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Disorder in order: Localization without randomness in a cold-atom system
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We present a mapping between the Edwards model of disorder describing the motion of a single particle
subject to randomly positioned static scatterers and the Bose polaron problem of a light quantum impurity
interacting with a Bose-Einstein condensate (BEC) of heavy atoms. The mapping offers an experimental setting
to investigate the physics of Anderson localization where, by exploiting the quantum nature of the BEC, the time
evolution of the quantum impurity emulates the disorder-averaged dynamics of the Edwards model. Valid in any
space dimension, the mapping can be extended to include interacting particles, arbitrary disorder, or confinement
and can be generalized to study many-body localization. Moreover, the corresponding exactly solvable disorder
model offers means to benchmark variational approaches used to study polaron physics. Here we illustrate the
mapping by focusing on the case of an impurity interacting with a one-dimensional BEC through a contact
interaction. While a simple wave function based on the expansion in the number of bath excitations misses
the localization physics entirely, a coherent state Ansatz combined with a canonical transformation captures the
physics of disorder and Anderson localization.
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I. INTRODUCTION

Coupling a particle to the collective excitation of a system
with many degrees of freedom can radically alter the particle’s
properties. While this paradigm was first proposed by Landau
and Pekar to describe how the interaction between electrons
and lattice phonons gives rise to quasiparticles named po-
larons [1], it has been extended to give insight into numerous
systems [2,3], including 3He-4He mixtures [4], semiconduc-
tors [5], and high-temperature superconductors [6]. Although
described by simple models such as the Fröhlich Hamiltonian
and in spite of intensive efforts [7–22], a comprehensive solu-
tion of the polaron problem still escapes theory. The advent of
ultracold atoms allows the realization of polaron models with
high tunability and introduced means to probe such models,
as evidenced by the recent observation of the Bose polaron
spectral function in impurity-boson mixtures [23–27].

In this article we bring together the seemingly discon-
nected fields of polarons and disorder. Following Anderson’s
realization that quantum interference can hinder the diffu-
sion of a particle to the point that it becomes localized
[28], the interplay of disorder and quantum physics has
been extensively studied, revealing intricate phenomena
such as magnetoresistance [29,30], coherent backscatter-
ing [31–33], and many-body localization [34–37]. While
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Anderson localization was first observed in wave systems
[38,39], the development of cold-atom physics allowed
achievement of the localization of matter waves [40,41] and
realization of the quantum kicked rotor model [42,43], which
can be mapped onto the Anderson model of disorder [44].

Here we explore an alternative way to study the physics
of disorder by establishing a mapping between the disorder-
averaged motion of a single particle evolving through a
random disorder potential and that of an impurity immersed
in a disorder-free Bose-Einstein condensate (BEC). This map-
ping, illustrated in Fig. 1, can experimentally be realized using
a mass-imbalanced mixture of light impurities immersed in a
bath of heavy bosons and provides a theoretical tool to include
disorder effects in many-body approaches.

Indeed, the theoretical descriptions of both disorder and
Bose polarons face challenges of different origins. While
the rich physics of the Bose polaron problem arises from
hard-to-capture many-body effects, performing the disorder
average for even single-particle models is challenging. As
such, a solution of the polaron problem can give insight into
the corresponding disorder model and conversely the disorder
model can serve as an exactly solvable benchmark for polaron
theories. To demonstrate this connection we show how a vari-
ational method applied to the study of impurity models can
reproduce the exact short-time solution of the corresponding
disorder model and discuss implications of the mapping for
studies of polaron and disorder physics.

II. MAPPING

Many aspects of disorder physics such as Anderson local-
ization are universal. They may depend on dimension and
symmetries but not on specific details of the Hamiltonian,
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FIG. 1. The disorder-averaged evolution, represented by the
overline, of a particle subject to a random scattering potential (left)
is mapped onto the time evolution of an impurity immersed in a
homogeneous disorder-free BEC (right).

leaving freedom as to which model of disorder one studies.
We consider the Edwards model [45,46] that describes the
evolution of a single particle through a medium of N randomly
positioned static scatterers given by the Hamiltonian

Ĥ {ri}
Ed = p̂2

2mI
+ V (r̂), V (r̂) =

N∑
i=1

v(r̂ − ri ). (1)

Here r̂ and p̂ are the position and momentum operators of the
particle and v(r̂ − ri ) is the potential created by a scatterer
at site ri. In one dimension and with contact interactions,
this model is known as the random Kronig-Penney model
(RKPM) [47,48]. The randomness comes from the positions
ri of the scatterers, distributed, e.g., uniformly in a volume �.
Denoting by 〈ô(t )〉{ri} the expectation value of an observable
ô at time t for a given realization of disorder {ri}, its disorder
average is

〈ô(t )〉 =
∫

{ri}
〈ô(t )〉{ri}, (2)

where
∫
{ri} = �−N

∫
dd r1 · · · dd rN is the normalized integral

over all possible scatterer positions ri.
We now show that for any observable ô the disorder aver-

age (2) can be computed by means of a disorder-free polaron
model. In this model one considers a system where a mobile
impurity of position r̂ and momentum p̂ is immersed in a
bosonic bath, described by the Hamiltonian

Ĥ = p̂2

2mI
+

∑
k

ωkb̂†
kb̂k +

∫
r′

v(r̂ − r′)b̂†
r′ b̂r′ , (3)

where ωk = k2/2mB describes the dispersion relation of
bosons at momentum k annihilated (created) by the operator
b̂k (b̂†

k), and mI and mB are the masses of the impurity and the
bosons, respectively. Both species interact with the density-
density interaction v(r).

To establish the mapping, we quench the system by prepar-
ing the impurity in a given wave packet |ψ〉 and the bosons in
a Bose-Einstein condensate of N noninteracting particles,

|BEC〉 = (b̂†
k=0)N

√
N!

|0〉 =
∫

{ri}
|{ri}〉, (4)

TABLE I. Correspondence between the heavy Bose polaron
model and the Edwards model of disorder.

Polaron model Disorder model

Impurity Particle
Heavy boson Static scatterer
Interspecies interaction Scattering potential
N-boson state |{ri}〉 Disorder configuration {ri}
BEC state Sampling of disorder
Quantum measurement 〈Ô(t )〉 Disorder average 〈ô(t )〉

where

|{ri}〉 = b̂†
r1

· · · b̂†
rN√

N!
|0〉 (5)

defines the state where the N bosons have well-defined posi-
tions ri. The combined state of the system reads

|�〉 = |ψ〉 ⊗ |BEC〉 =
∫

{ri}
|ψ〉 ⊗ |{ri}〉. (6)

For infinitely massive bosons mB/mI = ∞, the time
evolution of each state |ψ〉 ⊗ |{ri}〉 contributing to the su-
perposition (4) can be determined exactly. The boson kinetic
energy drops out and the total Hamiltonian commutes with
the bosonic position operators. Hence, the bosons remain in
the state |{ri}〉. Physically, the heavy bosons’ positions are
not affected by the interaction with the impurity. On the other
hand, the impurity views the N localized bosons as scatterers
at positions ri and evolves through the Edwards Hamiltonian
(1) such that the system evolves into

|�(t )〉 =
∫

{ri}

[
e−iĤ

{ri }
Ed t |ψ〉] ⊗ |{ri}〉; (7)

i.e., the system evolves as a superposition over all possible
disorder realizations.

Hence, the expectation value of any observable of the im-
purity Ô = ô ⊗ 1 with respect to the state |�(t )〉,

〈Ô(t )〉 =
∫

{ri}
〈ψ |eiĤ

{ri }
Ed t ôe−iĤ

{ri }
Ed t |ψ〉 = 〈ô(t )〉, (8)

realizes the disorder average 〈ô(t )〉 [Eq. (2)]. All states in the
superposition contribute equally to the measurement of Ô,
thus carrying out an average over all possible {ri} configu-
rations. In other words, the fact that the BEC is a quantum
superposition with equal weight of orthogonal states |{ri}〉 en-
ables disorder averaging in an analogous way using quantum
systems such as ultracold atoms. By contrast with a proposal
in Ref. [49] where disorder is simulated using pinned atoms
loaded in an optical lattice, in the present work randomness
is simulated using the quantum superposition in which the
bosons are prepared, similar to a suggestion made for spin
systems in Ref. [50].

The correspondence between the two models is summa-
rized in Table I. We emphasize that 〈Ô(t )〉 and 〈ô(t )〉 have
very different meanings. While 〈Ô(t )〉 represents a many-
body measurement of the impurity evolving through the
interaction with a bath of heavy bosons, 〈ô(t )〉 corresponds
to the measurement of the corresponding observable in the
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single-particle Edwards model averaged over many classical
realizations of disorder.

III. GENERALIZATIONS

Most assumptions made for simplicity in the proof can be
relaxed, as long as the crucial ingredient that the |{ri}〉 are
eigenstates of the Hamiltonian remains valid. In particular, the
proof applies to any dimension. Moreover, it is possible to
include arbitrary confining potentials or interactions between
the bosons and even prepare the boson bath in a mixed state.
In all these cases, the corresponding distribution of disorder
would not be uniform but set by the boson state.

Crucially, the mapping holds also for multiple particles.
That way, it is possible to simulate transport properties of real-
istic metals or to consider interactions between the impurities
in order to investigate the interplay of many-body and disorder
effects. The latter scenario was recently considered in a study
of many-body localization, where the thermalization proper-
ties of mass-imbalanced mixtures was investigated [51].

The mapping holds when the bosons have a mass exceed-
ingly large compared to the impurity. When this is not the
case, the feedback of the interaction with the impurity as well
as eventual interactions among bosons will induce dynamics
of the bath, defining a characteristic timescale τφ diverging
with mB/mI. In the disorder model, this would correspond
to dynamical disorder and cause dephasing. While this may
hinder the observation of phenomena associated with disorder,
one could conversely take advantage of the presence of τφ to
investigate the physics of dephasing in a controlled manner.
Furthermore, the paradigm of using a controlled bath as an
“auxiliary disorder” can be reversed. Should one be interested
in the bosons’ properties, the dynamics of the impurity can
give information about the time correlations of the bosons,
akin to diffusion wave spectroscopy [46,52].

IV. BENCHMARKING VARIATIONAL SOLUTIONS TO
BOSE POLARONS

So far, we have discussed how the exact mapping can
provide alternative approaches to disorder theory by enabling
the realization of disorder in a controlled manner. However,
one can also turn the correspondence around and use disorder
theory to gain insight into polaron formation by providing an
exactly solvable limit. As an example, we use the mapping to
test variational solutions of the Bose polaron problem. While
widely used, the quality of such approximations is hard to
gauge, given their nonperturbative nature as there is no small
control parameter.

Specifically, we consider the one-dimensional Bose po-
laron described by the Hamiltonian (3) where a single light
impurity of mass mI interacts with a bath of heavy bosons
of mass mB � mI through a contact interaction v(r) = gδ(r),
chosen here to be repulsive (g > 0) so that there are no boson-
impurity bound states. We turn our attention to the spread of
a particle prepared in a Gaussian wave packet ψ (r, t = 0) ∝
exp(−r2/2σ 2). As discussed in Appendix A, the correspond-
ing disorder problem can be solved exactly [48] and can thus
serve as a means to assess variational approximations in the
limit mB/mI = ∞.

FIG. 2. Time evolution of the width 
r of the impurity wave
packet. We compare the exact solution (red dash-dotted line) to
variational results based on a coherent state (yellow lower solid line)
or Chevy Ansatz (blue upper solid line). The initial width of the
wave packet σ sets a characteristic timescale tσ = 2mIσ

2/h̄ and the
interaction and boson density n are g/� = 1.5h̄t−1

σ and σn = 0.4.
The free spread obtained for g = 0 is shown for reference (black
dashed line).

Since all states are localized in the presence of disorder in
one dimension, at any finite interaction g > 0 the wave packet
is localized at t → ∞, i.e., ψ (r, t ) → exp(−|r|/2ξ ) at large
|r|, with ξ a localization length. This contrasts with the free
case (g = 0) where the wave packet spreads indefinitely. A
simple observable that distinguishes the two regimes is the
width of the wave packet 
r =

√
〈(r − 〈r〉)2〉. For a localized

wave packet, 
r remains finite at all times, while in the free
case 
r grows linearly with time.

We first compare the exact solution of the disorder model
to the Chevy Ansatz, which includes for the time-dependent
wave function |�p(t )〉 at most one bosonic excitation [53,54],
i.e.,

|�p(t )〉 = α0(t )|p〉 ⊗ |BEC〉
+

∑
q �=0

αq(t )|p + q〉 ⊗ b̂†
−qb̂0|BEC〉, (9)

where αq(t ) are time-dependent variational parameters (for
details see Appendix B).

The time-resolved spreading of the wave packet is com-
pared to the exact solution in Fig. 2. At short times, we
observe good agreement with the exact solution. This is to
be expected as, in variational methods, the deviation from
the exact solution arises from the iterated projection of the
Schrödinger equation and the associated error did not built up
at early times. This is also reflected in the evolution of the spa-
tially resolved wave packet shown in Fig. 3, where the whole
density profile is well described by the Chevy Ansatz at short
times. Since the Chevy Ansatz specifically relies on including
only a small number of excitations, it is most accurate at short
times at which the polaron cloud is still developing. However,
the Chevy Ansatz breaks down at larger times and, rather
than the localization clearly observed in the exact solution,
it predicts the indefinite spread of the wave packet.
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(a) (b) (c)

FIG. 3. Density profile |ψ (r, t )|2 as a function of r of the impurity interacting with a BEC for increasing times t : (a) t/tσ = 2, (b) t/tσ = 10,
and (c) t/tσ = 20. We compare the exact solution (red dash-dotted line) to the variational result based on a coherent state (yellow initially
lower solid line) and Chevy Ansatz (blue initially upper solid line). We use σn = 0.4 and g/� = 1.5h̄t−1

σ . The free spread (g = 0) is shown for
reference (black dashed line).

This prompts the search for more involved variational so-
lutions. We consider an Ansatz based on the Lee-Low-Pines
transformation [55] to transform into the comoving frame of
the impurity. In the new frame the impurity momentum p
represents the conserved total momentum of the complete sys-
tem. Impurity operators are hence eliminated and the bosons
evolve according to the p-dependent Hamiltonian

ĤBEC
p =

(
p − ∑

k kb̂†
kb̂k

)2

2mI
+

∑
k

ωkb̂†
kb̂k + g

�

∑
kk′

b̂†
kb̂k′ ,

(10)
which now contains a transformation-induced interaction be-
tween bosons. Here � is the system volume.

The Hamiltonian (10) has been studied using various An-
sätze [56–63]. We approximate the boson wave function
|p(t )〉 by a product of coherent states,

|p(t )〉 = e−iφp(t ) exp

(∑
k

β
p
k (t )b̂†

k − H.c.

)
|0〉 (11)

with variational parameters φp(t ) and β
p
k (t ). By considering

this wave function, we neglect the possibility of correlations
induced between the infinitely massive bosons.

The results for the wave packet are shown in Figs. 3 and
2. Again, the exact solution is well reproduced at short times,
unsurprisingly, since for a state close to the BEC, Eq. (11)
reduces to Eq. (9). However, the coherent Ansatz directly
addresses one of the shortcomings of the Chevy Ansatz by
allowing the description of a large number of bosons excited
to small momenta and thus captures localization, although ξ

is underestimated.
These examples demonstrate how the exact mapping can

help benchmark variational solutions by providing an exact
reference solution of the polaron problem. Indeed, both the
Chevy and coherent Ansätze can be improved systematically,
respectively, by allowing more bosonic excitations [10–13] or
by considering Gaussian states [64] with the mapping allow-
ing one to quantify the improvement. This equally applies to
other schemes such as non-Gaussian states or quantum Monte
Carlo [65–70].

V. APPLICATION TO THE ANDERSON TRANSITION

A long-standing question in disorder physics is that of
the Anderson transition in three dimensions (3D). Unlike in
one dimension, where all states are localized, in 3D a mo-
bility edge separates low-energy localized and high-energy
extended states [28]. The observation of the mobility edge
using the expansion of atomic matter waves through disor-
dered speckle potentials has sparked recent theoretical [71,72]
and experimental interest [41,73,74]. Discrepancies between
theory and experiments remain, however, as to the position
of the mobility edge [72,75]. On the theory side, the problem
is difficult because it requires going beyond the perturbative
weak-disorder regime and treating fully the speckle potential,
while for experiments it is difficult to prepare a sufficiently
narrow energy distribution of the atomic cloud.

The polaron-disorder correspondence can help us obtain
further insight. A specific candidate is 6Li impurities embed-
ded in 133Cs with mB/mI = 22.1 [76,77]. In particular, the
Li-Cs interaction can be tuned by a Feshbach resonance at
889 G at which the Cs-Cs interaction is small (aCsCs � 190a0).
The cloud of impurities expands through the bosonic medium
as through a disordered Edwards potential. Theorywise, one
does not have to deal with the speckle potential and can use
the arsenal developed to tackle strongly interacting problems
to study the dynamics of the mixture. Nonetheless, the ques-
tion of the determination of the mobility edge remains an
ambitious one. In order to answer it, two key aspects have
to be addressed. The first is given by the aforementioned
decoherence induced by the finite boson mass. The second
constraint is given by the lifetime of the system set, e.g., by
three-body loss. This may guide the choice of the system
and, for instance, molecular mixtures that feature suppressed
three-body loss might prove better candidates despite having
lower mass ratios than Li-Cs [78].

VI. CONCLUSION AND OUTLOOK

We have shown that a generic model of disorder, the Ed-
wards model, is mapped to the problem of a light impurity
coupled to a BEC, showing a deep connection between two
seemingly very different problems. Our exact mapping has
several implications. Experimentally, it offers an alternative
setup to investigate the Anderson transition. On the theory
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side, it can help to develop reliable approximation schemes to
describe the Bose polaron problem while conversely offering
an efficient way to bypass the challenging issue of disorder av-
eraging. However, the mapping applies to a much larger class
of models. For instance, in the case of a mixture with both
interactions and disorder, the mapping can be used to gauge
away interactions, reducing it to a single-particle problem in
the presence of two sources of disorder. Another possibility is
the realization of more complicated models of disorder, e.g.,
with long-range correlations, by tuning the boson Hamilto-
nian.

A promising avenue of research could originate from the
field-theoretic treatment of the Bose polaron problem. For in-
stance, the Chevy Ansatz is equivalent to a non-self-consistent
T -matrix approach [53,54]. It would be interesting to see how
such methods compare to the diagrammatic treatment of dis-
order and whether they can be used to shed light on either side
of the mapping. Further intriguing applications would be the
study of the interplay of disorder and interactions, especially
in lower dimensions where many-body methods such as the
use of variational matrix product states could help us under-
stand thermalization and the spread of entanglement [79–82].
A recent proposal of a different mapping between disordered
systems and interacting semimetals brings together disorder
and many-body physics in a solid-state setting [83]. While
our work focuses on cold-atom applications, the mapping pre-
sented in this work can be extended to other condensed-matter
systems. Indeed, the crucial ingredient behind the mapping
is the absence of boson kinetic energy. Hence, solid-state
realizations using as a bath a system with flat bands, such as
encountered within the quantum Hall effect, are also conceiv-
able.
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APPENDIX A: EXACT SOLUTION OF THE RKPM

The random Kronig-Penney model is defined by the one-
dimensional Hamiltonian

ĤRKPM = − ∂2
x

2m
+ g

N∑
i=1

δ(x − xi ), (A1)

describing a single particle in a box of size L with mass m and
position x ∈ [0, L] interacting with fixed random scatterers
with a contact potential of strength g, with h̄ set equal to
1. We consider a given realization of disorder defined by
the positions of the N scatterers xi, which we choose to be
enumerated as xi < xi+1 and note for convenience that x0 = 0,
xN+1 = L.

We seek to solve the Schrödinger equation

Eψ (x) = − 1

2m
ψ ′′(x) + g

N∑
i=1

δ(x − xi )ψ (x). (A2)

The general solution is found using a standard transfer matrix
method (see, e.g., Ref. [48]). We consider only the case of
a repulsive scattering potential g > 0, for which E is pos-
itive, as can been seen by multiplying Eq. (A2) by ψ (x)∗
and integrating over the box. On any subinterval ]xi, xi+1[ the
eigenfunctions ψ (x) take the form

ψ (x) = Ai sin(kx + φi ), (A3)

with Ai and φi an amplitude and a phase, respectively, and
k � 0 defined by E = k2/2m. While ψ is continuous, there is
a jump in ψ ′ at each scatterer xi,

ψ ′(x+
i ) − ψ ′(x−

i ) = 2mgψ (xi ), (A4)

as can been seen by integrating Eq. (A2) over [x−
i , x+

i ].
Constructing the vector �(x) = (ψ ′(x), kψ (x))T indexed

by the coordinate x, the conditions (A3) and (A4) can be
rewritten as

�(x−
i+1) = R[k(xi+1 − xi )]�(x+

i ), �(x+
i ) = T �(x−

i ),

(A5)

where

R(θ ) =
(

cos(θ ) − sin(θ )
sin(θ ) cos(θ )

)
, T =

(
1 2mg

k
0 1

)
. (A6)

Hence, �(L) = M�(0), with

M = R[k(L − xN )]T R[k(xN − xN−1)] · · · T R[kx1]. (A7)

The spectrum is fixed by the boundary conditions; for
instance, periodic boundary conditions impose M = 1 or
equivalently TrM = 2, as det M = 1.

Once the spectrum is determined, one finds for each
eigenvalue the amplitudes and phases Ai and φi defining
the eigenstate. Using the continuity of ψ (x) together with
Eq. (A4), one relates Ai+1 and φi+1 to Ai and φi. Thus, by
recursion, AN and φN can be expressed as functions of φ0 and
A0. Finally, a suitable value of φ0 is determined numerically
such that the boundary condition is fulfilled, while the am-
plitudes are fixed by the normalization. As an illustration, we
show the first eigenstates thus obtained for a given realization
of disorder in Fig. 4.

For attractive interactions (g < 0), not considered in this
article, this method remains valid. However, in this case one
also needs to consider eigenstates of negative energy E =
−κ2/2m. On each subinterval, the corresponding wave func-
tions then take the form ψ (x) = Aie−κx + Bieκx, physically
representing states that are exponentially localized about the
scatterers. The spectrum and wave functions can again be
determined by the transfer matrix method.

APPENDIX B: TIME-DEPENDENT
VARIATIONAL METHOD

In this Appendix we briefly review how to determine the
time evolution of a ket |ψ〉 under a Hamiltonian Ĥ using
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(a) (b) (c)

FIG. 4. First three eigenstates ψn=1,2,3(x) of ĤRPKM for a given realization of disorder for three different interaction strengths g, (a) g/g0 = 1,
(b) g/g0 = 10, and (c) g/g0 = 300, expressed in units of g0 = (2mL)−1. The ground-state wave function and the first two excited states are
shown as black solid, red dashed, and blue dash-dotted lines, respectively. We use periodic boundary conditions in a box of size L. The positions
of the scatterers xi are represented by gray vertical lines. For weak disorder (a) the wave functions closely resemble the solutions of a free
particle in a box, while at larger interactions (b) and (c) the eigenstates become localized over distances smaller than the box size.

the variational method (see Refs. [64,84–87] for a more in-
depth discussion). We first provide a general discussion before
applying the formalism to the variational states (9) and (11)
introduced in the main text.

We seek the best approximation of the Schrödinger equa-
tion (i∂t − Ĥ )|ψ〉 = 0, with |ψ〉 being restrained to a vari-
ational manifold M. Let us assume that M = {|ψ (zi)〉, zi ∈
C} is parametrized by complex numbers zi, with |ψ (zi)〉 a
holomorphic function of the zi. Under that assumption, the
following three approaches yield the same equations of mo-
tions for the variational parameters zi. The first is to minimize
at all times the norm of the ket (i∂t − Ĥ )|ψ〉 with respect to
the żi. The second approach is to extremize the Lagrangian

L = i

2
[〈ψ |(∂t |ψ〉) − (∂t 〈ψ |)|ψ〉] − 〈ψ |Ĥ |ψ〉 (B1)

with respect to the variational parameters (zi, żi ). The third
approach is to project at every time step the Schrödinger
equation onto the tangent space to M. We use in practice the
last method, which we present below.

1. Gram matrix formulation

The tangent space to M at |ψ〉 is spanned by the vectors

|∂iψ〉 = ∂

∂zi
|ψ (z)〉. (B2)

Hence the projected Schrödinger equation is satisfied if and
only if for all i,

〈∂iψ |(i∂t − Ĥ )|ψ〉 = 0. (B3)

We now define the energy of the state E and the Gram matrix
G using the overlaps of the vectors |∂iψ〉,

E = 〈ψ |Ĥ |ψ〉, (B4)

Ej = ∂

∂z∗
j

E = 〈∂ jψ |Ĥ |ψ〉,

Gi j = 〈∂iψ |∂ jψ〉. (B5)

Equation (B3) can then be rewritten as∑
j

iGi j ż j = Ei. (B6)

In the specific case where G is invertible, the equivalent form
is

iżi =
∑

j

[G−1]i jE j . (B7)

Otherwise there is some indeterminacy in the equations of
motion, i.e., it is possible to find two different solutions żi and
ż′

i fulfilling Eq. (B7) provided Gi j (ż j − ż′
j ) = 0.

2. Application to coherent states

While determining the equations of motion using the Gram
formalism for the Chevy Ansatz (9) is straightforward, the
case of the coherent state Ansatz is slightly more involved,
and we present here the detailed derivation. Indeed, when
applying the Gram formalism, one encounters two issues for
the coherent Ansatz (11). First, it is not holomorphic (as both
βk and β∗

k appear), and second, there is no straightforward
equation of motion for the phase, which represents a gauge
degree of freedom.

We tackle both issues at once by rather considering the
variational state

|β〉 = N exp

(∑
k

βkb̂†
k

)
|0〉, (B8)

parametrized by the complex numbers N and βk, with
N introduced for normalization. The Ansätze (11) and
(B8) are completely equivalent provided N = exp(−iφ −∑

k |βk|2/2).
For clarity, we drop in this section the t and p dependences.

We rewrite Eq. (B8) by defining the vectors (β)k = βk and
(b̂)k = b̂k such that |β〉 = N eb̂†·β|0〉. We also note that S =
(β)† · β = ∑

k |βk|2.
We use the Gram matrix formulation where, from the gra-

dients of |β〉,

|∂Nβ〉 = ∂

∂N |β〉 = 1

N |β〉, (B9)

|∂kβ〉 = ∂

∂βk
|β〉 = b̂†

k|β〉, (B10)
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we deduce the Gram matrix [Eq. (B5)]

G =
(

1 Nβ†

N ∗β |N |2(δ + β · β†)

)
eS. (B11)

In the above expression, the first row and column stand for
the N direction, while the rest of the matrix corresponds to
the momentum modes labeled by k. In the k-k sector, δ is
understood as the identity matrix and β · β† as the matrix with
elements (β · β†)k,k′ = βkβ

∗
k′ . Here G is invertible with the

inverse

G−1 =
(

1 + S − 1
N ∗ β

†

− 1
N β 1

|N |2 δ

)
e−S. (B12)

The energy [Eq. (B4)] is given by

E = |N |2eSE0, (B13)

where

E0 =
∑

k

(εk + ωk )|βk|2 + (p − PB[β])2

2m
+ g

�

∣∣∣∣∣
∑

q

βq

∣∣∣∣∣
2

(B14)

and PB[β] = ∑
k k|βk|2 is the total momentum of the bosons.

The gradients of E read

EN = ∂

∂N ∗ E = N eSE0, (B15)

Ek = ∂

∂β∗
k

E = |N |2eS

{
βkE0

+
[(

εk + ωk − k · p − PB[β]

m

)
βk + g

�

∑
q

βq

]}
.

(B16)

Applying Eq. (B7), we obtain

iβ̇k =
(

εk + ωk − k · p − PB[β]

m

)
βk + g

�

∑
q

βq, (B17)

iṄ = N p2 − PB[β]2

2m
. (B18)

From these equations of motion we deduce that |N | and S are
constant in time, as expected since the Hamiltonian conserves
the number of particles and S = 〈β|N̂ |β〉/〈β|β〉 = N . Hence
the norm of |β〉, 〈β|β〉 = |N |2eS , is conserved. We can rewrite
N = exp(−S/2) exp(−iφ) as

φ̇ = p2 − PB[β]2

2mI
. (B19)

Using this new notation, Eq. (B8) is exactly equivalent to (11).
The equations of motion thus obtained are the same as those
present in the literature (see, e.g., Ref. [58]).
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