. 2). In general, the soft-core poten-
tial obtained within the Hartree approximation is larger than
the exact soft-core potential. While the difference becomes
smaller with increasing detuning �/�, negative detunings
lead to a more significant mismatch. Furthermore, we do
not find a change in the quality of the approximation upon
variation of θ − θ0 (see the Appendix, Sec. 2). In previ-
ous calculations on Rydberg-excited gases in optical lattices,
ground-state phase diagrams computed within the Gutzwiller
mean-field theory with Hartree decoupling were in qualita-
tively good agreement with results obtained by other methods
[12,13]. We therefore expect the Gutzwiller mean-field theory
to deliver qualitatively, and in some regimes also quantita-
tively, accurate results.

In the ground-state phase diagram we expect different
homogeneous and inhomogeneous phases with a distinctive
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FIG. 2. (a) Exact soft-core potential Uex of the two-body
Hamiltonian (dotted line) and the soft-core potential Uap within the
Hartree- approximation (dashed line) for detuning �/� = 1 and
θ − θ0 = π/2. (b) Ratio Uap/Uex between the exact and the approx-
imated soft-core potentials for various detunings. While for positive
detuning both soft-core potentials are in good agreement, we obtain
a pronounced difference for small absolute or negative values of the
detuning.

spatial distribution of local observables. In order to identify
the different phases within the parameter space considered,
we determine the spatial distribution of the condensate order
parameter φν and the occupation number nν for both the
electronic ground state (ν = g) and the Rydberg-excited state
(ν = e), as well as their spatially averaged mean values φ̄ν and
n̄ν (see the Appendix, Sec. 3).

III. GROUND-STATE PHASE DIAGRAMS

We calculate the ground-state phase diagrams of the
Hamiltonian (1), which possesses a number of parameters.
While most of these parameters are highly tunable, some are
set by intrinsic properties of Rydberg states and the interaction
between them. First, we assume the relevant timescales of
the excited state to be primarily given by the Rabi frequency
of the coherent coupling and by the long-range interaction
strength. The contribution of the excited state to the kinetic
energy is expected to be small, which motivates us to assume
a vanishing hopping rate, i.e., Je = 0. Furthermore, the on-site
interaction between a Rydberg-excited atom and another atom
in either state is set by the quantum Zeno effect [34,35].
Atoms in the presence of two-body loss processes exhibit
hard-core behavior in the limit of strong loss. For two atoms
of which at least one is in a Rydberg-excited state the for-
mation of molecular ions due to their large scattering cross
sections has been observed [36,37]. Since these molecules are
not trapped by an optical lattice and are therefore lost upon
formation, we set the on-site interaction of the excited state
to large values, i.e., Uge,Ue → ∞. The other parameters of
the Hamiltonian can be either directly or indirectly tuned,
for example, through Feshbach resonances and varying the
lattice depth [38,39]. Unless mentioned otherwise, we set
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the reference axis to be the y axis, i.e., θ0 = 0, which is
induced experimentally through an external magnetic field
oriented in the same direction and leads to maximum inter-
action strength along the x axis. A finite value of the reference
angle θ0 ∈ (0, π/2) implies a reference axis different from the
coordinate axis.

In the following, we present the results obtained via the
single-site Hamiltonian (6). Within periodic boundary condi-
tions, we compute the many-body ground state of finite-size
systems with different superlattice unit cells for a fixed set of
parameters (see the Appendix, Sec. 3). Through comparison
of their energies, we identify the true many-body ground
state of the system as the state with the lowest energy. We
perform the above-mentioned steps for every point in the con-
sidered parameter spaces and thus obtain the upcoming phase
diagrams.

A. The Jg-μ phase diagram

We first investigate the model by varying the (rescaled)
hopping amplitude Jg/� of the ground state and chemical po-
tential μ/� and set the other parameters of the Hamiltonian to
Ug/� = 0.1, Uge/� = 1, Ue/� = 1000, �/� = 2, V0/� =
1000, V1/� = 1, θ0 = 0, and Je/� = 0. We obtain a ground-
state phase diagram with phase boundaries that resemble the
ones of the phase diagram of the single-species Bose-Hubbard
model (see Fig. 3). The Mott-insulating (MI), superfluid (SF),
and a vacuum regimes are replaced, however, by different den-
sity wave (DW) phases (insulating phases with broken lattice
translational symmetry) and a supersolid (SS) regime with
a finite condensate order parameter and broken translational
symmetry, both induced by the long-range interaction. As
expected, the anisotropic interaction leads to striped phases.
Since in Fig. 3 the detuning and the long-range interaction
strengths are kept fixed, the crystalline structure does not vary
within the parameter space considered. By taking a closer
look at the spatial distribution of the observables within the
different regimes (see Fig. 3), we identify two types of phases
based on their density wave structure: Phases of the first type
(denoted by I) have the maximum occupation numbers of
both species (ground state and Rydberg-excited state) at the
same site, while the other sites are barely occupied. These
phases usually emerge when the chemical potential μ/� is
negative, since in that case finite occupation of the electronic
ground state only emerges due to the coherent coupling to
the excited state. On the other hand, phases of the second
type (denoted by II) have complementary occupation numbers
of both species on each site and generally occur for positive
chemical potential μ/�. While the chemical potential dictates
the type of phase at zero hopping, we also see that finite
hopping leads to a transition to a SS II regime, which extends
even to negative chemical potentials for large enough hopping
amplitude. Interestingly, the SS II phase retains the same type
of density wave structure along the phase transition.

We calculate the mean condensate order parameter of the
ground and excited states upon varying μ and Jg, respectively,
and identify second-order (continuous) phase transitions (see
Fig. 4). The phase boundaries between the insulating regimes
with φ̄ν = 0 and the regime of finite condensate order param-
eter, i.e., φ̄ν �= 0, are of second order. This is similar to the
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FIG. 3. The Jg-μ phase diagram for the anisotropic long-range
interaction at Ug/� = 0.1, Uge/� = 1, Ue/� = 1000, �/� = 2,
V0/� = 1000, V1/� = 1, θ0 = 0, and Je/� = 0. The topology of
the phase boundaries resembles the ones of the single-species
Bose-Hubbard model, although the vacuum, the Mott insulator, and
the superfluid regime have been replaced by two distinct density
wave regimes (DW I and DW II) and a supersolid (SS II) regime. The
indices denote the superlattice area ASL and the spatially modulated
density is characterized by stripes, parallel to the reference axis in
orientation, of excited-state atoms. The distance between stripes does
not change here, since the parameters of the Hamiltonian relevant for
the Rydberg state are kept fixed.

MI-SF transition of the Bose-Hubbard model, which is also
of second order for spinless bosons [40].

B. The Jg-� phase diagram

We now investigate the parameter space spanned by the
(rescaled) hopping amplitude Jg/� of the ground state and
detuning �/�, since these parameters are experimentally
easily tunable. We set the other parameters of the Hamilto-
nian to Ug/� = 0.1, Ue/� = 1, Ug/� = 1000, V0/� = 1000,
V1/� = 1, Je/� = 0, and μ/� = −0.25. We first investigate
the frozen limit (Jg = 0), since we expect a variation of the
detuning to lead to a manifold of insulating inhomogeneous
phases arising from the long-range interaction, and then move
to the itinerant regime (Jg/� > 0), in which the ground states
are determined by the interplay between atomic motion and
crystalline ordering.

1. Frozen limit Jg = 0

The frozen limit (Jg = 0) describes motionless Rydberg-
excited atoms trapped in an optical lattice. Thus we expect
a vanishing condensate order parameter and therefore crys-
talline structures of localized particles as the ground states of
the corresponding Hamiltonian [19]. Due to the anisotropic
long-range interaction between atoms, we also expect striped
phases oriented parallel to the reference axis of the anisotropic
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FIG. 4. Mean ground-state order parameter φ̄g (dark blue line)
and excited-state order parameter φ̄e (light red line) at (a) fixed
hopping amplitude and (b) fixed chemical potential. The DW-SS
phase transition is of second order upon the parameter change, as
the mean observables exhibit a kink at the transition.

interaction, since the interaction is minimal in this direction.
Since we expect the crystalline structures of the ground states
to change through the variation of the detuning, we introduce
the superlattice unit cell area ASL as a means to identify
either sparse or dense packing of the excited-state atoms in
the system (see the Appendix, Sec. 3). For striped phases,
the superlattice unit cell area quantifies the distance between
stripes.

We find that varying the detuning � leads to a manifold of
DW I phases with decreasing average occupation number n̄e

of the excited state as the detuning tends to a critical value
�0 from positive values (see Fig. 5). We obtain no DW II
phases due to the negative chemical potential μ/� < 0. Note
that the superlattice unit cell area ASL increases as we decrease
the detuning. Similar sequences of DW phases have also been
found in the context of Rydberg-excited atoms with isotropic
long-range interaction and are commonly referred to as devil’s
staircases [41–43]. Although the devil’s staircase depends on
interaction strength V0 and Rabi coupling �, we find that
the occupation number ne

1 of the single occupied site in the
superlattice unit cell is approximately independent of these
parameters and converges towards a finite value in the limit
� → �0.

The critical detuning �0 marks the transition point from
the density wave regime to the vacuum state. For a given
chemical potential μ and Rabi coupling � the critical value

is analytically given by μ = −(�0 +
√

�2
0 + �2)/2 [12,13].

This results in our case in a critical detuning �0/� = −0.75,
which matches the value obtained in the numerical calcula-
tion.

2. Beyond the frozen limit Jg > 0

In this section we investigate the phase diagram beyond
the frozen limit (Jg > 0), which extends the devil’s staircase
(see Fig. 6). We obtain a DW, a SS, a SF, and a vacuum
regime of phases with various crystalline structure. While
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FIG. 5. (a) So-called devil’s staircase, (b) mean occupation of
the excited state n̄e, and (c) excited-state fraction ne

1 of the occupied
site of crystalline density wave phases obtained by variation of the
detuning � and various long-range interaction strengths V0/� at
Ug/� = 0.1, Ue/� = 1, Ug/� = 1000, V1/� = 1, Je/� = 0, and
μ/� = −0.25. While the crystalline structure and mean occupa-
tion number depend on the detuning and the long-range interaction
strength, we find that the occupation number of the excited state of
the lone occupied site within the superlattice unit cell only depends
on the detuning.

the DW regime only possesses phases of type I due to the
negative chemical potential, we find SS phases of types I
and II. For large negative detunings, the occupation number
of the excited state vanishes, which implies that translational
symmetry is not broken. While for small hopping amplitudes
the ground state is the vacuum state, large hopping rates lead
to SF phases. For positive detunings, the occupation number
of the excited state becomes finite, which results in inhomoge-
neous ground-state phases. The DW regime corresponds to the
devil’s staircase and melts into a SS regime for large enough
hopping amplitude. Similar to the devil’s staircase, the SS
regime possesses a manifold of type II phases with different
crystalline structure. The SF regime and the SS II phases
are separated by a SS I phase, which consists of a quantum
phase featuring stripes of excited particles separated by a
stripe where only the finite ground-state occupation number
is finite. The phase transitions from a SF to a SS, as well as
the phase transitions within the SS regime, all shift to larger
detunings as the hopping amplitude increases. The phase di-
agram is consistent with the previously observed two-stage
melting of solid phases in Rydberg-excited systems [10,44–
46]. An initial DW phase obtained in the frozen limit goes
through two stages of melting upon increasing the hopping
amplitude. The first melting consists of a transition from a
DW to a SS, which causes only a fraction of the particle to
delocalize and thereby maintains the initial crystalline struc-
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FIG. 6. The Jg-� phase diagram for the anisotropic long-range
interaction at Ug/� = 0.1, Ue/� = 1, Ug/� = 1000, V0/� = 1000,
V1/� = 1, Je/� = 0, and μ/� = −0.25. We find a density wave,
a supersolid, a vacuum, and a superfluid regime. The SS regime is
composed of SS I and SS II phases with different spatial modulations.
The subscript indices denote the superlattice area ASL.

ture. The second melting corresponds to a transition from a
SS to a SF, where the increasing hopping amplitude leads to a
completely delocalized homogeneous state.

We obtain both first-order and second-order phase transi-
tions within the phase diagram (see Fig. 7). The two phase
transitions associated with the melting process, namely, the
DW-SS and the SS-SF transitions, are second order, which
is consistent with results obtained in the previous works.
Interestingly, we find that the system undergoes first-order
phase transitions between both melting stages within the SS
regime. Since the phases within this regime possess different
superlattice areas with discrete values, the transition from
one SS phase to another leads to a jump of the spatially
averaged observables. We identify these jumps as first-order
phase transitions between the various SS phases when either
the detuning or the hopping amplitude is increased.

Phase diagrams with similar regimes have been ob-
tained in previous calculations for Rydberg-excited bosons
with isotropic long-range interaction trapped in square and
triangular optical lattices [12,13], though the emerging crys-
talline structures highly depend on the lattice and interaction
geometries.

In the following, we further investigate the role of the refer-
ence axis and the interaction geometry. We therefore perform
calculations with tilted anisotropic interaction (θ0 = π/4) and
isotropic interaction (V0/� = 0, V1/� = 1000).

The phase diagrams obtained with tilted anisotropic in-
teraction and isotropic interaction exhibit features similar to
the phase diagram obtained with anisotropic interaction (see
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FIG. 7. Mean ground-state order parameter φ̄g (dark blue line)
and excited-state order parameter φ̄e (light red line) at (a) fixed detun-
ing and (b) fixed hopping amplitude. First-order phase transitions are
identified through jumps of the mean observables (solid vertical line)
and second-order transitions are identified through kinks (dashed
vertical line).

Fig. 8). Both phase diagrams show evidence of a two-stage
melting process and although the DW-SS boundary appears
to be only slightly affected, we find a substantial effect of
the choice of the interaction geometry on the location of the
SF-SS boundary.

When the reference angle is set to θ0 = π/4, the long-
range interaction strength is maximum along one diagonal,
which leads to striped phases along the perpendicular diagonal
direction (see Fig. 12 in the Appendix, Sec. 4). The increased
distance between two sites within a stripe impedes coherent
hopping, which renders the SF energetically more favorable
and thus shifts the SF-SS boundary to larger detunings for
increased hopping amplitude.

An isotropic interaction, i.e., V1/� = 1000 and V0/� = 0,
leads to unique crystalline structures composed of equidistant
excited particles (see Fig. 13 in the Appendix, Sec. 4). Since
the SS phases closest to the SS-SF boundary are checkerboard
ordered, which is not as favorable as stripes with respect to
coherence, the boundary is shifted as well.

We conclude that striped phases along one coordinate axis
of the square lattice are most favorable for the coexistence of
finite condensation and crystalline ordering.

IV. CONCLUSION

We computed the ground-state phase diagrams of
the extended two-component Bose-Hubbard model with
anisotropic, tilted anisotropic, and isotropic long-range inter-
actions and found SF, DW, and SS phases as ground states
for the appropriate choice of parameters. The emerging crys-
talline structure heavily depends on the type of interaction. We
also observed that the transition between homogeneous phases
and phases with broken translational symmetry shifts to larger
detunings as the hopping amplitude increases. By comparison
of the phase diagrams, we notice this shift to be largest for
the isotropic interaction. We attribute this to the geometry
of the crystalline structure, since striped phases, obtained
for the anisotropic interaction, are more advantageous than
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FIG. 8. Phase boundaries between the various regimes obtained
for anisotropic (solid line), isotropic (dotted line), and tilted (dashed
line) anisotropic long-range interactions at Ug/� = 0.1, Ue/� =
1, Ug/� = 1000, Je/� = 0, and μ/� = −0.25. While the DW-
SS phase transition does not shift significantly, we see a more
pronounced difference between the three types of long-range inter-
actions regarding the SS-SF phase transition. For a discussion of the
full phase diagrams in the isotropic and tilted anisotropic cases, see
the Appendix, Sec. 4.

checkerboard-ordered phases for the coexistence of coherent
tunneling (leading to a condensate) and spontaneously broken
translational symmetry.

We believe that the advantages of the anisotropic interac-
tion highlighted in this work, combined with the additional
advantages of the single-photon Rydberg excitation scheme,
make the dressing with Rydberg p states a promising direction
for further experimental research on Rydberg-excited quan-
tum gases in optical lattices.
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APPENDIX

In the following we discuss technical details of the
Gutzwiller mean-field theory, the Hamiltonian used for the
benchmark of the Hartree approximation, the observables cal-
culated for the identification of regimes and phase transitions,
and the phase diagrams corresponding to the tilted and the
isotropic interaction.

1. Mean fields in the Gutzwiller theory

In our model different lattice sites are coupled through
the ground-state hopping, the excited-state hopping, and the
long-range interaction. Within the Gutzwiller mean-field the-
ory, we treat the full system as a set of individual lattice

sites coupled to self-consistent mean fields instead of other
lattice sites. We achieve this by expanding the operators in-
volved in the previously mentioned processes in terms of their
quantum fluctuations. For the hopping processes, we expand
b̂i = 〈b̂i〉 + δb̂i and rewrite the hopping term as

b̂†
i b̂ j = b̂†

i 〈b̂ j〉 + b̂ j〈b̂†
i 〉 − 〈b̂i〉〈b̂†

j〉 + δb̂†
jδb̂i

≈ b̂†
i 〈b̂ j〉 + b̂ j〈b̂†

i 〉 − 〈b̂i〉〈b̂†
j〉,

(A1)

neglecting terms which are quadratic in the quantum fluctua-
tions δb̂ j and δb̂†

j . By taking into account the sums of the full
extended Bose-Hubbard model (discussed in the main text),
we rearrange the terms∑

〈i j〉
(b̂†

i b̂ j + H.c.) =
∑
〈i j〉

(2b̂†
i 〈b̂ j〉 − 〈b̂i〉〈b̂†

j〉 + H.c.)

=
∑

i

(b̂†
i

∑
j∈NN(i)

〈b̂ j〉 − 1
2 〈b̂†

i 〉
∑

j∈NN(i)

〈b̂ j〉 + H.c.),
(A2)

where we split the sum over i and j as
∑

〈i j〉 = 1
2

∑
i

∑
j∈NN(i)

and NN(i) denotes the nearest neighbor of site i. Even though
the hopping term now depends on the neighboring observables
〈b̂ j〉, it has become a local term and its strength is proportional
to the mean field ξν

i = ∑
j∈NN(i)〈b̂ν

i 〉, with ν ∈ {g, e}. The
second term within the sum, a constant energy offset given
by the mean fields, reads Ehop

i = 1
2

∑
ν[Jν〈(bν

i )†〉ξν
i + H.c.].

The long-range interaction term is decoupled in a similar
fashion. We rewrite the occupation number operator using
the quantum fluctuation δn̂i = n̂i − 〈n̂i〉 and use the Hartree
approximation as

n̂in̂ j = n̂i〈n̂ j〉 + n̂ j〈n̂i〉 − 〈n̂i〉〈n̂ j〉 + δn̂ jδn̂i

≈ n̂i〈n̂ j〉 + n̂ j〈n̂i〉 − 〈n̂i〉〈n̂ j〉.
(A3)

Within the full Hamiltonian (discussed in the main text), the
long-range interaction term can then be reorganized as

∑
i

∑
j �=i

Vi j n̂
e
i n̂e

j =
∑

i

(
2n̂e

i

∑
j �=i

Vi j
〈
n̂e

j

〉 − 〈
n̂e

i

〉 ∑
j �=i

Vi j
〈
n̂e

j

〉)
,

(A4)

where we define Vi j = [V0sin4(θ − θ0) + V1]/|ri − r j |6 for
the sake of simplicity. The long-range interaction term is now
decoupled and effectively resembles a local potential given by
the mean field ηi = 2

∑
j �=i Vi j〈n̂e

j〉. As for the hopping term,

we obtain a constant energy shift E int
i = − 1

2 〈n̂e
i 〉ηi.

Finally, we combine both energy shifts to Eoff
i = Ehop

i +
E int

i . This constant offset does not affect the self-consistency
procedure of the numerical simulation, but is calculated after
the ground state is reached in order to obtain the full ground-
state energy.

2. Hartree benchmark calculation

Within the RWA, the energy eigenstates of two atoms in
the electronic ground state coherently coupled to an electronic
excited state with Rabi coupling � and separated by distance
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FIG. 9. (a) and (b) Soft-core potential Uex obtained by exact
diagonalization of the two-body Hamiltonian (dotted line) and soft-
core potential Uap within the Hartree approximation (dashed line)
for different angles θ at V0/� = 1000. (c) and (d) Ratio Uap/Uex

between the exact and the approximated soft-core potentials. The
approximated soft-core potentials obtained are larger than the ones
obtained with the exact Hamiltonian. While the difference is small
for positive detunings (�/� = 1), it becomes more important in
the regime of negative detunings (�/� = −1/3). The angle affects
the characteristic range rc, but does not influence the quality of the
approximation.

r are given in the two-body basis {|gg〉, |ge〉, |eg〉, |ee〉} by the
Hamiltonian

Ĥ =

⎛
⎜⎜⎝

0 �
2

�
2 0

�
2 −� 0 �

2
�
2 0 −� �

2
0 �

2
�
2 −2� + V (r, θ )

⎞
⎟⎟⎠, (A5)

with the van der Waals interaction strength V (r, θ ) =
V0sin4(θ )/r6 between atoms 1 and 2. We omit the residual
isotropic part of the interaction for the sake of simplic-
ity. Through analytic derivation of the ground-state energy
within perturbation theory, we obtain an effective soft-core in-
teraction potential with height U0 = (� − √

�2 + 2�2)/2 +√
�2 + �2 and characteristic range of the interaction rc(θ ) =

[V0sin4(θ )/2|�|]1/6 [22]. Numerical computation of the
ground-state energy through exact diagonalization yields an
almost identical soft-core potential.

Within the Hartree approximation, the self-consistency
condition makes the derivation of an analytic expression for
the soft-core potential impossible. Thus we determine the sys-
tem’s ground-state energy numerically. After decoupling the
long-range interaction term, we obtain a separate Hamiltonian
for each particle in the respective {|g〉, |e〉} basis. For atom
i ∈ {1, 2} it is given by

Ĥ i
Hrt =

(
0 �/2
�
2 −� + V (r, θ )ne

j

)
+ E (ne

j ), (A6)

FIG. 10. Definition of the underlying superlattice of the crys-
talline structure. The superlattice is defined by two spanning vectors
a1 and a2. As a measure for identifying quantum phases and differen-
tiating crystalline structures, we determine the superlattice unit cell
area ASL = |a1 × a2|. In the nontilted anisotropic case the superlat-
tice unit cell area quantifies the distance between Rydberg-excited
stripes and in the isotropic case the distance between Rydberg-
excited particles. We also define the excited-state fraction ne

1 of the
single occupied site in a superlattice unit cell.

with the excited-state occupation number ne
j = 〈n̂e

j〉 of
the other atom j and the energy offset E (ne

j ) resulting
from the Hartree approximation. Both effective single-atom
Hamiltonians depend on the energy eigenstates of the respec-
tive other atom via the occupation number ne

j , which renders
the method self-consistent.

We determine the soft-core potential for various values
of the detuning �/� and the angle θ , while keeping the
interaction strength V0/� = 1000 fixed (see Fig. 9). The soft-
core height obtained by exact diagonalization the two-body
Hamiltonian fits with the height U0 obtained through analytic
calculation. Although the soft-core potential depends on the
angle θ , we find that varying θ only changes its characteristic
range rc, which is in agreement with its analytic expression.
We therefore conclude that the quality of the Hartree approx-
imation only depends on the detuning �/� (see Fig. 9).

3. Identifying phase regimes and transitions

After application of the Gutzwiller mean-field theory, the
Hamiltonian of each lattice site can be diagonalized sepa-
rately and local observables can be calculated. For lattice
site i with wave function |�〉i the relevant observables are
the condensate order parameter φν

i = 〈�|b̂ν
i |�〉i and the oc-

TABLE I. Classification of the Mott insulating, the superfluid,
the density wave, and the supersolid phase by means of the mean
condensate order parameter φ̄, the mean occupation number n̄, and
the area ASL.

Phase φ̄ n̄ ASL

MI 0 N+ 1
SF R R 1
DW 0 Q N+/{1}
SS R R N+/{1}
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FIG. 11. Devil’s staircase of crystalline density wave phases obtained by variation of the detuning � at Ug/� = 0.1, Ue/� = 1, Ug/� =
1000, V0/� = 1000, V1/� = 1, Je/� = 0, and μ/� = −0.25. Each step corresponds to a density wave phase, which has the lowest energy
for the chosen parameters. The insets show the energy E/� of DW4(10) I and DW5(11) I by variation of the detuning �. The energies of both
density wave phases cross and the superlattice area changes across the phase transition.

cupation number nν
i = 〈�|n̂ν

i |�〉i of the ground (ν = g) and
excited (ν = e) state. Although these calculations are reduced
in computational complexity compared to the original prob-
lem, finding the ground state for given parameters is no trivial
task. Inhomogeneous phases, which arise due to the long-
range interaction, require a superlattice description of the
system [12,13]. For periodic boundary conditions, the crys-
talline structure of Rydberg-excited particles can be described
by two superlattice unit cells with spanning vectors a1 and a2

(see Fig. 10). Since the spatial distribution of Rydberg-excited
particles follows the geometry of the chosen superlattice unit
cell instead of spontaneously choosing a spatial ordering, it is
necessary to perform the ground-state calculation for different
superlattices. For given parameters, the correct many-body
ground state is chosen to be the ground state corresponding
to the superlattice which yields the lowest energy.

In our calculation, we limit the choice of the spanning
vectors a1 and a2 by setting a maximum value of the super-
lattice unit cell area ASL = |a1 × a2|. We find Amax

SL = 18 to
be a reasonable cutoff, as no superlattice unit cell area of the
many-body ground states obtained through the computation
exceeds that value. Larger superlattice unit cell areas become
relevant in the devil’s staircase calculation for detunings �

closer to the critical detuning �0 than the values considered
in this work.

We then compute the phase diagram by calculation of the
many-body ground states for all considered superlattices and
comparison of their energies (see Fig. 11). In order to establish
different phases in the phase diagram, we define quantities
which allow us to distinguish quantum phases more easily.
The superlattice unit cell area already allows us to identify
dense or sparse distributions of Rydberg-excited particles in
the system. The case ASL = 1 corresponds to a homogeneous
phase. We then define spatially averaged values of differ-
ent observables within a superlattice unit cell, specifically
the mean condensate order parameter φ̄ν = ∑

i∈ASL
|φν

i |/ASL

and the mean occupation number n̄ν = ∑
i∈ASL

|nν
i |/ASL of the

ground (excited) state.

In Table I we depict the classification of the various quan-
tum phases. Differentiating between the various DW and SS
phases is especially difficult, since several quantum phases
in the chosen parameter space can share the same order

FIG. 12. The Jg-� phase diagram obtained with the tilted
anisotropic long-range interaction (θ0 = π/4) at Ug/� = 0.1,
Ue/� = 1, Ug/� = 1000, V0/� = 1000, V1/� = 1, Je/� = 0, and
μ/� = −0.25. The spatially modulated ground-state phases are
characterized by diagonal stripes of Rydberg-excited particles. While
the phase diagram resembles the one obtained for the nontilted
anisotropic interaction without tilt (see Fig. 6), it lacks a SS I phase.
The indices denote the superlattice area ASL.
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FIG. 13. The Jg-� phase diagram obtained with isotropic long-range interaction at Ug/� = 0.1, Ue/� = 1, Ug/� = 1000, V0/� = 1,
V1/� = 1000, Je/� = 0, and μ/� = −0.25. The phase diagram exhibits various regimes with different crystalline structures composed
of equidistant Rydberg-excited particles. The indices denote the superlattice area ASL. These results are in agreement with the ones
obtained in [13].

parameters despite distinct spatial distributions. Hence we
also depict the spatial distribution of the observables within
the system. This also helps us identify whether the inhomoge-
neous phases obtained are of type I or type II. As the phase
transition is obtained through the comparison of the ener-
gies of neighboring phases in the phase diagram, we identify
whether a phase transition is of first or second order via a dis-
continuous or continuous change of these mean observables
upon parameter change.

4. Phase diagrams in the tilted and isotropic case

Calculation with a finite reference angle θ0 �= 0 leads to a
phase diagram similar to the θ0 = 0 case. The most noticeable
difference is the narrower SS regime due to extended DW and
SF regimes (see Fig. 8). Since the stripes are prone to emerge
perpendicular to the reference axis due to the nature of the
long-range interaction, a tilted reference axis leads to tilted
stripes (see Fig. 12). For the case θ0 = π/4 we obtain diago-
nal stripes connecting next-nearest neighbors in the system.
The increased distance between particles reduces coherent
tunneling within a stripe and therefore renders a condensate

along the stripes energetically less favorable, which leads to
a smaller SS regime compared to the θ0 = 0 case within the
considered parameter space. This is in agreement with the
numerical results obtained.

For the isotropic interaction we find many different quan-
tum phases with unique crystalline orders (see Fig. 13).
The isotropic interaction leads to spatial distributions defined
by equidistant Rydberg-excited particles, which yields in a
square two-dimensional optical lattice interparticle distances
of d/alat ∈ {1,

√
2, 2,

√
5,

√
8, . . .}. The anisotropic interac-

tion, on the other hand, favors striped phases for which at
θ0 = 0 typical distances are d/alat ∈ {1, 2, 3, . . .} and there-
fore fewer different spatial distributions for equal lattice
system sizes.

Similar to the nontilted anisotropic case, we obtain also for
the isotropic interaction a SS2 I phase with checkerboardlike
spatially modulated density, which is the smallest inhomoge-
neous crystalline order possible. With respect to superfluid
flow of particles, this phase is not as favorable as its SS2

I striped counterpart, since it allows for coherent tunneling
in one direction. The SS2 I regime therefore narrows and
vanishes for increasing hopping amplitude.
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