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Classical model for survival resonances close to the Talbot time
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We present a classical approximation for the peaks of survival resonances occurring when diffracting matter
waves from absorption potentials. Generally, our simplified model describes the absorption-diffraction process
around the Talbot time very well. Classical treatments of this process are presently lacking. For purely imaginary
potentials, the classical model duplicates quantum-mechanical calculations. The classical model allows for
simple evolution of phase-space probability densities, which in the limit of the effective Planck constant going to
zero allows for a compact analytical expression of the survival probability as a function of remaining parameters.
Our work extends the range of processes that can be described through classical analogs.
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I. INTRODUCTION

Optical elements based on diffraction and phase dispersion
are ubiquitous in modern society, physics, and engineering.
Electromagnetic waves have been used, for instance, to study
microscopic material properties for more than 100 years [1,2].
Matter waves of electrons [3,4], neutrons [5], atoms [6], or
even heavier particles [7,8] are complementary tools to inves-
tigate material properties or fundamental aspects and limits of
quantum physics.

We focus on atomic matter waves diffracted from a light-
induced grating. In the limit of far-detuned light from the
atom’s internal transitions, such a grating provides a conser-
vative potential that is used, e.g., to produce cw optical lattices
[9] or pulsed diffraction in the Bragg or Raman-Nath regime.
The latter is used to implement the atom-optics kicked rotor,
a standard model of classical as well as quantum dynami-
cal systems’ theory [10–13]. A series of recent experiments
[14–16] applied instead an absorption grating to induce pulses
on cold rubidium atoms, realizing an atom-optics “killed”
rotor (AOKR), implying the loss of atoms due to resonant ab-
sorption. The corresponding potential is imaginary describing
the dissipative process. Light and matter waves are scattered
or diffracted also by such an imaginary potential, an effect that
is hard to imagine classically in the sense of either geometric
optics or trajectories in phase space.

In this paper we present a fully classical model for the
AOKR that faithfully reproduces the quantum dynamics of
atoms close to the Talbot resonances, at which periodic phase
revivals occur after single diffraction pulses [17]. While such
a model exists for diffraction from conservative potentials,
it is remarkable that it can be amended to describe quantum
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scattering from purely imaginary potentials, which is thought
to be a wave effect. Note that while usually dissipation is sup-
posed to induce a quantum-to-classical transition, in our case,
the dissipative grating is usually seen to induce a purely quan-
tum scattering effect, without a classical analog. We provide
exactly such an analog classical model whose advantage is its
simplicity, making it accessible to analytical treatment. More-
over, it provides a classical picture of trajectories in phase
space for the iterated dissipative wave diffraction process. In
our pseudoclassical description the diffraction is modeled by
random kicks in momentum space to the atom.

The remainder of this paper is structured as follows.
Section II provides the theoretical background for atoms
periodically exposed to an optical standing wave close to
resonance with an open transition. Section III introduces the
classical model in which absorption results in random mo-
mentum kicks. Section IV goes in depth with the special
case of a resonant standing wave leading to a pure absorption
grating. Section V summarizes the paper.

II. THEORETICAL BACKGROUND

We describe a two-level atom with level difference �E =
h̄ωeg in a standing wave of laser light with frequency ω. This
is a good model for rubidium atoms driven by light pulses
close to resonance with some chosen internal transition. The
Hamiltonian of the atom in the rotating frame under the
rotating-wave approximation reads

Ĥ = p̂2

2M
−

(
h̄� + ih̄�

2

)
|e〉〈e|

+ h̄�

2
(|e〉〈g| + |g〉〈e|) cos(kLx̂), (1)

where � is the Rabi frequency and � = ω − ωeg the detuning
from the internal transition. In addition, � describes the decay
rate of the upper state, and we assume that when the atom
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in the excited state spontaneously decays it is lost and not
further considered in the experiment. For the experimental
realization of the AOKR [14–16] the ground state has two
levels, with only one of them considered here. The dominating
decay channel goes into the second level [14] that motivates
our approximation. Even if the atom would return to the initial
ground-state level, it receives a recoil changing its quasimo-
mentum [see below, after Eq. (7)] and hence its response to the
kicking pulses [18,19]. This implies that it will be effectively
lost from the signal and only potentially contributing to an
incoherent background [14,20].

Neglecting the p̂2

2M term for a moment, the Hamiltonian
in Eq. (1) can easily be diagonalized to give the following
eigenvalues:

λ1 = −1

2

(
h̄� + ih̄�

2

)

− 1

2

√(
h̄� + ih̄�

2

)2

+ h̄2�2 cos2(klx),

λ2 = −1

2

(
h̄� + ih̄�

2

)

+ 1

2

√(
h̄� + ih̄�

2

)2

+ h̄2�2 cos2(klx). (2)

The probability amplitude to remain in the ground state after
a time t is then given by

G(x, t ) = 1

1 − λ2
λ1

[
exp

(
− i

h̄
λ2t

)
− λ2

λ1
exp

(
− i

h̄
λ1t

)]
,

(3)

which we call the grating operator in what follows. In the case
of off-resonant driving, i.e., � � �, we would get

G(x, t ) = exp

(
−i

�2

8�
t cos(2klx)

)
. (4)

The potential energy h̄�2

8�
cos(2klx) in this case would be the

usual kick potential of the temporal evolution operator of
the atom-optics kicked rotor [12,21]. The phase φd = h̄�2

8�
t is

identified as the kicking strength. Since the kicks are supposed
to be instantaneous, the kicking time t should be short with
respect to the inverse of the recoil energy divided by h̄. This
is the so-called Raman-Nath regime.

Since we are interested in close-to-resonant driving, the
grating operator generally does not just give a phase but also
an amplitude modulation. Then the position space representa-
tion of the grating operator of Eq. (3) can be written as

G(x) = exp[i�(x)]A(x), (5)

where A(x) ∈ [0, 1] and �(x) ∈ [0, 2π ) are positive functions
determined by Eq. (3), and we assume now that the time t
during which the pulse is on is fixed. This time must be short
in order to comply with the Raman-Nath condition. We omit
it in the further discussion as it only enters as a parameter in
G.

In the standard atom-optics kicked rotor, the time-evolution
operator for N kicks is given by

U (0, N ) =
{

exp

[
− i

h̄

p2

2M

(



TT

2
+ �T

)]
G

}N

, (6)

with G from Eq. (4). Here 
 is an integer and 
 TT
2 + �T the

kicking period with �T the deviation from the nearest integer
multiple of half the Talbot time; �T is the small parameter of
the classical limit obtained for �T → 0. Now, by substituting
the general expression (5), we obtain the one-period time-
evolution or Floquet operator

U (0, 1) = exp

[
− i

h̄

p2

2M

(



TT

2
+ �T

)]
exp[i�(x)]A(x).

(7)

Following Refs. [18,22], we introduce dimensionless vari-
ables of the kicked rotor by substituting θ = 2klx, ε =
4h̄k2

l �T/M, and J = εp/2h̄kl is the rescaled momentum.
When rewriting Eq. (7), we introduce the fractional part of
momentum β = p/2h̄kl (mod1). Since the grating potential is
periodic, the quasimomentum and thereby β ∈ [0, 1) is con-
served [18,21,23] and Eq. (7) then reads

U (0, 1) = exp

[
− i

ε

(
J2

2
+ Jπ
 + 2Jπ
β

)]

× exp

[
i�

(
θ

2kl

)]
A

(
θ

2kl

)
. (8)

III. PSEUDOCLASSICAL MODEL

In Refs. [22,23], a pseudoclassical model was introduced
that successfully describes the atom-optics kicked rotor close
to the quantum resonance, where the resonance refers to the
Talbot effect causing wave-function revival in between two
kicks. We extend this model from a far-off-resonant stand-
ing wave to the close-to- or even on-resonant driving of the
atom. In the latter case, the potential given by the grating
operator (5) is completely imaginary, corresponding to a pure
absorption grating [6]. It is remarkable that such a purely
classical description is indeed possible for two wave effects,
first the diffraction from an absorbing potential and second
the rephasing of evolution phases in the external momentum
degree of freedom, i.e., the Talbot effect. When we restrict
ourselves to a given value of β, the time evolution induced by
Eq. (8) can then be approximated by the classical map:

Sn+1 = s(θn)Sn, (9)

Jn+1 = Jn + δJn + ε
∂

∂θ

∣∣∣∣
θn

�

(
θ

2kl

)
, (10)

θn+1 = θn + Jn+1 + π
 + 2π
β. (11)

Here Sn is the overall survival probability of a trajectory after
n pulses, s(θ ) the probability that an atom at position θ will
survive a single pulse, and δJn a random momentum kick an
atom receives by the pulse. Note that the sign of ε enters the
definition of J , contrary to the notation used in [18,22,23]. The
iteration of this map approximates well the quantum evolution
as long as ε remains small. For fixed ε, the approximation will
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eventually break down as the number of applied kicks N in-
creases. Hence, for small kick numbers rather large ε are fine,
while for large numbers the correspondence will be better for
smaller ε [18]. In contrast to the standard atom-optics kicked
rotor, there are two different points to consider in our classical
evolution. First, we must iterate also the survival probability
of the atoms Sn because of the absorption by the on-resonant
grating. Second, the random change of momentum δJn derives
from the diffraction from the same absorption grating. Both
effects are governed by the amplitude function A( θ

2kl
) that

would be identical to one in the standard atom-optics kicked
rotor. Here, however, we obtain for the absorption or mask
function the square of the grating amplitude A:

s(θ ) = A2

(
θ

2kl

)
. (12)

Considering the case where survival predominantly occurs in
the vicinity of the standing-wave nodes, then the application
of the grating operator broadens the momentum distribution
by the Fourier transform of its amplitude A. This implies that
the distribution from which δJn must be drawn is given by

ρ(δJ ) = B

[∫ 2π

0
A(θ ) exp

(
−i

δJ

ε
θ

)
dθ

]2

, (13)

where B is a normalization constant.
Figure 1 compares the ε-classical model based on Eqs. (9)–

(11) to the one based on the Floquet operator [Eq. (8)].
Throughout this work we use the experimentally relevant pa-
rameters [14–16] kl = 2π/780 nm, � = 2π6 MHz, � = 2�,
N = 7 kicks, t = 500 ns, and M the mass of an 85Rb atom, un-
less otherwise stated. We see in the figure that the ε-classical
model captures the quantum dynamics well. Moreover, we see
that the random momentum kick δJ that the particle receives
due to the amplitude function remains significant for standing-
wave detunings of the order of the natural linewidth �. The
green dotted line in Fig. 1(b) shows the result of omitting
δJ , and while we still see resonant behavior the model is no
longer in quantitative agreement with the quantum model, in
particular for negative ε. The reason for the asymmetry is
the force term ε ∂

∂θ
|θn�( θ

2kl
) in Eq. (10), which changes sign

with ε. For positive ε, it will direct atoms away from θ = π

where survival is high, leading to the rapid drop in survival
when ε increase from zero. On the other hand, for negative
ε, the force term will direct atoms towards the high survival
region making the probability density peak here. However, the
addition of a random δJ will broaden the peak and partially
suppress the the enhancement of survival, thereby making the
effect of it profound for negative ε.

IV. PURE ABSORPTIVE DIFFRACTION

In the case of exactly resonant standing-wave light
(� = 0), the above expression simplifies significantly. The
quantum-mechanical exact result for the absorptive diffraction
is given, e.g., by Eq. (1) in Ref. [20]. Using in Eqs. (2) and (3)
a harmonic approximation of the cosine close to the potential
minima [24] where the atoms have a chance to survive, we

(a)

(b)

FIG. 1. (a) Comparison between the ε-classical model (cyan
dashed line) [see Eqs. (9)–(11)] and one based on the Floquet oper-
ator from Eq. (8) (red solid line) for an initial state characterized by
J = β = 0, using the resonant standing wave (� = 0) after N = 7
kicks. (b) Standing wave off resonance (� = �), with the other
parameters the same as in (a), for the ε-classical model (cyan dashed
line) and quantum evolution (red solid line). We observe good agree-
ment, with a minor deviation when ε > 0.1 is large. The green dotted
line is the ε-classical result without the random (δJ) kick that indeed
plays a crucial role in our classical model of diffraction..

obtain, as a good approximation,

G(x) =
∑
j∈Z

exp

{
−1

2

�2k2
l

�

[
x −

(
j + 1

2

)
π

kl

]2

t

}
, (14)

which is the convolution of a δ-function comb with a Gaussian
that has σx = 1

�kl

√
�
t . This directly gives the grating ampli-

tude since there is no phase imprint at all, i.e., exp(i�) = 1,
implying no �-dependent shift in Eq. (10). Then the transmis-
sion probability (12) for the n kick is

s(θn) = exp

(
−�2t

4�
(θn − π )2

)
, (15)

which can be written s(θn) = exp(− (θn−π )2

σ 2
θ

), with σ 2
θ = 4�

�2t .

Equation (13) then yields a distribution from which δJn must
be drawn, given by

ρ(δJ ) = 1√
2πσ 2

J

exp

(
− 4�

�2t

δJ2

ε2

)
, (16)
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FIG. 2. The probability density is a Gaussian ellipse in phase
space. Here 〈J〉 is the mean of J , φ is the intersection of the ellipse’s
axis with the θ axis, and α = �θ

�J is the inverse slope of the ellipse’s
axis.

which is a simple Gaussian with the standard deviation σJ =√
t

8�
�ε. With the explicit results from Eqs. (15) and (16), the

pseudoclassical map can be easily iterated, e.g., for an initial
ensemble of atoms, with a given integer and quasimomen-
tum each. Results are shown in Fig. 1, where we observe a
very good correspondence with the full quantum-mechanical
simulations based on the Floquet operator from Eq. (8). Inter-
estingly, for the resonant standing wave [Fig. 1(a)] there is no
observable deviation at all.

A. Evolution of phase-space probability densities

We note that Eqs. (15) and (16) are both Gaussian func-
tions. This means that the θ -J phase-space probability density
will always be a (potentially sheared) Gaussian ellipse (see
Fig. 2). This observation allows for a far more efficient way of
computing the survival probability. Generally, the phase-space
probability density is characterized by only five numbers S,
〈J〉, α, σH , and φ (see Fig. 2) and can be written

ρW (θ, J ) = S

πε
exp

(
−σ 2

H

(J − 〈J〉)2

ε2

)

× exp

(
− (θ − αJ − φ)2

σ 2
H

)
, (17)

where S is the survival probability (the total probability re-
maining in phase space), 〈J〉 is the mean of J computed with a
normalized probability density [which is S = 1 in Eq. (17)], φ
is the intersection of the ellipse’s axis with the θ axis, α = �θ

�J
is the inverse of the slope of the ellipse’s axis, and finally
σH determines the width of the probability density in the θ

direction. Note that the width in the J direction is not a free
parameter since it gets dictated by the uncertainty relation
originating from [θ, J] = iε.

Rather than evolving individual trajectories using Eqs. (9)–
(11) we can use the pseudoclassical evolution to propagate the
five parameters that characterize the phase-space probability
density. This gives recursion relations for these which for the
survival probability is

Sn+1 = SnσH,nσθ√(
σ 4

H,n + α2
nε

2 + σ 2
H,nσ

2
θ

) exp

(
σ 2

H,n{π [2(φn + αn〈J〉n) − π ] − (φn + αn〈J〉n)2}
σ 4

H,n + ε2α2
n + σ 2

H,nσ
2
θ

)
. (18)

The recursion relations for the remaining four parameters and
an outline of how they are found are given in the Appendix.
The recursion relations provide an efficient way of comput-
ing the survival probability after a given number of pulses.
Figure 3 compares the survival probability computed in this
way with the one computed quantum mechanically based on
Eq. (8), and we see that the two methods agree excellently,
with no observable difference between them.

It may appear surprising that Eq. (18) captures the full
quantum dynamics for finite ε. However, for a resonant stand-
ing wave there is no evolution in a potential, and classical and
quantum evolution of phase-space distributions are identical
in free space. Additionally, the fluctuations from averaging
over a finite number of trajectories barely visible in Fig. 1(a)
are no longer present, since Eq. (18) evolves the full phase-
space distribution.

B. Case ε = 0

In the special case when ε = 0 it is possible to obtain a
compact analytical formula for the survival probability after N
standing-wave pulses, rather than having to use the recursion
relations given by Eqs. (18), (A4), (A7), (A10), and (A12). In

this case 〈J〉 = 0 and the other quantities are independent of
α, which is undefined. The survival probability after N pulses
is

SN = σθ

2
√

π
√

N

× exp

(
− (
π + 2
πβ )2

12σ 2
θ

(N − 1)N (N + 1)

)
, (19)

and expressions for φ and σH are in the Appendix.1

Figure 4 show a comparison between Eq. (19) and a cal-
culation based on the Floquet operator from Eq. (8). We see
that Eq. (19) agrees excellently with the quantum-mechanical
calculation. This is not surprising since the pseudoclassical
model should become strictly correct in the ε = 0 limit, in
analogy to previous work in the off-resonant limit [18,21–23].

1Note that the angle �φ = 
π + 2
πβ should be taken between
−π and π in Eq. (19).
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(a)

(b)

FIG. 3. Comparison between the recursion model (blue solid
line) and Eq. (8) (red dashed line) for � = 2� and N = 7. (a) De-
pendence on ε with β = 0. (b) Dependence on β with ε =
(10−7 μs)h̄4k2

l /M.

V. CONCLUSION

We derived a classical model for the iterated diffraction
of matter waves from absorption gratings close to the Tal-
bot revivals. This gives an efficient way of predicting the
peak structure of the survival resonances obtained in the
experiments [14–16]. Furthermore, our model offers an in-
tuitive picture of the quantum-mechanical diffraction from
imaginary potentials based on trajectories in phase space.
This way of thinking provides a quantum-to-classical tran-

FIG. 4. Survival probability as a function of β for ε = 0. The red
solid line shows the calculation based on the Floquet operator from
Eq. (8) and the blue dashed line shows Eq. (19).

sition for an effect originally treated as purely wavelike or
quantum mechanical. When the standing-wave light is res-
onant with the atomic transition, leading to pure absorptive
diffraction, the classical model agrees remarkably well with
quantum-mechanical calculations. This situation also allows
for a simple analytical expression for the survival probability
when ε = 0 and generally very efficient calculations based on
phase-space probability densities.
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APPENDIX: RECURSION MAP FOR PHASE-SPACE
PROBABILITY DENSITY

We propagate a probability density such as Eq. (17) in two
steps. First, we compute how it changes due to the standing-
wave pulse and then propagate the result using Eq. (11).
Applying the standing wave changes the probability density
through multiplying it with Eq. (15) and convolving it along J
with Eq. (16). This follows from Eqs. (9) and (10), or simply
by calculating the Wigner function after application of the
grating operator to the Gaussian probability density. Either
way we get

ρW,a = Sbσθ

πε

√(
σ 2

θ + σ 2
H,b + ε2α2

b

σ 2
H,b

) exp

⎛
⎜⎝− (θ − π )2

σ 2
θ

− σ 2
θ

ε2
J2 − σ 2

H,b

ε2
〈J〉2

b − (θ − φ)2

σ 2
H,b

+
( σ 2

θ

ε2 J + σ 2
H,b

ε2 〈J〉b + α(θ−φ)
σ 2

H,b

)2

σ 2
θ

ε2 + σ 2
H,b

ε2 + α2
b

σ 2
H,b

⎞
⎟⎠,

(A1)

where the subscript b denotes the value before the grating was applied. Equation (A1) again describes a Gaussian ellipse in phase
space and noting that Eq. (17) can be written

ρW (θ, J ) = S

πε
exp

[
− 1

σ 2
H

θ2 −
(

σ 2
H

ε2
+ α2

σ 2
H

)
J2 − 2αφ

σ 2
H

J + 2σ 2
H Jm

ε2
J + 2θα

σ 2
H

J − σ 2
H J2

m

ε2
− φ2

σ 2
H

+ 2θφ

σ 2
H

]
, (A2)

we see that the θ2 term in the exponential function determines
σH . So isolating that term in Eq. (A1) allows us to determine

what σH is after application of the grating in terms of the pa-
rameters before. Moreover, by observing Eq. (11) we see that
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σH does not change due to the evolution between standing-
wave pulses, so we find the following recursion relation for
σH , where the subscript n denotes the quantities values before
the (n + 1)th standing-wave pulse:

σ 2
H,n+1 = 1

1
σ 2

θ

+ 1
σ 2

H,n
− ε2α2

n

σ 2
H,n(σ 2

θ σ 2
H,n+σ 4

H,n+ε2α2
n )

(A3)

= σ 2
θ

(
σ 2

H,nσ
2
θ + σ 4

H,n + α2
nε

2
)

2σ 2
H,nσ

2
θ + σ 4

θ + σ 4
H,n + α2

nε
2
. (A4)

Similarly, φ after application of the standing wave (denoted
by φa) can be determined from the term proportional to θ but
not J:

2φa

σ 2
H,n+1

= 2φn

σ 2
H,n

+ 2π

σ 2
θ

+
− 2ε2α2

nφn

σ 2
H,n

+ 2〈J〉nσ
2
H,nαn

σ 2
θ σ 2

H,n + σ 4
H,n + ε2α2

n

, (A5)

�

φa = σ 2
H,n+1

(
φn

(
σ 2

θ + σ 2
H,n

) + 〈J〉nαnσ
2
H,n

σ 2
H,nσ

2
θ + σ 4

H,n + α2
nε

2
+ π

σ 2
θ

)
. (A6)

Using this and Eq. (11), we find φn+1 as

φn+1 = φa + �φ[mod(2π )], (A7)

with �φ = 
π + 2
πβ. Following the same procedure, we
determine αa from the term proportional to both θ and J ,

2αa

σ 2
H,n+1

= 2αn

σ 2
H,n

− 2
(
σ 4

H,n + ε2α2
n

)
αn

σ 2
H,n

(
σ 2

θ σ 2
H,n + σ 4

H,n + ε2α2
n

) , (A8)

�

αa = αnσ
2
H,n+1

σ 2
θ

σ 2
H,nσ

2
θ + σ 4

H,n + α2
nε

2
, (A9)

which using Eq. (11) gives

αn+1 = αa + 1 = αnσ
2
H,n+1

σ 2
θ

σ 2
H,nσ

2
θ + σ 4

H,n + α2
nε

2
+ 1.

(A10)

Finally, 〈J〉 does not change due to evolution between the
standing-wave pulses [Eq. (11)], so 〈J〉n+1 is found from the
term proportional to J but not θ in Eq. (A1):

− 2αaφa

σ 2
H,n+1

+ 2σ 2
H,n+1〈J〉n+1

ε2
=

ε2σ 2
H,n2 σ 2

θ

ε2

( σ 2
H,n

ε2 〈J〉n − αnφn )
σ 2

H,n

)
σ 2

θ σ 2
H,n + σ 4

H,n + ε2α2
n

,

(A11)

�

〈J〉n+1 = ε2αaφa

σ 4
H,n+1

+
ε2σ 2

H,nσ
2
θ

( σ 2
H,n〈J〉n

ε2 − αnφn

σ 2
H,n

)
σ 2

H,n+1

(
σ 2

θ σ 2
H,n + σ 4

H,n + ε2α2
n

) . (A12)

Equation (18) comes from integrating Eq. (A1).
When ε = 0 simple insertion into Eq. (A4) reveals that σH

after N standing-wave pulses is

σ 2
H,N = σ 2

θ

N
. (A13)

Using this and the fact that 〈J〉 = 0 in Eq. (A7) allows us to
show that

φN = 
π + 2
πβ

2
(N + 1) + π. (A14)

Equation (19) then follows from using Eqs. (A13) and (A14)
in Eq. (18).
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