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Spin-orbit-coupled spin-1 Bose-Einstein condensates in a toroidal trap:
Even-petal-number necklacelike state and persistent flow
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Spin-orbit coupling has novel spin-flip symmetries, a spin-1 spinor Bose-Einstein condensate owns meaning-
ful interactions, and a toroidal trap is topologically nontrivial. We incorporate the three together and study the
ground-state phase diagram in a Rashba spin-orbit-coupled spin-1 Bose-Einstein condensate with a toroidal trap.
The spin-flip symmetries give rise to two different interesting phases: persistent flows with a unit phase winding
difference between three components, and necklace states with even petal number. The existing parameter
regimes and properties of these phases are characterized by two-dimensional numerical calculations and an
azimuthal analytical one-dimensional model.

DOI: 10.1103/PhysRevA.105.013323

I. INTRODUCTION

In atomic Bose-Einstein condensates (BECs), confine-
ments play a key role in variously pertinent physics. One of
the salient confining geometries is a toroidal trap. Considering
macroscopic quantum property of BECs, periodic boundary
imposed by the toroidal trap naturally gives rise to atomic
persistent flows [1]. Experimental accessibility [1,2] makes
that the toroidal BEC becomes a prototypical system to in-
vestigate superfluidity [3–8]. Furthermore, such confinement
can be easily equipped with a rotation created by rotating a
repulsive perturbation [9]. The response of superfluids to the
rotation in a toroidal trap has been widely investigated [9–17].

The generalization of single-component toroidal BECs to
multicomponents also draws much attention [18]. The pop-
ulation imbalance and fixed phase relation between multiple
components bring persistent flows novel stability features
[18–22]. It has been found that rich phase diagrams and
interesting collective excitations can exist in interacting two-
component [23–26] and three-component [27–29] toroidal
BECs.

Each component behaves as a pseudospin state, therefore,
two components correspond to spin- 1

2 and three components
can be explained as spin-1. Pseudospins can be arranged to
couple with the external momentum, which leads to so-called
spin-orbit coupling. It must be introduced into multicom-
ponent BECs artificially [30]. The experimental realization
of spin-orbit-coupled BECs represents a current advance in
ultracold atomic physics [31–33]. The striking feature of
spin-orbit-coupled BECs is the spontaneous emergence of
striped density patterns [34–39]. The origination of stripes
is that atoms condense simultaneously into multiple energy-
minimum states. While, for a conventional condensate, atoms
condense into only one energy minimum. Putting spin-orbit-
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coupled BECs in a toroidal trap quickly attracts interests
[40–46]. The phase diagram of spin-orbit-coupled spin- 1

2
BECs in a tight toroidal trap has been identified [41–43]. The
nontrivial topology of the toroidal trap generates new features
to striped patterns for Raman-induced spin-orbit coupling
[41]. While Rashba spin-orbit coupling has same rotating
symmetry as the toroidal trap, the density modulation for
Rashba case is patterned along the azimuthal direction appear-
ing as a necklace [42,43]. The most interesting is that such
a necklacelike state has an odd number of petals [43]. It is
also revealed that in Rashba spin- 1

2 BECs both components
can support persistent flows with a unit winding number dif-
ference between them [43]. Spin-orbit-coupled spin-1 BECs
support more enriching phases. The effort in existing studies
on spin-1 has been put into investigating the interplay between
spin-orbit coupling and rotation [44–46]. The characteristics
of phase diagram for spin-orbit-coupled spin-1 BECs with a
toroidal confinement are still lacking. Considering the exis-
tence of the odd-petal-number necklace state in spin- 1

2 system,
it is natural to ask whether the necklace state still has specific
petal number and what the persistent flow is in spin-1 BECs.

In this paper, we systematically characterize the ground-
state phase diagram of a Rashba spin-orbit-coupled spin-1
BEC in a two-dimensional toroidal trap. The phases are iden-
tified from direct numerical calculations and an analytical
study for a tight trap. When the toroidal trap is tight, the
dynamics along the radial direction can be frozen, and the
two-dimensional system is reduced to an one-dimensional
effective model only considering the dynamics along the az-
imuthal direction. The effective model provides an analytical
means to qualitatively understand two-dimensional numer-
ical results. A spin-1 spinor BEC features density-density
interaction and spin-spin interaction with respective strength
c0 and c2 [47]. For an antiferromagnetic interaction c2 > 0,
depending on the spin-orbit coupling strength, there are two
phases: persistent flows with the winding number (−1, 0, 1)
for three components and necklace states with even petal
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number. For a ferromagnetic interaction c2 < 0, the ground
state is a persistent flow, and there is always a unit winding
number difference between three components. We find that
the origination and properties of all phases relate to extraordi-
nary spin-flip symmetries.

This paper is organized as follows. In Sec. II, we present
the phase diagram from two-dimensional numerical calcula-
tions. Features of the persistent flow and necklace state are
addressed by a spin-flip symmetry. In Sec. III, we develop an
one-dimension analytical model to capture physics along the
azimuthal direction. From the model, all phases are identified
by using a variational wave function. A clear physical picture
is provided for the existence and properties of ground states.
Especially we address why the necklace state must have even
petal number in a spin-1 BEC, while it would have odd num-
ber in a spin- 1

2 analog. Sec. IV is the conclusion.

II. PHASE DIAGRAM

The experimental realization of Raman-induced spin-orbit
coupling in a spin-1 BEC [48] stimulates the exploration of
spin-orbit-coupled spinor BECs. Ground states and collec-
tive excitations of a homogeneously spin-orbit-coupled spin-1
BEC have been investigated theoretically [49–53]. With a
toroidal trap, the system is described by the Gross–Pitaevskii
equation (GPE) [44,52],

ih̄
∂�

∂t
= (Hsin + Hint )�. (1)

The spinor wave function � = (�1,�2,�3)T describes the
occupation of three components. The single-particle Hamilto-
nian in Eq. (1) is

Hsin = p2
x + p2

y

2m
+ λ(Fx py − Fy px ) + V (r), (2)

with m being the mass of the atom. px and py are momenta
along the x and y directions respectively. (Fx, Fy, Fz ) are spin-1
Pauli matrices. The Rashba spin-orbit coupling is λ(Fx py −
Fy px ) with the coupling strength λ. The external trap is two-
dimensional toroidal, V (r) = 1

2 mω2
r (r − r0)2, here r2 = x2 +

y2, the radius of torus is r0, and ωr is the trapping frequency.
In the GPE, the nonlinear part is

Hint =

⎛
⎜⎝

c0ρ0 + c2ρz c2ρ2 0

c2ρ
∗
2 c0ρ0 c2ρ2

0 c2ρ
∗
2 c0ρ0 − c2ρz

⎞
⎟⎠, (3)

where ρ0 = |�1|2 + |�2|2 + |�3|2, ρz = |�1|2 − |�3|2, and
ρ2 = �∗

2�1 + �∗
3�2. The nonlinearity is characterized by the

density-density interaction with the coefficient c0 and spin-
spin interaction with the coefficient c2.

The GPE is quasi two dimensional since we consider a
very tight trap along the z direction (i.e., the trap frequency
ωz is so large that the dynamics is frozen into the ground
state of the trap). For convenience of numerical calcula-
tion, the GPE is dimensionless, we set the units of energy,
length, time, and λ as h̄ωr ,

√
h̄/mωr , 1/ωr , and

√
h̄ωr/m,

respectively. The wave function satisfies normalization con-
dition,

∫
dxdy(|�1|2 + |�2|2 + |�3|2) = 1. With these units,

the nonlinear coefficients become c0 = 4N
√

mπωz/2h̄(2a2 +

a0)/3 and c2 = 4N
√

mπωz/2h̄(a2 − a0)/3. Here, N is the
atom number, and a2 and a0 are the s-wave scattering lengths
in the total spin channels. We numerically find ground states
by solving the GPE using the standard imaginary time evo-
lution. The imaginary time evolution is implemented by the
split-step Fourier method. In a detail calculation, the window
of two-dimensional space is chosen as (x, y) ∈ [−2π, 2π ] and
is discretized into a 256 × 256 grid. The radius of the trap
maintains r0 = 4

√
h̄/mωr .

Typical ground states for an antiferromagnetic interac-
tion c2 > 0 with different spin-orbit coupling strength λ are
demonstrated in Fig. 1. There are two different phases. (1)
When λ is small, three components distribute homogeneously
in the ring [see Fig. 1(a)]. The first and third components share
the same density, |�1|2 = |�3|2, and have an opposite-sign
phase winding ±1. These two components support persistent
flows with a unit phase winding, while there is no phase
winding in the second component. The existence of phase
winding makes the size of the first and third components larger
than that of the second component. (2) When λ is relatively
large, the ground state becomes necklacelike patterns, which
are shown in Figs. 1(b)–1(d). Three components have a same
petal number. The density of the first component is same as
that of the third component, |�1|2 = |�3|2. The petals in the
second component do not spatially overlap with these in �1

and �3. The total density also shows a necklacelike geometry.
These states are reminiscent of stripe phases from a homo-
geneous spin-orbit-coupled BEC. In homogeneous system,
Rashba spin-orbit coupling can induce density stripes whose
orientation is spontaneously chosen [34,37]. In the toroidal
trap, the stripes are oriented along the azimuthal direction.
Via this way, the boundaries of each petal in the necklace can
be shortened for minimizing kinetic energy. The petal number
increases as a function of λ. In Fig. 2, we show the dependence
of petal number on λ and find that the petal number is always
even and increases discontinuously with λ. The even-petal-
number necklace state in spin-1 BECs is strikingly different
from the only existing odd-number analog in spin- 1

2 [43].
These two different ground states have two common fea-

tures. From density and phase distributions in Fig. 1, we know
that two ground states obey a same spin-flip symmetry Ô,

Ô = KeiπFy = K

⎛
⎜⎝

0 0 1

0 −1 0

1 0 0

⎞
⎟⎠. (4)

Here, K is the complex-conjugate operator, and eiπFy is the
operator to rotate spins by the angle of π along the Fy axis. The
GPE and single-particle Hamiltonian Hsin have the symmetry
Ô. Ground states inherit the symmetry and are its eigenstates
with eigenvalue ±1. This gives rise to

�1 = ±�∗
3, �2 = ∓�∗

2. (5)

Therefore, the first and third components have a same density,
and the wave function of the second component is purely
real or imaginary. The other common feature is the phase
separation between �2 and �1, �3. The nonlinear part of the
energy functional corresponding to the GPE is

Enon = Edd + Ess, (6)
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FIG. 1. Ground states with the antiferromagnetic interaction c2 = 1 for different spin-orbit coupling strength λ. (a) λ = 0.4
√

h̄ωr/m,
(b) λ = 0.6

√
h̄ωr/m, (c) λ = 1.0

√
h̄ωr/m, (d) λ = 1.2

√
h̄ωr/m. Other parameters are r0 = 4

√
h̄/mωr and c0 = 10. In each block, the top panel

is the total density distribution |�|2 = |�1|2 + |�2|2 + |�3|2, followed by density distribution of each component on the left and corresponding
phase distribution of each component on the right. The units of coordinates are

√
h̄/mωr .

where

Edd = c0

2

∫
dxdy(|�1|2 + |�2|2 + |�3|2)2, (7)

is the density-density interaction energy, and the spin-spin
interaction energy is

Ess = c2

2

∫
dxdy[(�†Fx�)2 + (�†Fy�)2 + (�†Fz�)2]

= c2

2

∫
dxdy

[
(|�1|2 − |�3|2)2 + 2|�1|2|�2|2

+ 2|�2|2|�3|2 + �1�3�
∗2
2 + �∗

1�
∗
3�

2
2

]
. (8)
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FIG. 2. The number of petals in the necklace state as a function
of the spin-orbit coupling strength λ. It is found that the petal-number
is always even. The other parameters are same as in Fig. 1. The units
of λ are

√
h̄ωr/m.

Substituting the symmetry result �1 = ±�∗
3, �2 = ∓�∗

2 in
Eq. (5) into the above energy functional, we immediately
realize that ground states having the symmetry Ô minimize
the spin-spin interaction, i.e., Ess = 0. The density-density
part becomes

Edd = c0

2

∫
dxdy(g11|�1|4 + g22|�2|4 + g12|�1|2|�2|2),

g11 = 4, g22 = 1, g12 = 4. (9)

It is interesting to note that the density-density part is similar
to the interactions of a binary BEC. It is well known that a
binary BEC features the phase separation when g11g22 < g2

12.
According to this phase separation criterion, Edd belongs to
immiscible interactions, so �1 and �2 must be phase sepa-
rated. For persistent flow states [as shown in Fig. 1(a)], �2 and
�1, �3 are spatially separated in the radial direction. While
for necklace states, the separation is along the azimuthal di-
rection [see Figs. 1(b)–1(d)].

The above is the ground state with an antiferromag-
netic interaction, we find that for a ferromagnetic interaction
c2 < 0, it becomes different. Typical results with c2 = −1
and different spin-orbit coupling strength λ are depicted in
Fig. 3. The ground state always supports persistent flows and
density distributes homogeneously along the azimuthal direc-
tion. Every component carries nonzero phase winding. The
interesting thing is that there is always a unit phase winding
difference between three components, which can be seen from
the number of phase jumps in phase distributions in Fig. 3.
The phase winding difference is also demonstrated from the
size of density. For fixed parameters, the persistent flow with
a large number of phase winding has a larger density size.
In Fig. 3(a), for a small λ, the winding number for �1, �2,
and �3 are −3, −2, and −1, respectively, and the density
size decreases. Increasing the spin-orbit coupling strength,
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FIG. 3. Ground states with the ferromagnetic interaction c2 = −1 for different spin-orbit coupling strength λ. (a) λ = 0.6
√

h̄ωr/m, (b) λ =
1.2

√
h̄ωr/m, (c) λ = 1.6

√
h̄ωr/m, (d) λ = 1.8

√
h̄ωr/m. Other parameters are r0 = 4

√
h̄/mωr and c0 = 10. In each block, the top panel is the

total density distribution |�|2 = |�1|2 + |�2|2 + |�3|2, followed by density distribution of each component on the left and corresponding
phase distribution of each component on the right. The units of coordinates are

√
h̄/mωr .

the phase winding in each component increases as shown in
Figs. 3(b)–3(d). The dependence of the winding number in
the second component on λ is demonstrated in Fig. 4. The
winding number increases discontinuously as a function of λ.

In the literature, the ground state of a Rashba coupled
spin-1 spinor BEC in the toroidal trap has been numerically
studied in the antiferromagnetic regime in Refs. [44,46]. Espe-
cially, only four-times-petal-number necklace states are found
[44]. Our phase diagram shows interesting characteristics.
According to antiferromagnetic or ferromagnetic interactions,
two different persistent flow states exist, and necklace states
have even petal number. In the following, we develop an
one-dimensional effective model to provide analytical insights
into the existence of these states.
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FIG. 4. The winding number of the second component as a func-
tion of λ. All parameters are same as in Fig. 3. The units of λ are√

h̄ωr/m.

III. EFFECTIVE MODEL

All above states reflect that the azimuthal effect plays an
important role. We assume the toroidal trap is very tight, i.e.,
ωr is a large scale. In this condition, the dynamics along the
radial direction is frozen into the ground state of the harmonic
trap. After integrating over the radial degree of freedom, the
dynamics along the azimuthal direction would shine through
[40,43,54]. The single-particle Hamiltonian in Eq. (2) reduces
to one-dimensional Heff which effectively describes the az-
imuthal effect [54],

Heff =
(

−i
∂

∂φ

)2

+ λ̄(cos φFx + sin φFy)

(
−i

∂

∂φ

)

− i
λ̄

2
(cos φFy − sin φFx ). (10)

Here, φ is the azimuthal coordinate. Heff is dimensionless,
we use the unit of energy as h̄2/(2mr2

0 ), and λ̄ = 2mr0λ/h̄.
After considering the nonlinear part in Eq. (3), the total energy
becomes

Etot = 1

2π

∫ 2π

0
dφ

(
�̄†Heff�̄

) + c̄0

4π

∫ 2π

0
dφ|�̄|4

+ c̄2

4π

∫ 2π

0
dφ[(�̄†Fx�̄)2 + (�̄†Fy�̄)2 + (�̄†Fz�̄)2].

(11)

Here, c̄0 = 2mr2
0/h̄2√mωr/(2π h̄)c0 and c̄2 = 2mr2

0/

h̄2√mωr/(2π h̄)c2. The reduced wave function is �̄(φ) =
(�̄1(φ), �̄2(φ), �̄3(φ))T , and |�̄|2 = |�̄1|2 + |�̄2|2 + |�̄3|2.

The effective Hamiltonian Heff conserves Jz with its defini-
tion being

Jz = −i
∂

∂φ
+ Fz, (12)
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i.e., [Jz, Heff] = 0. The conservation makes Heff invariant un-
der a rotation U = exp(iθJz ), where θ is an arbitrary angle.
Therefore, Heff and U have same eigenstates, which can be
constructed from U as,

�̄ = einφ

⎛
⎜⎝

e−iφ�′
1

�′
2

eiφ�′
3

⎞
⎟⎠, (13)

where �′
1, �′

2, and �′
3 are independent on φ. n is an integer

and characterizes phase winding. Three components carry
phase winding (n − 1, n, n + 1). There is a unit phase winding
difference between them. With the help of �̄, the effec-
tive Hamiltonian Heff can be diagonalized to get eigenvalues
E (n), from which we immediately realize that E (n) = E (−n).
Physically, the degeneracy of E (n) and E (−n) originates from
the symmetry Ô defined in Eq. (4). Therefore, the lowest-
energy state of the single-particle effective Hamiltonian Heff

is twofold degenerate.
The twofold-degenerate lowest-energy state offers an

interesting accommodation for atoms to condense into.
In the presence of the mean-field interactions, we construct
the ground state ansatz by considering the superposition of
the lowest energy state [38,52],

�̄(gs) = C+�̄n + C−Ô�̄n. (14)

Here,

�̄n = einφ

⎛
⎜⎝

e−iφ cos α cos β

− sin α

eiφ cos α sin β

⎞
⎟⎠, (15)

which is an eigenstate of Heff. The superposition coefficients
C+ and C− satisfy |C+|2 + |C−|2 = 1. Substituting the trial
wave function �̄(gs) into the total energy Etot in Eq. (11), we
get Etot(n, α, β,C+,C−). All parameters n, α, β, C+, and C−,
determining properties of the ground state, shall be fixed by
minimizing the total energy Etot.

According to the resulting parameters from the minimiza-
tion, the ground state has the following phases:

(1) For antiferromagnetic interactions c̄2 > 0, there are two
phases. We take c̄0 = 10 and c̄2 = 1 as an example. (I) When
λ̄ � 0.86, the results are n = 0, β = 3π/4, and one of the
C+ and C− is zero, i.e., C+ = 0, C− = 1, or C+ = 1, C− = 0.
With these parameters, it can be seen that Ô�̄n=0 = −�̄n=0.
�̄n=0 and Ô�̄n=0 are a same state up to a sign difference. The
ground state supports persistent flows. The phase winding of
three components is always −1, 0 and 1. |�̄(gs)

1 |2 = |�̄(gs)
3 |2,

the size of which is always larger than that of |�̄(gs)
2 |2. This

phase corresponds to the two-dimensional analog shown in
Fig. 1(a). (II) When λ̄ > 0.86, results of the minimization
are n �= 0 and C+ = 1/

√
2, C− = ±1/

√
2. The ground state

is the equal superposition of �̄n and Ô�̄n, and thus is an
eigenstate of Ô. Because of the superposition, the density of
the ground state is periodically modulated along the azimuthal
direction, |�̄(gs)

1 |2 = |�̄(gs)
3 |2 = cos2 α[1 ± sin(2β ) cos(2nφ)],

|�̄(gs)
2 |2 = 2 sin2 α[1 − cos(2nφ)], here ± depends on the sign

of C−. Such density modulated ground states correspond to
necklace states found in Figs. 1(b)–1(d). The nature of neck-

lace states is that the period of three components is same and
is an even number 2n.

(2) For ferromagnetic interactions c̄2 < 0, the minimiza-
tion always chooses C+ = 0, C− = 1 or C+ = 1, C− = 0. The
ground state is a persistent flow with phase winding number
(n − 1, n, n + 1) or (−n − 1,−n,−n + 1) for three compo-
nents. These two configurations are spontaneously chosen.
The unique feature of such ground state is that there is a unit
phase winding difference between three components. These
states correspond to two-dimensional persistent flows found
in Fig. 3, where only the configuration (−n − 1,−n,−n + 1)
is shown.

The possible existence of the even-petal-number necklace
state in spin-1 BECs is due to the cooperation of symmetries
Ô and Jz. It is interesting to compare with a spin- 1

2 system,
where only the odd-petal-number state can exist. The effective
azimuthal Hamiltonian for a Rashba coupled spin- 1

2 is

H ′
eff =

(
−i

∂

∂φ

)2

+ λ̄(cos φσx + sin φσy)

(
−i

∂

∂φ

)

− i
λ̄

2
(cos φσy − sin φσx ), (16)

which is similar to Eq. (10), but replacing spin-1 matrices F
by spin- 1

2 Pauli matrices σ [40,43]. The conservation of

J ′
z = −i∂/∂φ + σz/2, (17)

for H ′
eff requires its eigenstates as

�̄′
n = einφ

(
�′

1

eiφ�′
2

)
. (18)

The symmetry

Ô′ = Keiπσy/2, (19)

gives rise to the degeneracy of �̄′
n and Ô′�̄′

n. Therefore, the
possible ground state is the superposition of �̄′

n and Ô′�̄′
n

with the corresponding density ∝ cos[(2n + 1)φ]. The neck-
lace state in the spin- 1

2 system takes an odd petal number. It
is noting that there is a 1

2 in the symmetries Ô′ and J ′
z, which

is due to the SU(2) nature of spin- 1
2 spins. This unique SU(2)

property makes petal number in necklace states of a spin- 1
2

BEC odd.
At last, we would like to address the effect of the quadratic

Zeeman coupling on above results. The quadratic Zeeman
coupling plays an important role in spin-1 spinor BECs [47].
It is qF 2

z , which should be incorporated into Hsin in Eq. (2) and
Heff in Eq. (10). Here, q describes the strength of the quadratic
Zeeman term. In the Raman-induced spin-orbit-coupled spin-
1 BEC experiment, it can be tuned [48]. It is interesting to
find that the quadratic Zeeman term does not destroy the
symmetries Ô and Jz. Therefore, its existence does not qual-
itatively change the results from two-dimensional numerical
calculations and from the one-dimensional analytical model.
We find that it just slightly modifies the demarcation between
the persistent flow and necklace state for antiferromagnetic
interactions. In Fig. 5, we show the dependence of the critical
spin-orbit coupling strength λ̄c on the quadratic Zeeman effect
q. For antiferromagnetic interactions, when |λ̄| < |λ̄c|, the
ground state is a persistent flow with n = 0 [see Eq. (15)],
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Persistent flow n = 0

FIG. 5. The critical value of the spin-orbit coupling strength
λ̄c between the persistent flow and necklace state as a function of
the quadratic Zeeman effect q for an antiferromagnetic interaction
c̄2 = 1 from the one-dimensional effective model. The other param-
eter is c̄2 = 10.

when |λ̄| > |λ̄c|, the ground state is an even-petal-number
necklace state. There is a slight increase of |λ̄c| as a func-
tion of q. We also note that in Fig. 5 there is a symmetry
between λ̄ > 0 and λ̄ < 0, this is because that the effective
Hamiltonian Heff + qF 2

z has a spin rotation symmetry eiπFz ,
the physics in the λ̄ < 0 regime is the same as that in the
regime of λ̄ > 0.

We conclude that it is the symmetries Ô and Jz that leads
to the existence of the persistent flow and necklace state. Both

symmetries are unique properties of the Rashba spin-orbit
coupling. Raman-induced spin-orbit coupling does not have
them, therefore, the ground state should be very different
from our results. In experiments, the Raman-induced spin-
orbit coupling can be accessed much easier than the Rashba
spin-orbit coupling [48]. The experimental realization of the
Rashba spin-orbit coupling is only in a spin- 1

2 BEC [32]. Its
realization in a spin-1 spinor BEC is still an experimental
challenge.

IV. CONCLUSION

We systematically study the ground-state phase diagram in
a Rashba spin-orbit-coupled spin-1 BEC trapped in a two-
dimensional toroidal trap. The spin-flip symmetries of the
spin-orbit coupling endow new features to the persistent flow
and support the even-petal-number necklace state. The chosen
phases depend on the sign of the spinor’s spin-spin interaction.
The toroidal trapped spin-orbit-coupled BEC provides a ver-
satile playground to investigate necklace states. They emerge
as ground states with spontaneous breaking of the continuous
rotation symmetry. Therefore, they are always dynamically
stable, which is in favor of experimental observation. The
petal number of the necklace state can be tuned by changing
the spin-orbit coupling strength. The number is always odd in
spin- 1

2 BECs, while it is even in spin-1 systems.
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[30] D. L. Campbell, G. Juzeliūnas, and I. B. Spielman, Realistic
Rashba and Dresselhaus spin-orbit coupling for neutral atoms,
Phys. Rev. A 84, 025602 (2011).

[31] Y. J. Lin, K. Jiménez-García, and I. B. Spielman, Spin-orbit-
coupled Bose–Einstein condensates, Nature (London) 471, 83
(2011).

[32] Z. Wu, L. Zhang, W. Sun, X.-T. Xu, B.-Z. Wang, S.-C. Ji, Y.
Deng, S. Chen, X.-J. Liu, and J.-W. Pan, Realization of two-
dimensional spin-orbit coupling for Bose-Einstein condensates,
Science 354, 83 (2016).

[33] C. Hamner, Y. Zhang, M. A. Khamehchi, M. J. Davis, and
P. Engels, Spin-Orbit-Coupled Bose-Einstein Condensates in a

One-Dimensional Optical Lattice, Phys. Rev. Lett. 114, 070401
(2015).

[34] C. Wang, C. Gao, C.-M. Jian, and H. Zhai, Spin-Orbit Cou-
pled Spinor Bose-Einstein Condensates, Phys. Rev. Lett. 105,
160403 (2010).

[35] T.-L. Ho and S. Zhang, Bose-Einstein Condensates with Spin-
Orbit Interaction, Phys. Rev. Lett. 107, 150403 (2011).

[36] H. Hu, B. Ramachandhran, H. Pu, and X.-J. Liu, Spin-Orbit
Coupled Weakly Interacting Bose-Einstein Condensates in Har-
monic Traps, Phys. Rev. Lett. 108, 010402 (2012).

[37] Y. Zhang, L. Mao, and C. Zhang, Mean-Field Dynamics of
Spin-Orbit Coupled Bose-Einstein Condensates, Phys. Rev.
Lett. 108, 035302 (2012).

[38] Y. Li, L. P. Pitaevskii, and S. Stringari, Quantum Tricritical-
ity and Phase Transitions in Spin-Orbit Coupled Bose-Einstein
Condensates, Phys. Rev. Lett. 108, 225301 (2012).

[39] J.-R. Li, J. Lee, W. Huang, S. Burchesky, B. Shteynas, F. C.
Top, A. O. Jamison, and W. Ketterle, A stripe phase with
supersolid properties in spin-orbit-coupled Bose-Einstein con-
densates, Nature (London) 543, 91 (2017).

[40] O. Fialko, J. Brand, and U. Zülicke, Soliton magnetization dy-
namics in spin-orbit-coupled Bose-Einstein condensates, Phys.
Rev. A 85, 051605(R) (2012).

[41] E. O. Karabulut, F. Malet, A. L. Fetter, G. M. Kavoulakis, and
S. M. Reimann, Spin-orbit-coupled Bose-Einstein-condensed
atoms confined in annular potentials, New J. Phys. 18, 015013
(2016).

[42] X.-F. Zhang, M. Kato, W. Han, S.-G. Zhang, and H. Saito, Spin-
orbit-coupled Bose-Einstein condensates held under a toroidal
trap, Phys. Rev. A 95, 033620 (2017).

[43] A. C. White, Y. Zhang, and T. Busch, Odd-petal-number states
and persistent flows in spin-orbit-coupled Bose-Einstein con-
densates, Phys. Rev. A 95, 041604(R) (2017).

[44] J.-G. Wang, L.-L. Xu, and S.-J. Yang, Ground-state phases of
the spin-orbit-coupled spin-1 Bose gas in a toroidal trap, Phys.
Rev. A 96, 033629 (2017).

[45] H. Wang, L. Wen, H. Yang, C. Shi, and J. Li, Vortex states
and spin textures of rotating spin-orbit-coupled Bose-Einstein
condensates in a toroidal trap, J. Phys. B: At., Mol. Opt. Phys.
50, 155301 (2017).

[46] P. Peng, G.-Q. Li, W.-L. Yang, and Z.-Y. Yang, Exotic ground
states of a spin-orbit-coupled spinor Bose-Einstein condensate
trapped by a toroidal potential, Laser Phys. Lett. 15, 085501
(2018).

[47] Y. Kawaguchi and M. Ueda, Spinor Bose–Einstein condensates,
Phys. Rep. 520, 253 (2012).

[48] D. L. Campbell, R. M. Price, A. Putra, A. Valdés-Curiel, D.
Trypogeorgos, and I. B. Spielman, Magnetic phases of spin-1
spin–orbit-coupled Bose gases, Nat. Commun. 7, 10897 (2016).

[49] Z. Lan and P. Öhberg, Raman-dressed spin-1 spin-orbit-coupled
quantum gas, Phys. Rev. A 89, 023630 (2014).

[50] S. S. Natu, X. Li, and W. S. Cole, Striped ferronematic ground
states in a spin-orbit-coupled s = 1 Bose gas, Phys. Rev. A 91,
023608 (2015).

[51] Z.-Q. Yu, Phase transitions and elementary excitations in spin-1
Bose gases with Raman-induced spin-orbit coupling, Phys. Rev.
A 93, 033648 (2016).

[52] K. Sun, C. Qu, Y. Xu, Y. Zhang, and C. Zhang, Interacting spin-
orbit-coupled spin-1 Bose-Einstein condensates, Phys. Rev. A
93, 023615 (2016).

013323-7

https://doi.org/10.1103/PhysRevE.101.022212
https://doi.org/10.1103/PhysRevA.102.063324
https://doi.org/10.1103/PhysRevA.103.043319
https://doi.org/10.1103/PhysRevLett.110.025301
https://doi.org/10.1103/PhysRevLett.103.100404
https://doi.org/10.1103/PhysRevA.82.043631
https://doi.org/10.1103/PhysRevA.88.013609
https://doi.org/10.1103/PhysRevA.89.053602
https://doi.org/10.1103/PhysRevA.82.013647
https://doi.org/10.1103/PhysRevA.92.033630
https://doi.org/10.1088/1367-2630/ab3207
https://doi.org/10.1088/1367-2630/aab599
https://doi.org/10.1103/PhysRevA.88.033622
https://doi.org/10.1103/PhysRevA.88.051602
https://doi.org/10.1103/PhysRevA.90.063632
https://doi.org/10.1103/PhysRevA.84.025602
https://doi.org/10.1038/nature09887
https://doi.org/10.1126/science.aaf6689
https://doi.org/10.1103/PhysRevLett.114.070401
https://doi.org/10.1103/PhysRevLett.105.160403
https://doi.org/10.1103/PhysRevLett.107.150403
https://doi.org/10.1103/PhysRevLett.108.010402
https://doi.org/10.1103/PhysRevLett.108.035302
https://doi.org/10.1103/PhysRevLett.108.225301
https://doi.org/10.1038/nature21431
https://doi.org/10.1103/PhysRevA.85.051605
https://doi.org/10.1088/1367-2630/18/1/015013
https://doi.org/10.1103/PhysRevA.95.033620
https://doi.org/10.1103/PhysRevA.95.041604
https://doi.org/10.1103/PhysRevA.96.033629
https://doi.org/10.1088/1361-6455/aa7afd
https://doi.org/10.1088/1612-202X/aac7e9
https://doi.org/10.1016/j.physrep.2012.07.005
https://doi.org/10.1038/ncomms10897
https://doi.org/10.1103/PhysRevA.89.023630
https://doi.org/10.1103/PhysRevA.91.023608
https://doi.org/10.1103/PhysRevA.93.033648
https://doi.org/10.1103/PhysRevA.93.023615


LIU, HE, WANG, CHEN, AND ZHANG PHYSICAL REVIEW A 105, 013323 (2022)

[53] G. I. Martone, F. V. Pepe, P. Facchi, S. Pascazio, and S.
Stringari, Tricriticalities and Quantum Phases in Spin-Orbit-
Coupled Spin-1 Bose Gases, Phys. Rev. Lett. 117, 125301
(2016).

[54] F. E. Meijer, A. F. Morpurgo, and T. M. Klapwijk, One-
dimensional ring in the presence of Rashba spin-orbit interac-
tion: Derivation of the correct Hamiltonian, Phys. Rev. B 66,
033107 (2002).

013323-8

https://doi.org/10.1103/PhysRevLett.117.125301
https://doi.org/10.1103/PhysRevB.66.033107

