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We study theoretically the phase diagram of strongly coupled two-dimensional Bose-Fermi mixtures in-
teracting with attractive short-range potentials as a function of the particle densities. We focus on the limit
where the size of the bound state between a boson and a fermion is small compared to the average interboson
separation and develop a functional-renormalization-group approach that accounts for the bound-state physics
arising from the extended Fröhlich Hamiltonian. By including three-body correlations we are able to reproduce
the polaron-to-molecule transition in two-dimensional Fermi gases in the extreme limit of vanishing boson
density. We predict frequency- and momentum-resolved spectral functions and study the impact of three-body
correlations on quasiparticle properties. At finite boson density, we find that when the bound-state energy
exceeds the Fermi energy by a critical value, the fermions and bosons can form a fermionic composite with
a well-defined Fermi surface. These composites constitute a Fermi sea of dressed Feshbach molecules in the
case of ultracold atoms, while in the case of atomically thin semiconductors a trion liquid emerges. As the boson
density is increased further, the effective energy gap of the composites decreases, leading to a transition into a
strongly correlated phase where polarons are hybridized with molecular degrees of freedom. We highlight the
universal connection between two-dimensional semiconductors and ultracold atoms, and we discuss perspectives
for further exploring the rich structure of strongly coupled Bose-Fermi mixtures in these complementary systems.
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I. INTRODUCTION

Ever since the theoretical explanation of conventional
superconductivity as arising from the attractive interaction
between electrons mediated by phonons [1,2], Bose-Fermi
mixtures have been the subject of intense research. As they
combine systems of different quantum statistics, their many-
body behavior can be vastly different from that of the
underlying bosonic or fermionic subsystems alone. Conse-
quently, they can feature rich many-body physics ranging
from superconductivity to the formation of composite bosonic
or fermionic bound states similar to mesons and baryons in
particle physics.

In solid-state physics, bosons typically appear as collec-
tive degrees of freedom. These may be, for instance, phonon
excitations of an underlying crystalline lattice or collective
excitations of the electronic system itself in the form of, e.g.,
magnons or plasmons. Beyond such systems, experimental
progress in the fields of atomically thin semiconductors [3]
and ultracold atoms [4] makes it now possible to enter a new
regime of strongly coupled Bose-Fermi mixtures. Here—akin
to the physics of nuclear matter—fermions and bosons appear
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on equal footing, both representing pointlike particle degrees
of freedom.

Crucially, direct pairing between bosons and fermions is
a new essential ingredient in these mixtures. Recently it was
shown [5] that for such strongly coupled Bose-Fermi mixtures
a description in terms of Fröhlich or Holstein models [6,7],
in which fermions couple linearly to the bosonic degrees of
freedom, fails. In addition, the coupling to bosons at quadratic
order becomes relevant, which has to be accounted for in an
extended Fröhlich Hamiltonian [5], giving rise to qualitatively
new physics recently observed in experiments in cold gases
[8–10] and Rydberg systems [11].

Various aspects of atomic, three-dimensional Bose-Fermi
mixtures have been investigated theoretically using the Fröh-
lich model, thus disregarding the crucial quartic interaction
term. This revealed a rich structure of the phase diagram
ranging from polaron formation [12–14] and boson-induced
p-wave superfluidity [15], to phonon softening and phase
separation [16].

Similarly, the phase diagram of two-dimensional Bose-
Fermi mixtures has been explored using the Fröhlich model.
These studies were motivated in particular by exciton-electron
mixtures in semiconductors, and, following initial work by
Ginzburg [17], it was predicted that the system may turn
superconducting [18–20], while other works proposed a tran-
sition to supersolidity [21,22] or that the formation of both
phases might be intertwined [23].

Due to the shortcomings of the Fröhlich model and
mean-field inspired approaches that neglect pairing [24–29],
these initial studies missed the fact that the microscopic
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interaction between atoms in ultracold gases and between
excitons and electrons in semiconductors is fundamentally
attractive. While in cold gases interactions arise from
long-range van der Waals forces, the polarization of
charge-neutral excitons by electrons gives rise to attractive
forces in semiconductors. Crucially, in both cases the
interactions support bound states between the fermionic and
bosonic particles. Consequently, as the strongly coupled
regime is entered, one has to consider the extended Fröhlich
Hamiltonian in order to account for the pairing to fermionic
Feshbach molecules in cold atoms and exciton-electron bound
states, called trions, in semiconductors.

The presence of this novel bound-state physics renders
the description of strongly coupled Bose-Fermi mixtures an
outstanding theoretical challenge. This is reflected by the
fact that until now, except for initial studies in three di-
mensions [30–37], the phase diagram of strongly coupled
Bose-Fermi mixtures as function of the density of bosons
nB and fermions nF , schematically shown in Fig. 1, remains
unexplored. With the discovery of atomically thin transition-
metal dichalcogenides, the semiconducting class of layered
van der Waals materials, the exploration of this phase diagram
in two dimensions becomes particularly urgent. This is not
only due to the potential of layered materials for technological
applications, but also due to the possibility of realizing long-
lived, stable exciton-electron mixtures that feature a striking
similarity to cold atomic mixtures [38–40]. This universal
connection, detailed by the comparison of typical scales in
both systems shown in Table II below, opens the possibility
to explore emerging phases in strongly interacting systems
in two complementary and seemingly disparate systems, that
while playing on vastly different energy and length scales, are
governed by the same dimensionless system parameters.

In this work, we study theoretically the phase diagram
of strongly coupled two-dimensional Bose-Fermi mixtures
as a function of the boson and fermion densities. A key
theoretical challenge is that the pairing between bosons and
fermions gives rise to fermionic composite particles. Due
to their fermionic nature, these particles evade conventional
mean-field approaches and are thus much harder to describe
than their bosonic counterparts in Fermi mixtures, where they
emerge as Cooper pairs or bosonic molecules. Moreover, the
existence of such fermionic composites implies a phase di-
agram that is richer in possible phase transitions compared
to the simpler Fröhlich model. Here we tackle this challenge
by developing first steps towards a comprehensive functional-
renormalization-group approach that allows access to the full
phase diagram of Bose-Fermi mixtures in two dimension. Our
approach accounts for the bound-state physics arising from
the extended Fröhlich Hamiltonian and can be systematically
extended to describe the plethora of competing phases illus-
trated in Fig. 1.

In order to explore this phase diagram it is crucial to start
from limits that allow for a controlled understanding of the
physics involved. One such limit is found at extreme popu-
lation imbalance where just a single boson is immersed in a
fermionic bath. This so-called Fermi polaron problem already
displays rich physics that has been studied extensively in three
dimensions [42–54]. Here one finds that as the interaction
between the impurity and the bath is tuned, the system under-

FIG. 1. Schematic phase diagram of two-dimensional Bose-
Fermi mixtures as a function of the density of either species. At
strong coupling the system is described by the extended Fröhlich
model that accounts for the formation of a two-body bound state
between fermions and bosons of energy εB. The limit nB = 0 (along
the y-axis) defines the Fermi polaron problem, discussed in Sec. III,
where a single bosonic impurity interacts with a fermionic bath.
In this limit the impurity can either bind with a fermion into a
molecule or remain unbound as a Fermi polaron. At finite boson
density, discussed in Sec. IV, we find a transition from a molecular
phase which hosts a Fermi sea of bound molecules (light gray) to a
mixed phase in which a condensate of bosons hybridizes fermionic
and molecular degrees of freedom [red (dark shading)]. With the
exception of the extreme limit nF = 0 that corresponds to the Bose
polaron problem (along the x-axis), as the boson density is increased
beyond the regime nB � nF [red (dark) to blue (light shading)],
the phase diagram remains largely unexplored. Starting with the
possibility of bipolaron formation [41], various competing phases
can be conjectured based on studies of the simpler weak-coupling
Fröhlich model, ranging from supersolid charge density wave states
[21,23] to boson-mediated s/p-wave fermion pairing [15,16,18,19].

goes a sharp transition from a polaronic to a molecular state.
While in the polaron state the impurity is essentially weakly
dressed by bath excitations, in the molecular state the impurity
binds tightly to one fermion of the surrounding environment
giving rise to a state that, close to the transition [52,53], is
orthogonal to the polaron state.

The two-dimensional case has received attention over the
last decade [55–61] as well. It turns out that this case is
more challenging to describe due to the increased significance
of quantum fluctuations in reduced dimensions. While early
works based on simple variational wave functions found no
polaron-to-molecule transition [55], later studies showed that
this finding was in fact an artifact caused by the neglect of
three-body correlations. Including these, one indeed recovers
a polaron-to-molecule transition in two dimensions [56,59],
a result supported by subsequent studies using a variety of
quantum Monte Carlo (QMC) techniques [58,60,61].
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As the preceding discussion shows, there are strong con-
straints on any approach that aims to reliably describe strongly
coupled Bose-Fermi mixtures in two dimensions even on a
qualitative level. First, in order to address the strong-coupling
character of the problem correctly, it must be based on the
extended Fröhlich model. Second, it must go beyond pertur-
bation theory in order to describe the formation of fermionic
bound states. Third, at vanishing boson density it must
correctly reproduce the quantum impurity limit, which neces-
sitates the incorporation of three-body correlations. Fourth, in
order to describe the phase diagram at finite boson density nB,
the approach must be able to deal with the fermionic nature of
the composite particles that will experience Pauli blocking at
finite density similar to baryons in atomic nuclei.

All these requirements are met by the functional renormal-
ization group (fRG). Based on an implementation of Wilson’s
renormalization-group idea, the fRG has been successfully
applied to the study of strongly coupled systems in a broad
range of areas [62–65], spanning from the asymptotic safety
of quantum gravity [66–68] to high-energy [69,70], statistical
[71–73], and condensed matter physics [74–78]. In addition
to addressing the aforementioned constraints imposed by the
two-dimensional polaron problem, the fRG technique devel-
oped in this work displays several other advantages. First, in
contrast to variational approaches based on particle-hole exci-
tation expansions, it provides a fully self-consistent approach
that naturally includes high-order quantum fluctuations and
treats polaron and molecular states on equal footing. Second,
compared to conventional quantum field theory approaches
the fRG includes quantum fluctuations in a coarse-grained
fashion—momentum-by-momentum shell—that makes it ide-
ally suited to treat competing ordering instabilities. Third,
similar to variational techniques, the fRG can be improved
systematically by using increasingly refined truncations of
the underlying quantum effective action. Finally, it offers an
easier access to spectral and dynamical response functions
compared to Monte Carlo approaches where the analytic con-
tinuation of noisy data is required.

We demonstrate the applicability of our approach by fo-
cusing on the case where the size aB of the fermionic bound
state is small compared to the average distance d ∼ n−1/2

B
between bosons. Since for sufficiently short-ranged attraction
this bound state always exists in two dimensions [79], its
binding energy εB = h̄2/(2μa2

B) (with μ the reduced mass)
is the relevant interaction scale, i.e., we work in the limit
(h̄2/2μ)nB/εB � 1.

By including the full feedback of three-body correlations
on the renormalization-group flow, we demonstrate the correct
description of the polaron-to-molecule transition in the single
boson limit. In particular we predict the transition to occur
at a critical dimensionless interaction strength (εF /εB)∗ =
1/18.78 in excellent agreement with state-of-the-art varia-
tional [56,59] and diagrammatic MC approaches [58,60,61].

Having thus established the limiting case of the phase dia-
gram, we extend the renormalization-group (RG) flow to finite
boson density. At small dimensionless Fermi energies εF /εB,
we find that fermionic composites build up a well-defined
Fermi surface, leading to the formation of a trion liquid in the
case of semiconductors and a Fermi sea of dressed Feshbach
molecules in the case of ultracold atoms. As the boson den-

sity is increased, the effective energy gap of the composites
decreases, leading to a transition into a strongly correlated
phase where fermions are hybridized with molecular degrees
of freedom. This extension of a single-boson framework does
not take into account the formation of higher-order bound
states including more than one boson [80–82]. While this de-
scription might thus be missing some of the phases and states
at play, recent theoretical and experimental results suggest
that this simplified treatment may, however, still be sufficient
to describe the physics relevant on experimental timescales
[37,83].

Adapting the fRG approach to account for the full fre-
quency dependence of self-energies, we predict the spectral
properties of the model. We find that the inclusion of three-
body correlations has a strong impact on the effective masses
of polarons and molecules (trions) which can be observed
using state-of-the-art experimental techniques recently devel-
oped in ultracold atoms [84–86].

The paper is structured as follows: in Sec. II we
introduce the strong-coupling model of Bose-Fermi mix-
tures and discuss the effective action formalism. Here we
also introduce our fRG approach, derive the corresponding
renormalization-group equations, and discuss how the vari-
ous phases discussed in this work can be distinguished. As
this section contains a detailed discussion of the used tech-
nique, readers mainly interested in the predictions of our work
may proceed from the introduction to Sec. III and the sec-
tions thereafter. In Sec. III we discuss the universal connection
between strongly coupled Bose-Fermi mixtures in atomically
thin semiconductors and ultracold atoms. We benchmark our
approach on the limiting case of a single boson embedded in
a fermionic environment, obtain the ground-state energy of
the system, and study the evolution of correlation functions in
dependence on the fermion density and interaction strength.
In Sec. IV we turn to the case of finite boson density. We de-
termine the phase diagram both as a function of the chemical
potential and density of both species. In Sec. V we adapt the
fRG scheme to describe the spectral functions of the model
and we predict the properties of quasiparticles emerging in
the theory. We conclude in Sec. VI, discuss perspectives for
possible experimental realizations and provide an overview of
open questions and promising extensions of the fRG approach
introduced in the present work.

II. MODEL

We consider a two-dimensional Bose-Fermi mixture con-
sisting of a fermionic species ψ into which bosonic particles
φ are embedded. The system is described by the microscopic
action

S =
∫

x
ψ∗

x

(
∂τ − ∇2

2mF
− μψ

)
ψx

+
∫

x
φ∗

x

(
∂τ − ∇2

2mB
− μφ

)
φx + g

∫
x
ψ∗

x φ∗
x φx ψx , (1)

where x = (r, τ ) denotes the coordinate r and imaginary time
τ ∈ [0, 1/T ]; moreover,

∫
x = ∫ 1/T

0 dτ
∫

d2r. In the following,
we consider zero temperature, T = 0, and assume that bosons
and fermions have the same mass m = mF = mB. We work in
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units h̄ = kB = 1, and set 2m = 1 unless indicated otherwise.
The fields ψ and φ are of fermionic Grassmann and com-
plex boson nature, respectively. The two species interact by
means of an attractive contact potential of strength g < 0. The
model is regularized in the ultraviolet (UV) by a momentum
cutoff �.

The densities of both species are set by the chemical po-
tentials μψ/φ [87]. At a finite fermion density nψ (set by a
chemical potential μψ > 0), tuning the boson chemical po-
tential μφ at fixed μψ and g, triggers a transition at a critical
chemical potential μc

φ between a vacuum phase of bosons
(μφ < μc

φ) with vanishing boson density to a phase of finite
boson density nB > 0 (μφ > μc

φ).
For strongly coupled Bose-Fermi mixtures it is crucial to

allow for the possibility of the pairing of the bosons and
fermions to a composite fermionic molecular (trion) state. In
order to describe this bound state, it is essential to resolve
the pole structure of the scattering vertex sufficiently well
[44,88]. In order to achieve this in an efficient way, rather
than considering the action in Eq. (1), we study a two-channel
model where the interspecies interaction is mediated by a
molecule field t , that describes a composite fermionic particle
of mass 2m [89–92]. The action is given by

S =
∫

p,ω

[
ψ∗

P (−iω + p2 − μψ )ψP

+φ∗
P(−iω + p2 − μφ )φP + t∗

P

(
−iω + p2

2
+ mt

)
tP

]
+ h

∫
x

[ψ∗
x φ∗

x tx + t∗
x φx ψx ]. (2)

Here a boson and a fermion can be converted into the molecule
(trion) t with a conversion Yukawa coupling h, and mt is the
detuning energy of the molecule. In Eq. (2) we give the action
in Fourier space where P = (p, ω) comprises the momentum
p and the Matsubara frequency ω, and

∫
p,ω

≡ ∫
d2p dω. We

operate in the limit where h → ∞ which universally describes
both open-channel dominated Feshbach resonances in cold
atoms [4] as well as electron-exciton scattering in atomically
thin transition metal dichalcogenides [38]. In this limit, t
becomes a purely auxiliary Hubbard-Stratonovich field, i.e.,
it can be integrated out to yield back the original action (1)
when h2/mt = −g is fulfilled [45,93].

In two dimensions, a bound state exists for any attractive
interaction strength g < 0 [79]. Using a sharp UV cutoff in
the Lippmann-Schwinger equation, the binding energy εB is
related to the parameters of the microscopic model through
[55,79,94]

mt = h2

8π
ln

(
1 + 2�2

εB

)
. (3)

Thus, rather than using the microscopic coupling g (or equiv-
alently h and mt ) we can parametrize the interaction strength
in terms of the experimentally measurable binding energy εB

of the molecule (in the case of cold atoms) or trion (in the
case of 2D semiconductors), respectively. Note that in the
following we will use the terms trion and molecule often
interchangeably.

A. fRG formalism and effective action

The fRG is a momentum space implementation of Wil-
son’s renormalization group. In the following, we briefly
recall its principle; for a detailed discussion we refer to
Refs. [62–64,77]. The idea behind the fRG is to build a family
of theories indexed by a momentum scale k such that only
quantum fluctuations above that scale are taken into account.
Thus rather than treating fluctuations at all scales at once, one
iteratively integrates out modes from high to low energies by
smoothly lowering k from the microscopic UV scale � down
to k = 0.

In practice this is done by adding to the action (2) an
infrared regulator term


Sk =
∫

p,ω

[ψ∗
PRψ,k (P)ψP + φ∗

PRφ,k (P)φP + t∗
PRt,k (P)tP],

(4)

which penalizes low-energy fluctuations, such that only high-
energy modes contribute to the field integral.

For bosons and fermions at vanishing density the low-
energy modes are located at small momenta. Thus the cutoff
function Rσ,k (P) (σ = ψ , φ, t) is set to be large (with re-
spect to k2) for |p| � k and negligible for |p| 	 k. In this
way, low-momentum fluctuations are suppressed while high-
momentum ones are left unaffected. For fermions at a finite
density, the low-energy modes are located around the Fermi
surface. Accordingly, in this case Rσ,k is chosen to suppress
fluctuations of modes inside a momentum shell of width ∼2k
around the Fermi surface.

Starting from the sum of S and 
Sk one then defines
a scale-dependent partition function Zk , as well as a scale-
dependent effective action �k through a (modified) Legendre
transform of the free energy lnZk . The evolution or “flow” of
the effective action as the scale k is lowered is then given by
the Wetterich equation [95],

∂k�k = 1
2 STr

[(
�

(2)
k + Rk

)−1
∂kRk

]
. (5)

In the above expression, the supertrace STr denotes a summa-
tion over all momenta and frequencies, as well as the different
fields, including a minus sign for fermions. Moreover, �

(2)
k

and Rk represent the matrices of second functional derivatives
of �k and 
Sk , respectively, with respect to the quantum fields
[96].

Provided Rk=� = ∞ [97] at k = � all fluctuations are
suppressed and �k=� = S + const [63,64]. On the other hand,
for Rk=0 = 0 one recovers at k = 0 the effective action of the
original model, �k=0 = �. Crucially, the effective action �

(Gibbs free energy) is the generating functional of all one-
particle irreducible vertices. It thus contains all information
about the exact solution of the theory, and hence its determi-
nation corresponds to solving the nonrelativistic, many-body
Schrödinger equation.

B. Truncation schemes

While the flow equation (5) is exact, it is, in most practical
cases, impossible to solve without resorting to approxima-
tions. A standard strategy is to propose an Ansatz for the
flowing effective action �k . When dealing with fermions, it is
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customary to expand in the powers of the fields in a so-called
vertex expansion [77]. Following this strategy we choose the
Ansatz for the field-dependent part of the effective action

�2,k =
∫

p,ω

[
ψ∗

PG−1
ψ,k (P)ψP + φ∗

PG−1
φ,k (P)φP + t∗

PG−1
t,k (P)tP

]
+ hk

∫
x
(ψ∗

x φ∗
x tx + t∗

x φx ψx ). (6)

We perform an additional gradient expansion by neglecting
a possibly emerging momentum dependence of the Yukawa
coupling hk via vertex corrections. Each field σ = ψ, φ, t
carries renormalized flowing single-particle Green’s functions
whose momentum dependence is approximated within the
gradient expansion as

G−1
ψ,k (p, ω) = Aψ,k (−iω + p2 − μψ ) + mψ,k, (7)

G−1
φ,k (p, ω) = Aφ,k (−iω + p2) + mφ,k, (8)

G−1
t,k (p, ω) = At,k (−iω + p2/2) + mt,k, (9)

parametrized by inverse quasiparticle weights Aσ,k and detun-
ings mσ,k . Note that for the boson field φ we have absorbed the
dependence on the chemical potential μφ into the definition
of the detuning mφ,k for convenience. The Ansatz (6) incor-
porates in detail two-body correlations between the bosons
and fermions. In particular, it describes well the pairing cor-
relations between the particles, which is essential to enter
the strong-coupling regime. As a shorthand we refer to the
effective flowing action (6) as the two-body truncation.

The two-body truncation has been used successfully to
study the Fermi polaron problem in three space dimen-
sions [53,98,99]. In two space dimensions, however, quantum
fluctuations are stronger and previous works [55,56] have
established that higher-order correlations must be taken into
account to describe the ground state of the system. Indeed,
as we shall see in Sec. III, the two-body truncation is not
sufficient to describe the polaron–to–molecule transition.

Consequently, we extend the Ansatz for the effective action
to a three-body truncation. To this end we add a term to the
two-body truncation that accounts for the build up of three-
body correlations during the RG flow:

�3,k = �2,k + λk

∫
x
ψ∗

x t∗
x tx ψx . (10)

The additional term proportional to the contact coupling λk

describes the scattering between composite molecules and
fermions, and thus, by virtue of the tree-level diagram de-
picted in Fig. 2(a), it accounts effectively for the emergence
of three-body correlations in the system.

Let us briefly comment on the validity of the gradient
expansion used for both truncations (6) and (10). In the single-
boson limit, we expect the low-energy excitations of the boson
φ and the composite particle t to be at small momenta, and we
may thus expand the momentum dependence of their propa-
gators in a power series about p = 0, ω = 0. For the fermions,
on the other hand, we expect the most relevant excitations to
lie around the Fermi surface. We thus expand their propagator
about p2 = εF , ω = 0.

FIG. 2. (a) Tree-level diagram generated from the effective ac-
tion that leads to the emergence of three-body correlations in the
system. (b) Exchange tree-level diagram giving rise to the Bose-
Fermi scattering T -matrix. (c), (d) Tree-level diagrams contributing
to the overall atom-molecule scattering amplitude. The dashed, solid,
and double lines denote the boson, fermion, and molecule Green’s
functions Gφ/ψ/t,k=0, respectively, while the dots and squares denote
hk=0 and λk=0, all evaluated at k = 0.

As we extend our calculation to a finite boson density we
retain the expansion around p = 0 for the molecules as we
will find that their phase appears in a regime of the phase
diagram where nB � nF . Thus the Fermi energy of molecules
always remains small. Moreover, we employ a gradient ex-
pansion that neglects effective mass corrections as these are
not expected to be crucial to correctly capture the qualitative
physics of the phase diagram (except for large mass ratios
mF � mB [100], a regime not considered in this work).

In the quantum impurity limit, the vanishing of the boson
density implies that the properties of the fermionic Green’s
function are not affected by interactions; i.e., the propagator
in Eq. (7) with Aψ,k = 1 and mψ,k = 0 is exact. This can also
be verified explicitly from the flow equations derived further
below [cf. Eqs. (15) to (18) and (E2)]. At finite boson density
we neglect the renormalization of the fermionic propagators
since throughout this work we will remain in the regime of
density ratios nB � nF .

While the truncation in Eq. (10) can be improved sys-
tematically, e.g., by considering higher-order correlations or
a more involved momentum dependence of the propagators
or the vertices, the model in Eq. (10) is sufficient to accu-
rately describe the intricate quantum impurity limit, as shown
in Sec. III. In particular, even though hk and λk have no
momentum dependence, the Bose-Fermi scattering T -matrix,
as described by the exchange tree-level diagram shown in
Fig. 2(b), acquires a momentum dependence due to the dy-
namic field t that is sufficient to describe accurately the
Bose-Fermi scattering at the relevant energy scales.
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We note that at finite boson density our truncation does
not account for the possible formation of bound states be-
tween two or more bosons and a single fermion [80–82].
In a realistic experimental setting, where the system will be
prepared adiabatically, the formation of these higher-order
bound states requires several bosons to be located in the close
vicinity of the fermions. Since we focus here, however, on
the regime where the boson density is significantly smaller
than the fermion density, nB � nF , the probability to find
such configurations will be small. As a result, compared to
the timescale of Fermi polaron or molecule formation, the
formation of higher-order bound states will be suppressed,
enabling the observation of the phase diagram studied in
this work on transient timescales. Nevertheless, while recent
results suggest that this treatment is appropriate [37,83], the
framework used in this work can be extended to feature bound
states between two bosons and a fermion; both in the vacuum
limit as well as at finite density (for details see Appendix E).
This highlights that this study provides only an initial step in
the exploration of this phase diagram which, given sufficiently
stable bound states, may feature an even richer structure.

C. Regulators

For the regulators Rσ,k we use sharp cutoff functions [77],
defined so that the regulated inverse flowing propagators(

Gc
σ,k

)−1 = (Gσ,k )−1 + Rσ,k (11)

appearing on the rhs of the flow equation (5) acquire the
simple form

Gc
ψ,k (p, ω) = Gψ,k (p, ω)�(|p2 − εF,k| − k2), (12)

Gc
φ,k (p, ω) = Gφ,k (p, ω)�(|p| − k), (13)

Gc
t,k (p, ω) = Gt,k (p, ω)�(|p| − k). (14)

Here εF,k = μψ − mψ,k/Aψ,k is the Fermi energy of the
fermionic species ψ . For the fermions ψ the regulator sup-
presses fluctuations at momenta in a shell of width 2k around
the, in principle, flowing Fermi surface of the bath [101]. Even
though the molecule is a fermion as well and thus may develop
a Fermi surface at finite boson density, we regulate it about
zero momentum as all phases considered in this work appear
in the regime nB � nF .

The choice of sharp cutoff functions has several advantages
[102]. Foremost, it allows for an analytic derivation of the
flow equations. In addition, it facilitates the comparison to
previous FRG studies [53,98,99] as well as to self-consistent
diagrammatic approximations that display a similar mathe-
matical structure [5].

D. Flow equations

We now turn to the explicit derivation of the RG equa-
tions [103,104] of all running coupling constants. For the
three-body truncation �3,k (�2,k is a subset obtained by setting
λk ≡ 0 in all flow equations) all vertices can be expressed
in terms of the six running couplings Aσ,k , mσ,k , hk , and λk .
Following the prescription detailed in Appendix A 1, the flow
equations are obtained from appropriate functional derivatives

FIG. 3. Diagrammatic representation of the fRG flow equa-
tions (15) to (18) and (E2). Lines represent the full scale-dependent
propagators, including the regulators, and the dots denote interaction
vertices.

of the Wetterich equation. Their diagrammatic representation
is shown in Fig. 3, and in terms of the flowing Green’s func-
tions they read

∂kG−1
φ,k (P) = h2

k ∂̃k

∫
Q

Gc
t,k (P + Q)Gc

ψ,k (Q), (15)

∂kG−1
ψ,k (P) = −h2

k ∂̃k

∫
Q

[
Gc

t,k (P + Q)Gc
φ,k (Q) + λk

h2
k

Gc
t,k (Q)

]
,

(16)

∂kG−1
t,k (P) = −h2

k ∂̃k

∫
Q

[
Gc

φ,k (P − Q)Gc
ψ,k (Q) + λ

h2
k

Gc
ψ,k (Q)

]
,

(17)

and

∂khk = −λk

hk
∂kG−1

φ,k (0), (18)
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∂kλk = −λ2
k ∂̃k

∫
Q

Gc
t,k (Q)

[
Gc

ψ,k (Q) + Gc
ψ,k (−Q)

]
−h4

k ∂̃k

∫
Q

Gc
t,k (Q)Gc

φ,k (Q)2Gc
ψ,k (−Q)

−2h2
kλk ∂̃k

∫
Q

Gc
t,k (Q)Gc

φ,k (Q)Gc
ψ,k (−Q). (19)

In these expressions ∂̃k stands for the derivative with respect
to the k dependence of the regulator only, i.e., ∂̃k = (∂kRk )∂Rk

and
∫

P ≡ (2π )−3
∫

d2p dω. As discussed in Appendix A 2,
from Eqs. (15) to (17) the flow equations of the couplings
Aσ,k , mσ,k are obtained by projection onto the momentum
dependencies given in Eqs. (7) to (9).

E. RG initial conditions

The initial conditions for the flows are obtained by setting
�k=� = S + const. First, we discuss the UV initial conditions
for mt and At which are obtained as follows. The two-body
problem of a single boson scattering with a single fermion can
be solved exactly. The resulting initial condition for mt,k=�

is given by Eq. (3). To arrive at this expression one may
recognize that in the two-body problem the molecule is the
ground state. As such it has to be a gapless degree of freedom
in the infrared, i.e., mt,k=0 = 0. Moreover, μψ and μφ must
be set to negative values μvac

ψ and μvac
φ to yield a vanishing

density of either species. In addition, μvac
ψ + μvac

φ = −εB has
to be fulfilled to ensure that the energy cost to create two
particles from the vacuum to form a bound state is given by the
molecular binding energy εB. Using these conditions, together
with the fact that in the two-body problem neither the boson
and fermion propagators Gψ,k and Gφ,k nor the vertices hk and
λk renormalize, the flow of mt,k can be solved analytically to
yield Eq. (3) (for more details we refer to Appendix B).

We work in the limit of large hk=�, which ensures t to be
purely an auxiliary field, and we use At,k=� = 1. Furthermore,
we set λk=� = 0 as it does not appear in the classical action
in Eq. (2).

The initial condition for the field renormalization of the
boson field is naturally given by Aφ,� = 1, and the UV value
of its detuning is set by the boson chemical potential, mφ,� =
−μφ . Finally, since we will study only phases at small ratios
nB � nF we can assume that the fermion field is not renor-
malized, i.e., Aψ,k = 1 and mψ,k = 0 throughout the RG flow.

F. Chemical potentials and distinction of phases

The numerical integration of the flow equations yields the
physical value of the propagators and interaction vertices at
the infrared scale k = 0. Depending on their properties we can
distinguish various states and phases of the strongly coupled
Bose-Fermi mixture, summarized in Table I.

In the single-boson limit, yet at finite fermion density, we
distinguish two states: a molecular state in which the boson
is paired into a composite particle, and a polaron state where
the boson is dressed by fluctuations of majority fermion par-
ticles. At finite boson density, we distinguish two phases: a
molecular phase, where all bosons are paired into fermionic
molecules, nt > 0 and nφ = 0, and a mixed phase where
molecules and unpaired polarons coexist [30]. In the mixed

TABLE I. Characterization of different ground states and phases
of strongly coupled Bose-Fermi mixtures discussed in this work.

nt nφ μφ mt,0 mφ,0 State/phase No. bosons

= 0 = 0 < μc
φ >0 >0 Boson-vacuum 0

= 0 = 0 = μc
φ = 0 >0 Molecular state 1

= 0 = 0 = μc
φ >0 = 0 Polaron state 1

>0 = 0 > μc
φ <0 >0 Molecular phase 	 1

>0 >0 > μc
φ ∈ R = 0 Mixed phase 	 1

phase, nφ > 0, so that the condensate of bosons creates a
bilinear coupling in the effective action ∼h

√
nφ (t∗ψ + c.c.)

leading to a hybridization of the fermions with the molecular
degree of freedom. This means that no purely polaronic phase
with nt = 0 and nφ > 0 is possible. In the limit of nB → 0
the mixed phase connects to the polaron state, whereas the
molecular phase connects to the molecular state.

In order to differentiate between these states and phases we
consider the different densities defined by integrals propor-
tional to

∫
p,ω

Gσ,k=0(p, ω). These densities are nonzero only
when poles of Gσ,k=0(p, ω) lie in the upper half of the com-
plex ω-frequency plane. Hence, from the location of poles,
manifest in the energy gaps of the particle in the infrared, we
can determine whether the corresponding densities vanish.

Specifically, the boson vacuum corresponds to a finite ex-
citation gap for both the boson and the molecule, mφ,k=0,
mt,k=0 > 0. Likewise, in the single-boson limit the ground
state has to be gapless while the excited state is gapped since
this limit marks the boundary between the boson vacuum and
the many-boson regime.

At finite boson density, the molecular phase corresponds
to mφ,k=0 > 0 and mt,k=0 < 0, i.e., molecules feature a Fermi
surface determined by their Fermi energy −mt,k=0/At,k=0. For
the mixed phase, the situation is more subtle. Our Ansatz does
not allow for the description of a condensate at finite boson
density that could be accounted for, e.g., by shifting the φ-field
expectation value by a coherent state transformation. How-
ever, it is still possible to predict whether a boson condensate
forms. Indeed, a necessary condition for the existence of a
φ-condensate is that for some 0 � k � � the boson gap mφ,k

vanishes [105]. In that case, even though we are unable to
further pursue the RG flow, we identify the phase to be the
mixed phase.

In this mixed phase the bilinear term mentioned above
leads to a mixing of the fermionic and the molecular propa-
gators. Consequently, these propagators share the same pole
structure and the corresponding species are thus populated
simultaneously. As a result all three particle species are
present in this phase. This implies that in our model a regime
populated exclusively by majority fermions and condensed
minority bosons is possible only in the single-boson limit at
nB = 0.

III. QUANTUM IMPURITY LIMIT: SINGLE
BOSON IN A FERMI SEA

We first apply our approach to the limiting case of the
Bose-Fermi phase diagram where an individual boson is im-
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TABLE II. Comparison of key properties of physical systems in which two-dimensional Bose-Fermi mixtures can be realized in a universal
way: two-dimensional semiconductors hosted in atomically thin transition-metal dichalcogenides (TMD) and confined, quasi-two-dimensional
gases of ultracold atoms interacting via Feshbach resonances. The constant a0 = 0.529 Å denotes the Bohr radius.

2D semiconductors (TMD) Cold atoms

Fermions Electron/hole Atom
Charge negative/positive neutral

size Pointlike ∼a0

Bosons Exciton Atom
Charge neutral neutral

size ∼1 nm ∼a0

Composite fermion Trion Molecule
Charge charged neutral

size ∼2 nm (fixed) ∼1000a0 (tunable)
Typical Fermi energy ∼εF 0–50 meV =̂ 0–10 THz 50 peV =̂ 10 kHz

Tunability Tunable: gate doping ∼Fixed
Typical interaction energy ∼εB 30 meV =̂ 10 THz 0–50 peV =̂ 0–10 kHz

Tunability Fixed Tunable: Feshbach resonances
Dimension 2D 1D, 2D, 3D
Fermi temperature T/TF mK–300 K: T/TF ∼ 0–2 5 nK–μK: T/TF ∼ 0.05–2
Boson-fermion potential Short-ranged, polarization int. ∼1/r4 Short-ranged, vdW/Feshbach int.
Interfermion separation >1 nm (tunable) ∼1000a0 (∼ fixed)
Dimensionless interaction strength εB/εF ∼1, strong coupling ∼1, strong coupling

mersed in a bath of fermions. This limit defines the so-called
Fermi polaron problem, and its solution determines the phase
diagram along the y-axis of Fig. 1. In order to reach this
single-boson limit, the boson chemical potential is tuned to
the critical value μφ = μc

φ that separates the boson vacuum
(μφ < μc

φ) from the phase of a finite boson density (μφ >

μc
φ); see Table I.

A. Fermi polaron problem in ultracold atoms and atomically
thin semiconductors

The nature of the ground state of the Fermi polaron prob-
lem universally depends on the ratio of the two relevant energy
scales of the problem: the kinetic energy, represented by εF ,
and the interaction energy, set by εB. While εF /εB can, in
theory, be tuned by adjusting either εF or εB, in experiments, it
depends on the physical system, which parameter is accessible
for easy tunability.

The two main systems in which strongly coupled Bose-
Fermi mixtures can be realized today are ultracold atoms
and atomically thin semiconducting transition metal dichalco-
genides (TMD). To support the following discussion, in
Table II we summarize key parameters and quantities describ-
ing the universal connection between these systems.

In monolayer TMD, εB represents the trion binding energy
which is typically fixed [38,39,106–108]. However, by elec-
trostatically doping the system with charge carriers, the Fermi
energy εF is easily adjusted and εF /εB can thus be tuned. In
cold atoms the situation is reversed. Here the binding energy
εB can be tuned using Feshbach resonances, while adjusting
the Fermi energy over a wide range of values is challenging.
As a result, in cold atoms the Fermi energy εF is the natural
unit and, correspondingly, the spectrum of the system is ex-
pressed as a function of the dimensionless energy E/εF and
interaction strength εB/εF . In contrast, in TMD the binding

energy εB provides the appropriate unit, and the spectrum is
expressed as a function of E/εB and εF /εB.

Of course, physics does not depend on the chosen units. It
is, however, still instructive to compare spectra for both sets of
units, as the choice of units reflects the experimental protocols
employed to observe the physics of Fermi polarons: in TMD
using gate doping of εF and in cold atoms interaction tuning
of εB exploiting Feshbach resonances.

B. Quasiparticle energies

In order to obtain the spectrum of the Fermi polaron prob-
lem we first determine the ground-state energy of the system,
set by μc

φ , the critical energy needed to bring a boson from the
vacuum. The procedure is summarized in Fig. 4: when the po-
laron is the ground state, mφ,k=0 = 0, and the polaron energy
is given by Epol = μc

φ . In this polaron regime the molecular

molecular state polaron state

FIG. 4. Schematic characterization of the relevant states in the
Fermi polaron problem. In the molecular state the impurity binds to
a single fermion, while in the polaron state it is collectively dressed
by the environment. For each state, we give the expressions for the
energies Epol and Emol of the polaron and the molecule.
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(a) (b)

FIG. 5. Polaron and molecule energies, Epol (orange) and Emol (blue), obtained using the two- and three-body truncations �2,k (dashed
lines) and �3,k (solid lines). (a) Energy spectrum expressed in units most suitable for cold atom experiments where εB is the tunable parameter,
whereas εF is fixed. As all particle energies are approximately proportional to εB, the energies Epol/mol are shifted by εB to enhance visibility.
The inset shows the energies without the shift. (b) Energy spectrum expressed in units most suitable for 2D semiconductor experiments. Here
εB is fixed and εF is varied using gate doping. Despite the different appearance, both panels show the same data. The polaron-to-molecule
transition is marked by the vertical, dashed gray line. The results are obtained for h2

k=� = 108εF and �2 = 2.5 × 105εF , which ensures that the
two-channel model reduces to a model of contact interactions between fermions and bosons.

state is an excited state whose energy is determined from
the pole of its Green’s function which yields Emol = Epol +
mt,k=0/At,k=0. In turn, in the molecular regime the molecule is
the ground state. Here mt,k=0 = 0, and the molecule energy is
given by Emol = μc

φ , while the polaron is an excited state with
an energy gap Epol = Emol + mφ,k=0/Aφ,k=0.

In Fig. 5 we show the polaron and the molecular energy
as obtained from the two- and three-body truncations. The
spectrum of the Fermi polaron problem is shown both in units
convenient for cold atoms [Fig. 5(a)] as well as 2D materials
[Fig. 5(b)]. The comparison of (a) and (b) demonstrates that
despite the fact that both panels contain fully redundant infor-
mation, they yet represent seemingly different behavior which
is, however, solely due to the different choice of units.

In Fig. 5 the results obtained from the two-body truncation
(6) are shown as dashed lines. This truncation takes into
account a similar set of diagrams as a non-self-consistent
T -matrix approach [57], which, in turn, is equivalent to a
variational Chevy approach [44,55]. By contrast to the afore-
mentioned approaches our fRG is self-consistent. As expected
from these approaches, we find that the two-body truncation
is not sufficient to generate a polaron-to-molecule transition.

Instead we find that the inclusion of irreducible three-body
correlations is crucial, which is consistent with diagrammatic
MC [60] and higher-order variational approaches [56,59]. We
find that the inclusion of the three-body vertex �3,k lowers
the molecular energy while increasing the polaron energy.
As a result, taking into account the RG flow of the irre-
ducible atom-molecule scattering vertex λk (solid lines in
Fig. 5) we find a transition at a dimensionless interaction
strength (εB/εF )∗ = 18.78 which is in excellent agreement

with MC and variational results. A comparison of our result
for (εB/εF )∗ with literature is provided in Table III.

Similar to previous field-theoretical or variational ap-
proaches [55–57,59], we do not include all possible two-body
correlations and focus on the effect of pairing correlations.
Further two-body correlations can, for instance, be generated
by the reemergence of the four-point vertex ∼γψ∗ψφ∗φ.
One may justify the exclusion of this vertex by an analogy
to BEC superconductivity. There the vertex γ accounts for
induced interactions in the particle-hole channel, leading to
a contribution similar to the Gorkov corrections to BCS su-
perconductivity [109–111]. In the BCS case, it leads to an
effective shift of the inverse dimensionless interaction strength

TABLE III. Comparison of the critical ratio (εB/εF )∗ and the
interaction parameter ηc = − log(εB/2εF )/2 = log(kF a2D ) (that re-
lates the 2D scattering length to the binding energy) obtained from
our approach (fRG, first line) with that found by previous theoretical
calculations based on Monte Carlo techniques, variational Ansätze,
and experiment.

Theoretical approach (εB/εF )∗ ηc

fRG (present work) 18.78 −1.12
Basic variational [56] 9.9 −0.8
High-order variational [59] 14 −0.97
Diag. MC [60] 18.1 ± 7.2 −1.1 ± 0.2
Diag. MC [61] 13.4 ± 4 −0.95 ± 0.15
Diffusion MC [58] ≈15 ≈ −1
Experiment [113,114] 11.6 ± 4.6 −0.88 ± 0.2
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that appears in the gap equation determining Tc/TF . Based
on this analogy, we expect that such terms will not establish
a new polaron-to-molecule transition, but rather only shift
the location of an already present transition. Thus we concur
with previous studies that it is three-body correlations that
are essential to establish the formation of a phase of trions
in strongly coupled Bose-Fermi mixtures [112].

We note that at low Fermi energies, we find a weak non-
monotonous behavior of the polaron energy in the dependence
on εF /εB. Such a behavior is not present in works using varia-
tional [55–57,59] or MC approaches [60,61]. As discussed in
Appendix C, we attribute this effect to the limited resolution
of the frequency and momentum dependence of the vertex
functions in both our truncations. This effect is, however, not
relevant for our study of the Bose-Fermi phase diagram which
depends only on the relative energy gaps between the polaron
and molecular state and not on their respective absolute val-
ues.

C. Vertex functions

The FRG approach allows one to analyze the two- and
three-body vertices that determine the emergent effective
interactions and correlations in the system. In Fig. 6 the di-
mensionless, renormalized atom-molecule scattering vertex
λ̃ ≡ λk=0εF /h2

k=0 and molecular gap m̃t ≡ mt,k=0/h2
k=0 are

shown as function of εF /εB. We have scaled both vertices
by powers of h that reflect the scaling of the vertices with
the molecular wave function renormalization A−1

t,k=0 yielding
results independent of h in the contact-interaction limit at
h → ∞.

1. Atom-molecule scattering

The vertex λk describes the scattering between the com-
posite fermionic molecules and the excess fermions in the
system. During the RG flow, λk evolves from λk=� = 0 in
the UV to a negative value in the infrared at k = 0. Thus λ̃

yields an attractive contribution, shown in Fig. 2(c), to the
overall atom-molecule scattering amplitude that has an addi-
tional, significant contribution from the tree-level φ-exchange
diagram depicted in Fig. 2(d).

Figure 6 shows the absolute value of the scattering vertex
in the three-body limit (dashed orange line) where it takes
the value λ̃ = λ̃(3B) = −εF /εB; for details see Appendix D.
Thus the vertex scales proportional to the square of the size
of the molecular bound state aB ∝ √

1/εB. The solid orange
line shows the result for λ̃ in the polaron problem. At small
fermion density the molecule is the ground state. In this
molecular regime the density of fermions is so low that the av-
erage interfermion spacing greatly exceeds the molecular size
aB. Thus the atom-molecular scattering vertex is essentially
unaffected by the presence of the fermionic medium, and λ̃

follows the three-body result λ̃(3B).
As εF /εB is increased we observe a suppression of the

atom-molecule scattering vertex. We attribute this effect to
two contributing factors. First, the molecule becomes an ex-
cited state beyond the critical interaction (εF /εB)∗. In this case
the molecule is gapped and within our FRG approach which
projects vertex functions on vanishing external vertex fre-
quencies and momenta (see Appendix A), λ̃ is thus suppressed

FIG. 6. Renormalized dimensionless three-body vertex |λ̃| =
|λk=0εF /h2

k=0| (orange, solid) and renormalized dimensionless
molecular gap m̃t = mt,k=0/h2

k=0 (blue, solid) obtained within the
three-body truncation �3,k as a function of εF /εB. The dashed or-
ange line shows the value of the atom-molecule scattering vertex
in the three-body (vacuum) limit where λ̃ → λ̃(3B) = −εF /εB. Deep
in the strong-binding or, equivalently, low-fermion-doping regime
εF /εB � 1, λ̃ approaches the three-body result. Starting at around the
scale εF ≈ εB, medium corrections to the atom-molecule scattering
lead to a pronounced suppression effect. The inset shows that close
to the polaron-to-molecule transition the molecular gap m̃t vanishes
linearly as (εF /εB ) − (εF /εB )∗. In the two-body truncation λk ≡ 0,
and m̃t remains positive for all εF /εB, since no polaron-to-molecule
transition exists at this level of approximation. The results are ob-
tained for �2 = 2.5 × 105εF and h2

k=� = 108εF .

by the molecular energy gap. More importantly, however, as
the Fermi energy becomes larger than εB, εF /εB > 1, the size
of the bound state starts to exceed the typical interfermion
distance. As a consequence, in-medium effects come into
play leading to significant modifications of λ̃. Indeed, these
corrections become so strong that λ̃ starts to decrease at even
larger values of εF /εB.

2. Molecular gap

The dimensionless molecular gap m̃t = mt,k=0/h2
k=0 is

shown as a blue line in Fig. 6. For interaction strengths
εF /εB < (εF /εB)∗ where the molecule is the ground state,
the molecule is gapless, m̃t = 0. Beyond the transition the
molecule becomes an excited state, and we find that its gap
vanishes linearly as mt ∼ (εF /εB) − (εF /εB)∗ towards the
transition.

The corresponding crossing of the molecular and the po-
laron state can also be interpreted as leading to an effective
Feshbach resonance in the polaron-fermion scattering where
the tree-level diagram shown in Fig. 2(b), evaluated on-mass-
shell, diverges. The associated polaron-fermion scattering
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FIG. 7. Phase diagram of the Bose-Fermi mixture for different ratios of μφ/εF and εB/εF using �3,k (a) and �2,k (b). The white regions
indicate the vacuum phase, while the red and blue regions denote the molecular and the mixed phase, respectively. The blue-green region above
the mixed phase denotes the stopped flow region in which the flow was stopped at k > 0 because the molecular Fermi surface became larger
than the majority’s (−2mt,k/At,k > εF ), indicating the breakdown of our approximation. The gray dashed line denotes the boundary above
which the molecules form a Fermi surface at the end of the flow, i.e., mt,k=kend/At,k=kend < 0. The orange line indicates the path along which
μφ = 0. In both truncations the boundary between the vacuum and finite density phases approaches the origin for εB/εF → 0.

length changes sign at the transition, with a positive value
signaling the existence of a fermionic bound state.

In turn, within a single-channel theory that is formulated
purely in terms of the “atomic fields” ψ and φ, the divergence
of the effective polaron-fermion scattering vertex ∼h2/Pt sig-
nals the instability towards a phase of fermionic bound states.
In this language, entering this phase at finite boson density
would necessarily require the introduction of the emergent
fermionic composite states. Finally we note that in Fig. 6 we
show only results from the three-body truncation �3,k since
in the two-body truncation �2,k , the vertex λk = 0 vanishes
by definition throughout the RG flow. Moreover, since no
polaron-to-molecule transition is present in this simpler trun-
cation, m̃t always remains finite.

IV. BOSE-FERMI MIXTURE AT FINITE BOSON DENSITY

We now turn to the mixture regime, where a finite den-
sity of bosons interacts with a bath of majority fermions. As
discussed in Appendix II B, within our truncations we can
identify two phases: a molecular phase, where all bosons are
bound into molecules, and a mixed phase where molecules
are hybridized with majority fermions and coexist with a
condensate of polarons.

While we can describe the molecular phase directly, we
cannot fully access the regime in which a condensate of
polarons exists since this would require to explicitly include
the condensate and thus an effective potential for the bosonic
field. However, we can still determine the critical system
parameters at which the system becomes unstable towards
condensation. Indeed, the associated phase boundary is de-

termined by the vanishing of the scale-dependent boson gap
mφ,k/Aφ,k at the end of the RG flow.

For large values of the boson chemical potential μφ , the
underlying assumption nB � nF is no longer valid. When this
condition breaks down, we thus terminate the fRG flow. While
this does not define a phase, we dub this part of the phase
diagram the stopped flow region, further discussed below.

A. Phase diagram as a function of chemical potential

In Fig. 7 we present the phase diagram of the Bose-Fermi
mixture for both �2,k and �3,k [Eqs. (6) and (10)] at a fixed
Fermi energy εF , as function of εB and μφ . In the three-body
truncation �3,k [Fig. 7(a)] a molecular phase forms at finite
boson density in the interaction regime where the molecule is
the ground state of the quantum impurity limit discussed in
Sec. III.

In fact, the ground-state energy of the quantum impurity
limit determines the chemical potential μφ = μc

φ (εB, εF ) that
separates the vacuum of bosons from the mixed phase or
the phase of a finite density of molecules. Along this phase
boundary the system undergoes a transition from a polaronic
to a molecular ground state.

In the interaction regime εB/εF > (εB/εF )∗, increasing the
boson chemical potential starting from values μφ < μc

φ leads
to a boson-vacuum-to-molecule transition as μφ crosses the
critical chemical potential. Directly on the critical line one
enters the quantum impurity regime and a single molecule
forms [115]. Increasing μφ beyond μc

φ one enters the molec-
ular phase where a finite density of bosons, all bound into
molecules, exists. In this phase mt,k=0/At,k=0 < 0, and the
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molecules acquire a Fermi surface. Tuning μφ further to larger
values one reaches the phase boundary to the mixed phase.
Here a finite density of molecules coexists with gapless boson
particles.

For εB/εF < (εB/εF )∗ there is no molecular phase and
one transitions directly from the boson vacuum to the mixed
phase. As the flow is terminated at a finite RG scale kend

once the boson becomes gapless mφ,k=kend/Aφ,k=kend = 0, at the
boundaries to the molecular phase and to the boson vacuum
phase the boson turns gapless at the end of the flow at kend =
0. Moving further into the phase from these boundaries the
value of kend at which the flow is terminated increases.

When the flow is stopped in the mixed phase, the molecules
might have already formed a molecular Fermi level during
the course of the RG flow. This is indicated by the dashed
gray line in Fig. 7. Above this line the molecule has devel-
oped a Fermi surface when the flow ends or is terminated at
k = kend. Below the line the molecule has remained gapped.
As expected, for εB/εF > (εB/εF )∗ this line parametrizes the
boson-vacuum-to-molecule transition. For εB/εF < (εB/εF )∗
on the other hand, it bisects the mixed phase. These regions
then correspond to phases of a single Fermi sea (boson vac-
uum), two Fermi seas (molecular phase), two Fermi seas with
a bosonic condensate (mixed phase above the gray dashed
line) and a bosonic condensate with only a single Fermi sea
(mixed phase below the gray dashed line) as discussed in
Refs. [30,116].

Increasing the bosonic chemical potential μφ further within
the mixed phase, the bosonic density increases until eventu-
ally the molecular Fermi wave vector becomes larger than the
fermionic Fermi wave vector (−2mt,k/At,k > εF ). Within this
regime, the bosonic density has become comparable to the
fermionic density. This means that it is no longer justified to
neglect the renormalization of the fermionic Green’s function
and to disregard higher-order correlations along with sub-
dominant interaction channels. As we expect that in this case
our truncation no longer renders an appropriate description
of the system, we terminate the flow at finite scale kend once
−2mt,k/At,k > εF . When this happens during the RG flow, a
molecular Fermi sea has already formed while the bosons are
still gapped mφ,k/Aφ,k > 0. This stopped flow region (blue-
green in Fig. 7) occurs after the bosonic chemical potential has
been tuned well into the mixed phase. We therefore expect that
in the stopped flow region, close to the boundary to the mixed
phase, the system would still be in a mixed phase, if one were
to continue the flow.

Within the two-body truncation [see Fig. 7(b)] it is unsur-
prising to see that no molecular phase forms at finite boson
density, since already in the single-boson regime this Ansatz
does not form a molecule in the ground state. Rather, one
transitions from the boson vacuum phase directly to the mixed
phase as the molecule becomes gapless only at kend well
within the mixed phase (gray dashed line). Within this trunca-
tion the stopped flow regime is not realized for the considered
range of μφ and it sets on only at around (μφ + εB) ≈ 2.4εF .

B. Phase diagram as a function of density

In the previous subsection results were given as a function
of chemical potential. Experimentally it is, however, often

simpler to determine the density of particles instead of their
chemical potential. Thus, to make direct connection to ex-
periments, it is useful to also consider the phase diagram as
a function of particle densities. Since in the effective action
formalism employed in this work, the chemical potentials
are the parameters of the theory, the canonically conjugate
densities have to be computed explicitly.

In principle, the fermion and boson densities can be deter-
mined directly from the two-point Green’s functions. Within
the derivative expansion and two-channel model an alternative
approach is, however, more convenient. Here one makes use
of the fact that the densities are connected to the derivative
of the effective potential U evaluated at the equilibrium field
configuration σeq by the standard relation

nF/B = −∂U (σeq)

∂μψ/φ

. (20)

Here nB and nF , respectively, denote the total density of
bosons and fermions in the system, including those bound
into molecules. The effective potential U (σeq), in turn, is
obtained from the derivative-free part of the infrared effec-
tive action evaluated at the field expectation values U (σeq) =
�k=0[σeq]/(V/T ) where for the considered phases σeq =
(ψeq, φeq, teq) = 0.

In the absence of approximations, determining the densi-
ties from the effective potential or from the Green’s functions
are equivalent methods, as follows from the Luttinger theorem
[30,117]. Within our fRG scheme we, however, expect it to be
computed more accurately using the flow of U than using the
flow of Gσ as this approach relies on lower-order vertices.

In the fRG, the effective action is promoted to a flowing
effective action that depends on the RG scale k. Accordingly,
it is convenient to define corresponding scale-dependent den-
sities nF/B,k and to determine the densities of the systems from
their value at the end of the RG flow. The resulting density
values are then associated with the corresponding phases.
Since there is no polaron-to-molecule transition for �2,k , in the
following we discuss only results obtained in the three-body
truncation.

The flow equation of the effective potential is obtained by
evaluating the Wetterich equation (5) at vanishing fields,

∂kUk (σeq) =
∑

σ=ψ,φ,t

ξσ

∫
P

Gc
σ,k (p, ω)∂kRσ,k (p, ω), (21)

where ξφ = 1 for bosons and ξσ = −1 for fermions (ψ and
t). Due to the pole structure of the integrand, Eq. (21) can be
simplified further (for details see Appendix F) to

∂kUk (σeq) = −
∫

P
[1 − �ψ,k (p)]Gψ,k (p, ω)∂kG−1

ψ,k (p, ω)

+
∫

P
[1 − �φ,k (p)]Gφ,k (p, ω)∂kG−1

φ,k (p, ω)

−
∫

P
[1 − �t,k (p)]Gt,k (p, ω)∂kG−1

t,k (p, ω).

(22)

Here the step functions �σ,k (p) originate from the sharp reg-
ulators in the flow equations [see Eqs. (12) to (14)]. For the
bosonic and molecular field they are defined as �t,k (p) =
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�φ,k (p) = �(p2 − k2), while for the fermionic field �ψ,k (p)
is defined in the following in Eq. (23).

As the scheme described in Sec. II does not feature a
renormalization of the majority propagator it is evident from
Eq. (22) that, within that approximation, the fermions do
not contribute to the flow of the effective potential Uk . Con-
sequently, from the integration of Eq. (22) the density of
fermions would not be calculated accurately since the deple-
tion of majority carriers, resulting from fermions being bound
into molecules, is not taken into account.

In order to take this effect into account, we derive—
separate from the flow of the Green’s functions of the bosons,
molecules, and interaction vertices—a flow equation for the
propagator of the majority species, that does not feed back
into any flow other than that of the effective potential. Since
the majority fermions have a finite density already at the start
of the RG flow, we regulate the fermions around their flowing
Fermi level εF,k = εF − mψ,k/Aψ,k [101]. Accordingly, the
step function in the first line in Eq. (22) is given by

�ψ,k (p) = �(|p2 − εF + mψ,k/Aψ,k| − k2). (23)

To derive the flow equations of Aψ,k and mψ,k , we evaluate
the RG flow of the associated vertex function at external
frequency and momentum (p2, ω) = (εF , 0), i.e., we perform
the gradient expansion around the bare Fermi surface of the
majority species. This flow is then used to determine the
effective potential U , and, in turn, the boson and fermion
densities through Eq. (20). In order to reproduce the majority
carrier density εF /4π in the UV with regard to Eq. (20), the
initial condition for the density flow is given by the mean-field
result Uk=�(σeq) = −ε2

F /8π .
In Fig. 8 we show the resulting phase diagram of the system

as a function of the boson and fermion density. It can be
regarded as the counterpart of Fig. 7(a), expressed in different
variables. Specifically, to obtain Fig. 8, for the combinations
of boson chemical potential μφ and interaction strength εB/εF

that lie in the molecular phase we computed the corresponding
values of nB/εB and nF /εB. For combinations that lie inside
the mixed phase or the stopped flow region we can not com-
pute the boson and fermion density as the flow is terminated
at finite kend. In Fig. 8 we thus identify density combinations
outside the molecular phase as being in the mixed phase [118].

In Fig. 8 the single-boson limit discussed in Sec. III
corresponds to the y-axis at nB/εB = 0, and the polaron-to-
molecule phase transition occurs at nF /εB = (εF /εB)∗/4π =
0.00424. As the boson density is increased, the mixed phase
becomes favorable, i.e., the maximal density of fermions for
which all bosons are bound into molecules decreases. We find
that there is also a minimal fermion density required to enter
the molecular phase. Below that critical value one again enters
the mixed regime.

C. Mean-field model

Remarkably, a simple mean-field-inspired argument can
provide an approximate phase diagram of the model: in the
single-boson limit, the polaron is a gapped excitation in the
molecular regime. It has a gap 
E = Epol − Epol which is a
function of εF /εB, or equivalently nF /εB (equal to εF /4πεB

along the y-axis in Fig. 8). This gap was determined numeri-

FIG. 8. Phase diagram of the Bose-Fermi mixture for different
boson and fermion densities nF and nB at a fixed interaction strength
set by εB. The red region indicates the molecular phase, while the
blue region indicates the mixed phase. The blue-green dashed line
denotes the mean-field phase boundary extrapolated from the Fermi
polaron problem.

cally in Sec. III where we found


E ((εF /εB)∗) = 0, 
E ((εF /εB) → 0) ≈ 0.41εF , (24)

reflecting that the energy gap vanishes at the polaron-to-
molecule transition and attains a value proportional to εF in
the strong-binding, low-density limit.

In our mean-field model of the molecular phase, the in-
teractions are taken into account by considering the effective
Hamiltonian

HMF =
∑

k

[
εkψ

†
kψk + εk

2
t†
ktk + (εk + 
E (εF /εB))φ†

kφk

]
,

(25)

where εk = k2/2m. Even though HMF is quadratic in the
fields, this effective model goes beyond naive mean field
as 
E incorporates the nontrivial solution of the polaron
problem obtained through our fRG scheme in Sec. III. The
polaronic, mixed phase appears when it is energetically un-
favorable to bind into molecules, i.e., when the Fermi energy
εF,t of the molecules is larger than the gap 
E . When this
condition is reached the polarons start to form a condensate,
as described previously.

For a molecular Fermi energy below the gap 
E , the
ground state of the mean-field model (25) is given by separate
Fermi seas of densities nψ = εF /4π and nt = εF,t/2π for
the fermionic and molecular sectors, respectively. Hence, in
the molecular phase, the total bosonic and fermionic den-
sities are given by nB = nφ + nt = nt and nF = nψ + nt =
nt + εF /4π . The mean-field transition line below which the
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molecular state is favored is thus parametrized by

nB

εB
= 
E (εF /εB)

2πεB
, (26)

nF

εB
= εF

4πεB
+ 
E (εF /εB)

2πεB
. (27)

This mean-field phase boundary is shown as a dashed line
in Fig. 8. While the mean-field picture is oversimplified and
does not correctly capture the quantitative renormalization
effects beyond the vacuum-to-molecule transition, it correctly
captures the qualitative nature of the structure of the phase
diagram. The phase boundary, by construction, reaches the
y-axis at the polaron-to-molecule transition and approaches
the origin at an angle of about nF /nB ≈ 2.22, which directly
follows from the behavior of the polaron gap 
E ((εF /εB) →
0) ≈ 0.41εF .

V. QUASIPARTICLE PROPERTIES OF POLARONS AND
MOLECULES IN THE QUANTUM IMPURITY LIMIT

The calculations presented in Secs. III and IV yield in-
formation only about ground-state properties of the system.
In order to extract spectral information such as dispersion
relations, particle lifetimes, effective masses, or higher-lying
excited states, however, the spectral functions need to be
computed.

The spectral functions are obtained from the Green’s
functions Gψ,φ,t by analytic continuation of the Matsub-
ara frequencies iω → � + i0+, which yields the retarded
Green’s functions GR

ψ,φ,t (p,�). From this, the momentum-
and frequency-resolved spectral functions are obtained as

Aψ,φ,t (p,�) = Im
1

π
GR

ψ,φ,t (p,�). (28)

Two difficulties arise when determining the spectral func-
tion within the fRG. First, an analytic continuation has to be
performed, at either the level of the flow equations [119–121]
or the final output of the RG flow in the infrared [53]. Second,
in order to capture nontrivial spectral functions one needs the
full momentum and frequency dependence of the propagator,
which the gradient expansion employed in Secs. III and IV
does not provide. A solution to the latter difficulty can be
found, e.g., by the direct implementation of fully frequency-
and momentum-resolved Green’s functions [53] or in the
BMW scheme [72,122], which also yields a full momentum
and imaginary frequency dependence of the propagators. Both
these approaches, however, do not resolve the analytic contin-
uation issue. For this reason, we implement here a method
developed in nuclear physics [121,123–125] which was re-
cently applied to the polaron problem in three dimensions
[98]. In the following we shall refer to this method as the
frequency- and momentum-resolved scheme (FMR).

In FMR, the flow equations [Eq. (5) and Eqs. (15) to (18)
and (E2)] are analytically continued to real frequencies. In
order to achieve that, rather than projecting the flow equa-
tion onto the gradient expansion parameters, we retain the full
momentum and frequency dependence of the single-particle
Green’s functions on the lhs of the flow equations, while
we keep the gradient expansion for the two-body [Eq. (6)]

and three-body truncation [Eq. (10)] on the rhs of the equa-
tions. This enables us to perform the loop integration over
imaginary frequencies analytically. In turn, this allows us to
perform the analytic continuation to real frequency to ob-
tain direct access to the retarded Green’s functions. From
that we evaluate the single-particle spectral function using
Eq. (28); for further details we refer to Appendix G. We
remark that, when applying a non-self-consistent implemen-
tation of FMR—in which only bare quantities appear on the
rhs of the flow equations—to the spectral function of the
molecule, the differential equation system yields the same
results as a corresponding T -matrix resummation [57] (see
Appendix G 2).

1. Polaron spectral function

The polaron spectral function obtained using FMR
is shown for different interaction strengths in Fig. 9.
Figures 9(a), 9(c), and 9(d) are obtained in the three-body
truncation �3,k . Figure 9(b) shows the result from the two-
body truncation �2,k in order to highlight the effect of the
inclusion of irreducible three-body correlations.

The polaron spectral functions show the same qualita-
tive behavior as the corresponding spectra in 3D [53,98].
Two quasiparticle peaks—the attractive and the repulsive
polaron—can be discerned, and a molecule-hole continuum in
between these dominant excitations is visible. The attractive
polaron is the ground state in Figs. 9(a)–9(c) and thus is a
gapless excitation. In contrast, in Fig. 9(d) the ground state
is a molecule, and thus a small gap at p = 0 can be seen.
Generally, at finite but small momenta the attractive polaron
is a well-defined quasiparticle with an interaction-dependent
effective mass which, along with the effective masses of the
repulsive polaron and the molecule, is shown in Table IV. For
larger momenta, the attractive polaron peak eventually merges
with the molecule-hole continuum, such that it is no longer a
well-defined quasiparticle.

The repulsive polaron appears at energies above the scat-
tering threshold (indicated by the dashed horizontal lines
in Fig. 9) as a narrow peak, indicating a long quasiparti-
cle life-time for the interaction strengths shown. Consistent
with Ref. [57] we find that as εB/εF decreases, the repulsive
polaron gradually disappears. Moreover, while at small in-
teraction strength [Fig. 9(a)] the repulsive polaron eventually
merges with the molecule-hole continuum at finite momen-
tum, at larger interaction strength the repulsive polaron peak
remains distinct from the molecule-hole continuum at any
momentum and thus keeps a long lifetime at high momenta.

As evident from the comparison of Fig. 9(b) and 9(c),
the inclusion of the irreducible three-body correlations moves
the molecule-hole continuum to lower energies. This has the
effect that the dispersion relation of the attractive polaron be-
comes flatter, increasing the polaron effective mass compared
to the two-body truncation (see Table IV). Furthermore, its
quasiparticle peak joins the continuum at lower momenta. In
Table V the energy of the repulsive polaron is shown relative
to the ground-state energy. For the repulsive polaron the in-
clusion of three-body correlations has the effect of slightly
altering its effective mass and of lowering its energy rela-
tive to the scattering threshold. For a fermionic impurity this
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FIG. 9. Polaron spectral function Aφ for different dimensionless interaction strengths (εB/εF ): (a) 1, (b) 10, (c) 10, (d) 20. In (a), (c), and
(d) �3,k is used, while in (b) �2,k is used to highlight the effect of the renormalization of the three-body sector. Dashed horizontal lines denote
the Bose-fermion scattering threshold at � = −μφ . In (a) the range of the color spectrum is [0,0.5], while in (b), (c), and (d) it is [0,0.05].

indicates a reduced tendency towards itinerant Stoner ferro-
magnetism [126].

2. Molecular spectral function

In Fig. 10 the molecular spectral function is shown for
different interaction strengths εB/εF . Here Figs. 10(a), 10(c),
and 10(e) in the left column are obtained in the three-body
truncation, while 10(b), 10(d), and 10(f) in the right column
result from the two-body truncation. It can be seen that a
general feature of this spectral function is spectral weight that
appears above a parabola centered around p = kF and that
is defined by the frequency �p = (p − kF )2 + mφ,k=0/Aφ,k=0

as derived in Appendix G 3. The quasiparticle peak of the
molecule follows a distorted dispersion relation which, in the
strong-binding limit, tends to a free-molecule dispersion rela-
tion. Dependent on the interaction strength, at low momenta
the molecular quasiparticle peak lies outside of the particle-
particle continuum and joins the continuum at finite momenta
just to leave it again at higher momenta. More specifically,
at low εB/εF , the quasiparticle peak joins the continuum at
a low momentum, which increases with interaction strength
εB/εF . Likewise, the momentum at which the peak leaves the
continuum again increases with εB/εF as well.

Similar to a non-self-consistent T -matrix resummation, in
our approach the molecular quasiparticle peak has a vanish-
ing width when it is not embedded in the continuum. This
can be seen analytically by inspecting the flow equation of
the two-point function GR

t (see Appendix G 3 for details).
Apart from the structure originating from the parabola-shaped

TABLE IV. Effective masses of the attractive and repulsive po-
laron as well as the molecule obtained from quadratic fits to the
dispersion relation at p = 0, both in the three- and the two-body
truncation.

Attractive Repulsive
polaron polaron Molecule

(εB/εF ) �3,k �2,k �3,k �2,k �3,k �2,k

1 0.62 0.6 0.05 0.056 −0.11 −0.09
10 2.29 1.2 0.3 0.42 �6 −0.69
20 ≈5 1.42 0.32 0.46 1.84 −1.04

particle-particle continuum and the quasiparticle peak, further
structure exists within the parabola that originates from con-
tributions in the RG flow where the Feynman diagrams are
evaluated close to their poles (see Appendix G 3).

The minimal energy of the parabola �p is equal to the
renormalized energy gap of the polaron, indicating a close
relationship between the polaron at p = 0 and the molecule
at p = kF , supporting the argument that both of these states
overlap with the actual ground state of the system and possi-
bly with each other [52]. This finding can also be understood
conceptually in a mean-field picture where a bosonic minority
particle at p = 0 along with a majority fermions at the Fermi
surface can be interpreted as either a polaron at p = 0 or a
molecule at p = kF (previously noted by Cui [127]). Note
that, because the particle-particle continuum in the molecular
spectrum is shifted due to the renormalization of the boson
gap, this effect can not be captured in a non-self-consistent
approximation such as employed in Ref. [57]. In such an
approximation spectral peaks distinct from the continuum
are present, that in our implementation are a part of the
continuum.

Within the spectral functions obtained using �2,k , the
quasiparticle peak at p = 0—located at approximately
mt,k=0/At,k=0—is always at a finite energy whereas using �3,k

it is moved closer to � = 0 and eventually attains � = 0
past the polaron-to-molecule transition. At the same time, the
minimum of the parabola, given by mφ,k=0/Aφ,k=0, detaches
from � = 0 as the polaron is no longer the ground state.
Hence using �3,k the effective mass (see Table IV) of the
molecule, which is negative at small εB/εF , diverges with
increasing εB/εF and eventually becomes positive at an in-
teraction strength before the polaron-to-molecule transition.

TABLE V. Energy of the repulsive polaron at different interac-
tion strengths obtained in the two- and three-body truncation. The
energies are given with respect to the respective ground-state ener-
gies, Epol and Emol.

(εB/εF ) Repulsive polaron �2,k Repulsive polaron �3,k

1 Epol + 5.67εF Epol + 5.29εF

10 Epol + 12.15εF Epol + 10.99εF

20 Epol + 21.92εF Emol + 20.52εF
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FIG. 10. Molecular spectral function At for different dimension-
less interaction strengths εB/εF : (a), (b), 1, (c), (d) 10, (e), (f) 20.
In (a), (c), and (e) �3,k is used, while in (b), (d), and (f) �2,k is
used to highlight the effect of the renormalization of the three-body
sector. Dashed horizontal lines denote the Bose-Fermion scattering
threshold given by � = −μφ . The range of the color spectrum is
(a), (b) [0, 5 × 10−6], (c), (d) [0, 5 × 10−5], (e), (f) [0, 10−4] for
h = 2 × 103kF .

Beyond the transition the molecule is gapless at p = 0 and its
effective mass is positive. Using �2,k , increasing εB/εF makes
the molecule dispersion flatter leading to an increasingly neg-
ative effective mass.

VI. CONCLUSION

We investigated the phase diagram of strongly coupled
Bose-Fermi mixtures in two dimensions. In order to make
progress in the exploration of this complex phase diagram
it is important to establish limits that can be understood
controllably. To this end we focused on the regime of
fermion-dominated population-imbalance which, in the ex-
treme imbalance limit, connects to the Fermi polaron problem
where a single bosonic impurity interacts with a Fermi sea.
The opposite limit of a fermionic impurity coupled to a Bose-
Einstein condensate corresponds to the Bose polaron problem
which features qualitatively different physics. Already this

asymmetry reflects the impact the interplay of different parti-
cle statistics has on the phase diagram away from the extreme
population imbalanced limits.

In order to approach the problem we employed a
functional-renormalization-group approach that allows to sys-
tematically incorporate high-order correlation functions. This
enables us to reproduce the polaron-to-molecule transition in
the single-boson limit which is a necessary condition for any
theoretical approach that aims to describe this strong-coupling
phase diagram. In contrast to the simpler three-dimensional
case [42,49,53], we showed that three-body correlations have
to be included to describe the polaron-to-molecule transition
in two dimensions and we obtain excellent agreement with
ab initio approaches [60] that can be applied in the quantum
impurity limit.

Using the fRG we extended the analysis to finite boson
densities. There, depending on the boson and fermion den-
sities (or equivalently their chemical potentials), we observed
two phases: a fermionic liquid with two Fermi seas in which
all bosons are bound into molecules, themselves immersed in
a majority Fermi sea, and a hybridized liquid in which the
condensation of bosons leads to a mixing of the fermionic and
molecular sectors [30].

This hybridization and the associated mixing are not
a result of the Hubbard-Stratonovich field used in our
two-channel model, but they occur equally in atomic
single-channel models whenever scattering vertices between
fermions and bosons develop a pole in presence of a boson
condensate. In this regard, the phase diagram away from the
molecular phase at nB � nF shares a remarkable similarity
to the Bose polaron problem that describes the opposite limit
of few fermions immersed in a Bose condensate, where the
same hybridization mechanism leads to a crossover between
the polaron and molecule instead of a transition [5,10].

Naively, one may suspect that in a mixture of bosons
and fermions as many particles as possible are bound into
fermionic bound states in order to maximize attractive po-
tential energy. This, however, does not take into account the
properties of the system in two ways. First, this argument
neglects the fermionic nature of the bound states which leads
to the formation of a molecular Fermi energy, representing a
kinetic energy cost. As a result, when the bosonic density is
increased, the molecular Fermi energy eventually exceeds the
energy of the lowest-lying polaron state and the system enters
the mixed phase.

Second, the argument misses the fact that already in the
limit of a vanishingly small boson density the formation of a
bound state competes with the formation of a polaron state
in which a single boson interacts collectively with a large
number of surrounding fermionic bath particles [39]. For a
fixed interaction strength, the polaron state can thus profit
more efficiently from an increased density of bath particles.
Vice versa, as the bath density is lowered polaron dressing
loses efficiency so that eventually the composite bound state
becomes the new ground state (in absence of Coulomb inter-
actions).

While the fRG approach employed in this work provides
nontrivial insights into the phase diagram of the Fermi-Bose
mixture, the approximations used are insufficient to explore
the phase diagram in its whole richness. First hints to a
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plethora of exciting phenomena can already be inferred from
numerous quasiparticle features of the single-particle spectral
functions uncovered using the FMR scheme in Sec. V, ranging
from nontrivial effective mass renormalization and the non-
monotonous dispersion of molecules, to incoherent parts in
the spectral function reflecting quasiparticle instability.

Indeed, for a more accurate description of such features it
would be necessary to go beyond the gradient expansion we
impose on our Ansatz and instead allowing for an arbitrary
momentum and frequency dependence of vertex functions.
While such a treatment has been used in the three-dimensional
case [53], it remains challenging to implement numerically.
Preliminary results [128], however, suggest that including
the full momentum- and frequency dependence indeed cures
the spurious nonmonotonous behavior of the polaron energy
discussed in Sec. III. Far from being only of quantitative
importance, such a fully momentum- and frequency-resolved
approach could give new qualitative insight into the phase
diagram, e.g., by allowing for the description of transitions
to nontrivial molecular Fermi surface topology [129] akin to
Fulde-Ferrell-Larkin-Ovchinnikov phases in BCS supercon-
ductors [130,131].

We did not include Bose-Einstein condensation in our for-
malism. Its explicit inclusion would allow for the study of
subregions of the mixed phase in which a bosonic conden-
sate is accompanied by molecular or fermionic Fermi seas.
Additionally, the presence of a condensate will require the
incorporation of a repulsive Bose-Bose interaction to ensure
the mechanical stability of the condensate. Since the bosons
are strongly coupled to the fermions a strong renormalization
of the boson-boson interaction has to be expected which may
enhance or suppress the stability of Bose-Einstein conden-
sation. While fermionic self-energy corrections are expected
to play a subdominant role in the limit of strong population
imbalance nF 	 nB, for a study of the phase diagram away
from this limit these also become an essential ingredient and
may lead to striking effects such as boson-mediated p-wave
pairing at sufficient interaction strength [16].

The question as to which vertices (i.e., correlation func-
tions) to include in more refined approximations of our fRG
scheme is dependent on the type of phases one may expect
to govern the Bose-Fermi mixture phase diagram away from
the strongly imbalanced limit; see Fig. 1. Quite generally,
and similar to variational techniques, in field theoretical ap-
proaches the range of phases one can discern is limited by
the variety of—potentially competing—channels taken into
account in the renormalization procedure. In this regard, the
strongly coupled Bose-Fermi mixtures present a vast testbed
to develop comprehensive theoretical approaches to compet-
ing order where a manifold of scenarios and phases may
unfold, including: phase separation between the fermionic
species in case of repulsive effective interactions, competing
bipolaron and trion formation, boson-mediated s- or p-wave
pairing of fermions, fermion-induced phonon softening that
may result in supersolidity, higher-order pairing mechanisms
such as boson-mediated Cooper binding of trions and phases
of Efimov-type states that may condense depending on their
statistics.

Moreover, as discussed in Appendix E, the formation of
bound states containing several bosons may be considered.

However, in ultracold quantum gases these higher-body bound
states are usually subject to rapid decay to deeply bound
states. The competition between such dissipative multiparticle
losses and the formation of many-body phases is an intriguing
perspective for future studies, posing a significant theoretical
challenge that requires extension beyond equilibrium theory.

Another compelling question is what the impact of
Coulomb interactions between the fermionic degrees of free-
dom may be. These long-range interactions will ultimately
impose limits on the universal connection between strongly
coupled Bose-Fermi mixtures in atomically thin semiconduc-
tors and ultracold atoms (see Table II). Coulomb interaction
can be expected to play a key role in particular at low dop-
ing where screening becomes increasingly ineffective. Taking
Coulomb interactions into account may indeed suppress the
formation of well-defined electronic and molecular Fermi sur-
faces and instead lead to qualitatively different physics even
in the limit of extreme population imbalance εB/εF , where
understanding the interplay of Coulomb interaction, favoring
Wigner crystallization, and boson-mediated Fermi-Fermi in-
teractions, remains an open challenge.

Considering the myriad of open questions, the full explo-
ration of the phase diagram of two-dimensional Bose-Fermi
mixtures remains a formidable task. Due to the strong-
coupling nature of the problem, uncovering the possible in-
and out-of-equilibrium phases and phenomena will ultimately
require a concerted effort between theory and experiment.
Starting from limiting cases, such as considered in this work,
that can be controllably understood and combining ab initio
approaches with experimental observations will be key to
tackle this outstanding challenge and can lead to new insight
into effective descriptions of strongly coupled many-body
quantum systems.
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APPENDIX A: FLOW EQUATIONS

1. Vertex projections

The n-point functions considered in this work are obtained
from the effective flowing action �k using the following pro-
jections:

G−1
ψ,k (p, ω) = δ

δψ (p, ω)

δ

δψ∗(p, ω)
�k,

G−1
φ,k (p, ω) = δ

δφ(p, ω)

δ

δφ∗(p, ω)
�k,

G−1
t,k (p, ω) = δ

δt (p, ω)

δ

δt∗(p, ω)
�k, (A1)
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hk

(2π )3/2
= δ

δt (0, 0)

δ

δφ∗(0, 0)

δ

δψ∗(0, 0)
�k,

λk

(2π )3
= δ

δψ (0, 0)

δ

δt (0, 0)

δ

δt∗(0, 0)

δ

δψ∗(0, 0)
�k .

2. Gradient expansion parameters

The parameters of the gradient expansion of the two-point
functions G−1

φ,ψ,t,k are given by

mψ = G−1
ψ,k (p, ω)|p2=εF ,ω=0,

Aψ = ∂−iωG−1
ψ,k (p, ω)|p2=εF ,ω=0,

mφ = G−1
φ,k (p, ω)|p=0,ω=0,

Aφ = ∂−iωG−1
φ,k (p, ω)|p=0,ω=0,

mt = G−1
t,k (p, ω)|p=0,ω=0,

At = ∂−iωG−1
t (p, ω)|p=0,ω=0. (A2)

This prescription can then be used in Eqs. (15) to (18) and
(E2) to determine the flow of the parameters. In Appendix H
we provide the explicit form of the flow equations.

APPENDIX B: INITIAL CONDITIONS OF THE FLOW

The initial conditions for the flow are obtained by setting
�k=� = S + const. This implies that mψ,k=� = 0, mφ,k=� =
−μφ , mt,k=� = mt and Aψ,k=� = Aφ,k=� = At,k=� = 1. The
initial conditions for the interaction vertices are given by
λk=� = 0 and hk=� = h.

The initial condition for the detuning of the molecule mt

is obtained from the physical renormalization condition that
in the two-body problem a bound state of energy εB forms
between the boson and the fermion species. Within an fRG
approach, this condition is ensured by, first, setting μψ and μφ

to sufficiently negative values so that either species has a zero
density. Furthermore, we set μψ + μφ = −εB. This ensures
that the energetic cost to bring up a particle of both species
from vacuum is given by the binding energy. Finally, the
condition for the bound-state formation is given by mt,k=0 = 0
and mt,k � 0. This condition guarantees that the chemical
potentials are tuned correctly to the boundary between the
vacuum state and the state comprising a molecule submersed
in vacuum.

The flow of the three-body vertex does not have to be taken
into account, since λk does not feed back into the solution
of the two-body problem. Similarly, in the two-body problem
the flow equations of G−1

ψ,k (P) and G−1
φ,k (P) evaluate to zero

because the poles of their propagators in Eqs. (15) and (16) lie
in the same half of the complex plane and thus their frequency
contour integrals evaluate to zero. Physically, this is because
neither of the particle species has a finite density which would
be required to generate a renormalization of the particle self-
energies by particle-hole fluctuations. The molecule on the
other hand is renormalized by a particle-particle diagram and
thus does not require a finite density of bosons or fermions.

As the three body vertex is not relevant in the two-body
problem, the Yukawa term h does not renormalize. After eval-
uation and projection of Eq. (17), the flow equations of mt,k

FIG. 11. Energies of the polaron (orange lines) and the molecule
(blue lines) as a function of dimensionless interaction strength using
different fRG implementations. The solid lines show energies using
�2,k , while the dash-dotted lines show a two-step implementation of
�2,k in which the molecule is renormalized in the first step and the
φ-boson is renormalized in the second step. The dashed lines show
the �3,k implementation, and the dotted lines show a �3,k implemen-
tation in which the flow of hk is neglected by setting ∂khk = 0. The
cross markers show the polaron energies resulting from a non-self-
consistent T -matrix approximation [57], while the dot markers show
the result of this calculation in a gradient expansion.

and At,k are therefore given by

∂kmt,k = h2k

2π

1

2k2 − μφ − μψ

(B1)

and

∂kAt,k = − h2k

2π

1

(2k2 − μφ − μψ )2
. (B2)

Using mt,k=� = mt,k=0 + ∫ �

0 dk(∂kmt,k ) and mt,k=0 = 0 this
reproduces Eq. (3). Note that since in this few-body cal-
culation no Fermi surfaces are present, the regulators are
proportional to �(|p| − k) for all particles involved.

APPENDIX C: THE POLARON ENERGY WITHIN
THE GRADIENT EXPANSION SCHEME

In this Appendix we discuss the weak nonmonotonous be-
havior of the polaron energy as a function of εF /εB. Generally,
the polaron energy lies approximately within a range of ±εF

around the value of −εB. For small values of εF /εB it is thus
not surprising to see that E → −εB. Previous calculations
[55–57,59–61] indicate that for all values of εF /εB the value
of the polaron energy should lie below −εB, in disagreement
with the results shown in Fig. 5. This discrepancy highlights
one of the major shortcomings of fRG, namely, the depen-
dence on regulators and on the truncation scheme.

To analyze this finding in detail in Fig. 11 we show the
polaron and the molecule energies using different truncation
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and regulator schemes. As one can see, the �2,k truncation
(solid line) presented also in Fig. 5 results in polaron energies
above −εB. If, however, the same truncation is used and the
regulators are changed such that the renormalization-group
flow consists of two steps, where in the first step only the
molecule and in the second step only the minority particle
is allowed to flow, this results (dash-dotted) in polaron en-
ergies strictly below −εB. Within this scheme, however, the
resulting molecule energy lies higher than before. Effectively,
by treating the molecule and polaron on different footing
(i.e., by treating them in different steps of the fRG) we have
improved the polaron energy at the cost of a higher-lying
molecular energy. Interestingly, this two-step calculation is
closely related to the results obtained within the variational
approach in Ref. [55] and the ladder resummations performed
in Ref. [57] (crosses). If the full frequency- and momentum-
resolved T -matrix in these two approaches is replaced by a
gradient expansion of the T -matrix, the resulting method is
equivalent to the two-step fRG. The results for this modified
variational or diagrammatic calculation are shown as dots and
coincide with the two-step calculation as expected. A similar
equivalence of the FMR scheme is discussed in Appendix G 2.

Within the �3,k calculation presented in Fig. 11 (dashed)
and in Fig. 5 the polaron energy lies again above −εB for
small εF /εB. If, however, the flow of hk is turned off (dotted)
the polaron energy lies once again strictly below −εB. These
observations illustrate the dependence of the absolute values
of the energy on the regulators and truncation employed. For
example, the flow of the Yukawa vertex hk has a significant
impact on the polaron energy, which is likely due to its point-
like projection.

Although the relative deviations of these energies are only
of the order of a few percent, we do not expect that the
used fRG schemes are a reliable method of determining the
absolute energy of the polaron and the molecule. Most of the
variational approaches, however, do not consider the polaron
and the molecule on an equal footing and therefore can pro-
duce ambiguous results when one considers transitions which
depend on relative energy differences between the emergent
quasiparticles. We thus believe that, by treating the polaron
and the molecule on equal footing within a unified renor-
malization approach, the fRG scheme captures the qualitative
physics correctly and can thus make qualitative predictions
about transition in the quantum many-body system.

APPENDIX D: THREE-BODY VERTEX IN THE VACUUM
THREE-BODY LIMIT

To determine the value of the three-body vertex in the limit
where two ψ-particles and a single φ-particle are present, we
solve the flow equations under the initial conditions of the
two-body problem discussed in Appendix B, and additionally
take into account the flow of λk . Since λk corresponds to the
on-mass-shell scattering of a molecule and a quasi-free excess
fermion, we supplement the two-body initial conditions by
setting the fermionic chemical potential to a small, negative
value μψ = 0− while we set μφ = −εB − 0−.

As in the two-body case, G−1
φ,k and G−1

ψ,k do not flow and as
a result neither does hk . Consequentially, the flow of mt,k and
At,k is not influenced by the flow of λk such that according to

Eqs. (B1) and (B2)

mt,k = h2

8π
log

(
1 + 2k2

εB

)
(D1)

and similarly

At,k = 1 + h2

8π

(
1

εB + 2k2
− 1

εB + 2�2

)
. (D2)

The flow equation of λk is then given by

∂kλk = k(h2 + 2λkk2 + λkεB)2

πAt,k (2k2 + εB)2(3k2 + 2mt,k/At,k − 2μψ )
(D3)

leading to λk=0 = −h2/εB for large values of h.

APPENDIX E: BOSE-BOSE-FERMI COUPLING IN THE
THREE-BODY LIMIT AND AT FINITE DENSITY

The truncations considered in the main text neglect the
emergence of a Bose-Bose-Fermi (BBF) coupling (and other
higher-order couplings). In this Appendix we seek to explore
the relevance of this coupling. From a physical standpoint,
unlike the Fermi-Fermi-Bose (FFB) coupling λk , the BBF
coupling does not suffer from Pauli blocking and may thus be
considerably stronger, potentially resulting in the formation of
bound states containing more than one boson.

First, we study the BBF coupling in the limit where two
φ bosons and a single ψ fermion are present. We define the
corresponding coupling vertex τk as

τk

∫
x
φ∗

x t∗
x tx φx . (E1)

The flow equations given in Eqs. (15) to (18) (excluding the
flow of λk) are then complemented by the RG flow of τk :

∂kτk = − τ 2
k ∂̃k

∫
Q

Gc
t,k (Q)

[
Gc

φ,k (Q) + Gc
φ,k (−Q)

]
− h4

k ∂̃k

∫
Q

Gc
t,k (Q)Gc

ψ,k (Q)2Gc
φ,k (−Q)

+ 2h2
kτk ∂̃k

∫
Q

Gc
t,k (Q)Gc

ψ,k (Q)Gc
φ,k (−Q). (E2)

These equations are solved using the initial conditions of the
two-body problem discussed in Appendix B, where, unlike
in Appendix D, we consider the on-mass-shell scattering of
a molecule and a quasi-free-excess boson such that μφ = 0−

and μψ = −εB − 0−. As in the previous section G−1
φ,k , G−1

ψ,k
and hk do not flow such that mt,k and At,k are given by
Eqs. (D2) and (D3), respectively. We find that τk flows from
τk=� = 0 to negative values before diverging at k > 0 and
continuing to flow to τk=0 = h2/εB at the end of the flow.
The divergence indeed indicates the formation of three-body
bound states in the vacuum limit as predicted in Refs. [80–82].
Our results show that these can, in principle, be captured using
our fRG technique. We now demonstrate that this treatment
can be extended to finite density.

To this end, we study the behavior of the BBF coupling at
finite density. Thus, we apply the initial conditions used for
Fig. 7 by tuning the binding energy and the boson chemical
potential at a fixed Fermi energy. In order to simplify the
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FIG. 12. Instability towards higher-order bound-state formation. Indication of a divergence of τk for different ratios of μφ/εF and εB/εF

using �3,k (a) and �2,k (b). The blue (dark gray) regions indicate the divergence of τk at finite k (thus resulting in a potential instability towards
the formation of a Boson-Boson-Fermion bound state), while the yellow (light gray) regions indicate that τk had not diverged when the flow
ended as discussed in Sec. IV. The solid black line shows the transition to the finite boson density regime, while the dashed red line indicates
the path along which μφ = 0, as in Fig. 7.

calculation, however, here we do not choose a fully self-
consistent calculation, but rather treat the BBF coupling as
an observing flow that does not feed back into the renormal-
ization of the other coupling constants. Hence, the flow of τk

is influenced by the flow of λk (but not vice versa). In this
framework at finite density the RG flow of τk picks up another
term given by

−h2
kλk ∂̃k

∫
Q

Gc
t,k (Q)Gc

ψ,k (Q)2. (E3)

We now turn to the question under which conditions a
divergence of τk occurs during the flow. The result of this
calculation is shown in Fig. 12. As can be seen, in both
truncations, �2,k and �3,k , the coupling constant τk diverges
for most of the combinations of μφ/εB and εB shown in
Fig. 7. Only at weaker interaction strengths when the boson
is gapped strongly does the coupling constant remain finite.
This shows the importance of “non-Pauli-blocked” coupling
channels such as τk which lead to bound states containing
more than one boson, especially at a finite boson density
where these are not suppressed.

APPENDIX F: CONTOUR INTEGRALS LEADING
TO THE FLOWING EFFECTIVE POTENTIAL

Expanding Eq. (21) we obtain that ∂kUk (σeq) has the fol-
lowing structure:

∂kUk (σeq) ∝ ξσ

∫
P
�σ,k (p, ω)∂k

[
1

�σ,k (p, ω)
− 1

]
+ ξσ

∫
P
[1 − �σ,k (p, ω)]Gσ,k (p, ω)∂kG−1

σ,k (p, ω).

(F1)

The integrand in the first term in Eq. (F1) does not have a pole
in the frequency domain as the �σ,k-functions are frequency-
independent. Stemming from the construction of the quantum
field theory and the convergence factor of eiω0+

, this integral
thus evaluates to zero. The second term, in contrast, possesses
a pole within Gσ,k and therefore does not vanish, yielding
Eq. (22). Note that because the integrand only falls off fast
enough due to the convergence factor, these ω contour inte-
grals need to be closed within the upper half of the complex
plane. Consequently, the second term in Eq. (22) always van-
ishes. In order to yield a finite value it would require the
polaron to develop a finite density which we do not allow for
within our phase identification scheme.

APPENDIX G: FREQUENCY- AND
MOMENTUM-RESOLVED SPECTRAL FUNCTION

Here we provide the explicit flow equations used to obtain
the frequency- and momentum-resolved spectral functions in
Sec. V. Furthermore we comment on the analytical structure
of these equations and how it relates to the structure of the
particle-hole or particle-particle continua visible in Figs. 9 and
10 and the lifetimes of the molecule and the polaron. Finally,
we show the close correspondence of this method to T -matrix
approximation schemes.

1. Frequency- and momentum-resolved flow equations

In order to compute the frequency- and momentum-
resolved spectral functions within the FMR scheme, for a
given value of εF , μφ and εB in a first step the flow of
the expansion parameters is computed as detailed in Sec. III
and Appendix A 2. In a second step the solutions of the
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flow equations for the different gradient expansion param-
eters are plugged into the rhs of the flow equations given
in Eqs. (15) to (18) and (E2). This time, however, the flow
equations are considered for arbitrary external momentum and
frequency. Next, the Matsubara integration is performed as

usual and the complex frequency ω of P = (p, ω) is con-
tinued to the real frequency axis iω → � + i0+. For every
external frequency and momentum the flow equations of
the retarded Green’s function can then be computed and
yield

∂k
(
GR

φ,k

)−1
(p,�) = h2

kk
∫

dθ

(2π )2

[
1

At,k

�[εF − p2 − 2|p|k cos(θ ) − 2k2]�[εF − p2 − k2 − 2|p|k cos(θ )]

−k2/2 − p2 + εF − 2|p|k cos(θ ) − � + mt,k/At,k − i0+

+ 1

At,k

�[p2 + εF + 2|p|
√

εF − k2 cos(θ ) − 2k2]�(εF − k2)

k2/2 + p2/2 + εF /2 + |p|
√

εF − k2 cos(θ ) − � + mt,k/At,k − i0+

]
, (G1)

∂k
(
GR

t,k

)−1
(p,�) = − k

2π
λk�(εF − k2) + h2

kk
∫

dθ

(2π )2

[
1

Aφ,k

�[p2 + 2|p|k cos(θ ) − εF ]

2k2 + p2 − εF − � + 2|p|k cos(θ ) + mφ,k/Aφ,k − i0+

+ 1

Aφ,k

�[p2 + εF + 2|p|
√

εF + k2 cos(θ )]

2k2 + p2 + εF + 2|p|
√

εF + k2 cos(θ ) − � + mφ,k/Aφ,k − i0+

]
. (G2)

2. Equivalence to a non-self-consistent T -matrix resummation

In this subsection we show the close correspondence be-
tween the FMR scheme (Sec. V) and diagrammatic ladder
approximations. More specifically, we show that a non-
self-consistent implementation of the FMR method exactly
corresponds to the result obtained for the molecule in

non-self-consistent T -matrix resummation as presented in
Ref. [57].

Using only bare quantities on the rhs of the flow equa-
tion and performing the frequency integration in the quantum
impurity limit, the flow of the retarded inverse molecule prop-
agator reads

∂k
(
GR

t,k

)−1
(p,�) = −h2

k∂k

∫
dq

(2π )2

�[(p − q)2 − k2]�(q2 − εF − k2)

q2 − εF + (p − q)2 − μφ − � − i0+ . (G3)

Here we used that within this approximation λk = 0, hk = h, Aφ,k = 1, mφ,k = −μφ, Aψ,k = 1, and mψ,k = −εF . Note that,
since we use only bare quantities on the rhs, we have ∂̃k = ∂k . Thus we can perform the k-integration analytically and obtain(

GR
t,k=0

)−1
(p,�) = (

GR
t,k=�

)−1
(p,�) − h2

∫
q2>εF

dq
(2π )2

1

q2 − εF + (p − q)2 − μφ − � − i0+

+ h2
∫

dq
(2π )2

�[(p − q)2 − �2]�(q2 − εF − �2)

q2 − εF + (p − q)2 − μφ − � − i0+

= h2
∫

dq
(2π )2

1

εB + 2q2
− h2

∫
q2>εF

dq
(2π )2

1

q2 − εF + (p − q)2 − μφ − � − i0+

+ h2
∫

dq
(2π )2

(
�((p − q)2 − �2)�(q2 − εF − �2)

q2 − εF + (p − q)2 − μφ − � − i0+ − �(q − �)

εB + 2q2

)

(�→∞)= −h2

(
iπ + log

(
εB

�+εF +μφ−p2/2+i0+
)

8π
−

∫
q2<εF

dq
(2π )2

1

q2 − εF + (p − q)2 − μφ − � − i0+

)
, (G4)

reproducing the molecular results presented in Ref. [57]. Fur-
thermore, similar analysis shows that performing a modified
non-self-consistent two-step fRG of the FMR scheme also
reproduces the polaron results presented in Ref. [57]. In such
a two-step approach the molecular propagator is renormalized
in the first step as described in Eq. (G4), and in the second
step the minority propagator is renormalized as prescribed by

Eq. (15). In this second step, on the rhs the coupling con-
stants along with the majority propagator appear in their bare
form and the molecular propagator with its full frequency and
momentum dependence obtained in the first RG step is used
instead of a gradient expansion. The polaron energy resulting
from this calculation is shown as crosses in Fig. 11. It is worth
noting, however, that as a starting point for the second step
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one may also perform a gradient expansion of the molecular
propagator of the form

(
GR,2nd

t

)−1
(p,�) = (

GR
t,k=0

)−1
(0, 0) −

(
−� − i0+ + p2

2

)
× [

∂�

(
GR

t,k=0

)−1
(0,�)

]
�=0 (G5)

and still obtain similar results (dash-dotted lines and dot mark-
ers in Fig. 11). This then directly corresponds to a version of
the FMR scheme used to obtain spectral functions in which
the renormalization of the molecule and the minority is di-
vided into two consecutive steps while retaining the gradient
expansion on the rhs of the flow equations.

3. Analytical structure of the FMR flow equations

In the following we analyze the analytical structure of the
flow of the retarded inverse Green’s function of the molecule
and how it is reflected in the spectral functions shown in
Fig. 10. A similar analysis can be performed on the retarded
inverse Green’s function of the polaron as well.

Within the FMR scheme of analytic continuation, the re-
tarded self-energy can only pick up a nonvanishing imaginary
part in the limit of i0+ → 0 if during the flow one integrates
over a pole caused by iω → �. In that case we have encoun-
tered a pole in the flow that is avoided only by the use of a
retarded frequency and the self-energy picks up an imaginary
part that is nonvanishing for all i0+.

Contributions to the spectral function defined in Eq. (28)
can have two different origins. Either the Green’s function
picks up an imaginary part in the course of the flow as de-
scribed above, or the inverse Green’s function tends to i0+
resulting in a sharp excitation feature in the spectral func-
tion. In the former case the corresponding states are part of
a particle-particle continuum of states with a finite lifetime,
whereas in the latter case the corresponding excitations have
an infinite lifetime.

Inspecting the second term of Eq. (G2), we see that it
causes the self-energy to develop an imaginary part if during
the flow

� = 2k2 + p2 − εF + 2|p|k cos(θ ) + mφ,k

Aφ,k
, (G6)

while p2 + 2|p|k cos(θ ) − εF > 0. For p2 < εF the minimal
frequency for which this can occur is given by

�<
min,1 =

[
mφ,k

Aφ,k
+ 2k2

]
k= εF −p2

2|p|

, (G7)

where we made use of the fact that mφ,k/Aφ,k decreases mono-
tonically during the flow. In turn, for p2 > εF this frequency
is given by

�>
min,1 = min

k,0�k� p2−εF
2|p|

p2 − 2|p|k − εF + 2k2 + mφ,k

Aφ,k
. (G8)

FIG. 13. Molecular spectral function at εB/εF = 20 within �2,k .
The minimal frequencies �min,1 = min[�<

min,1,�
>
min,1] and �min,2 are

shown in red (dash-dotted) and blue-green (dashed), respectively.

Analogously, the minimal frequency for which the third term
of Eq. (G2) leads to an imaginary part is given by

�min,2 = min
k, k>0,

k� |εF −p2 |
2|p|

k2 + (|p| −
√

εF + k2)2 + mφ,k

Aφ,k
. (G9)

Numerically we find that this is solved by

�min,2 = (|p| − √
εF )2 +

[
mφ,k

Aφ,k

]
k=0

(G10)

for the interaction strengths studied here.
In Fig. 13 the spectral function from Fig. 10(f) is shown

along with the minimal frequencies �min,1 and �min,2. As
it can be seen, these frequencies determine the onset of the
particle-particle continua. Furthermore, as the molecule peak
at low and high momenta lies outside the boundaries of the
continua, the corresponding excitations possess an infinite
lifetime within this renormalization scheme.

APPENDIX H: EXPLICIT FLOW EQUATIONS

In this Appendix we provide the explicit flow equations of
parameters of the gradient expansion. These flows are ob-
tained as described in Appendix A, and for completeness
we state them here explicitly. Note that we state the flow
equations as used in Sec. IV. These are a generalization of
the flow equations used in Sec. III and as such may also be
used there.
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1. Boson renormalization

∂kmφ,k = h2
kk

π

[
�(εF − 2k2)

(
�

(
εF − k2 + 2 mt,k

At,k

)
2mt,k + At,k (k2 + εF )

+
�

(
k2 + 2 mt,k

At,k

)
2mt,k − At,k (k2 − 2εF )

)
+

�
(−2 mt,k

At,k
− (k2 + εF )

)
−2mt,k + At,k (k2 − εF )

]
, (H1)

∂kAφ,k = 2At,kh2
kk

π

[
−�(εF − 2k2)

(
�

(
εF − k2 + 2 mt,k

At,k

)
[2mt,k + At,k (k2 + εF )]2

+
�

(
k2 + 2 mt,k

At,k

)
[2mt,k − At,k (k2 − 2εF )]2

)
+

�
(−2 mt,k

At,k
− (k2 + εF )

)
[−2mt,k + At,k (k2 − εF )]2

]
.

(H2)

2. Molecule renormalization

∂kmt,k = h2
kk

2π

�
(
k2 + εF + mφ,k

Aφ,k

)
Aφ,k (2k2 + εF ) + mφ,k

− λk

2π
�(εF − k2), (H3)

∂kAt,k = −h2
kkAφ,k

2π

�
(
k2 + εF + mφ,k

Aφ,k

)
[Aφ,k (2k2 + εF ) + mφ,k]2

. (H4)

3. Three-body renormalization

a. Bubble

A1 = λ2
kk

π

[
�

(
k2 + 2mt,k

At,k
+ εF

)
At,k (3k2 + εF ) + 2mt,k

+
�

(
k2 − 2mt,k

At,k
− εF

)
�(εF − 2k2)

3At,kk2 − At,kεF − 2mt,k
−

�
(− k2

2 − mt,k

At,k

)
�(εF − 2k2)

3At,kk2 − 2At,kεF + 2mt,k

]
. (H5)

b. Triangle

B1 =
2h2

kkλk�
(
k2 + 2mt,k

At,k
+ εF

)
π [Aφ,k (2k2 + εF ) + mφ,k][At,k (3k2 + εF ) + 2mt,k]

, (H6)

B2 = −
2Aφ,kh2

kkλk�
(− 2mt,k+At,k (k2+εF )

2At,k

)
π [Aφ,k (2k2 + εF ) + mφ,k][−2Aφ,kmt,k + Aφ,kAt,k (k2 + εF ) + 2At,kmφ,k]

, (H7)

B3 = −
4At,kh2

kkλk�
(− k2

2 − mt,k

At,k

)
�(εF − 2k2)

π (3At,kk2 − 2At,kεF + 2mt,k )(−2Aφ,kmt,k + Aφ,kAt,kk2 + 2At,kmφ,k )
, (H8)

B4 =
4At,kh2

kkλk�
(
k2 − 2mt,k

At,k
− εF

)
�(εF − 2k2)

π [At,k (εF − 3k2) + 2mt,k][2Aφ,kmt,k + Aφ,kAt,k (k2 − εF ) − 2At,kmφ,k]
. (H9)

c. Square

C1 =
h4

kk�
(
k2 + 2mt,k

At,k
+ εF

)
π [Aφ,k (2k2 + εF ) + mφ,k]2(At,k (3k2 + εF ) + 2mt,k )

, (H10)

C2 =
Aφ,kh4

kk�
( − 2mt,k+At,k (k2+εF )

2At,k

)
[2Aφ,kmt,k − At,k (5Aφ,kk2 + 4mφ,k + 3Aφ,kεF )]

π [Aφ,k (2k2 + εF ) + mφ,k]2[−2Aφ,kmt,k + Aφ,kAt,k (k2 + εF ) + 2At,kmφ,k]2 , (H11)

C3 = −
4A2

t,kh4
kk�

(− k2

2 − mt,k

At,k

)
�(εF − 2k2)

π (3At,kk2 − 2At,kεF + 2mt,k )(−2Aφ,kmt,k + Aφ,kAt,kk2 + 2At,kmφ,k )2 , (H12)

C4 = −
4A2

t,kh4
kk�

(
k2 − 2mt,k

At,k
− εF

)
�(εF − 2k2)

π [At,k (εF − 3k2) + 2mt,k][2Aφ,kmt,k + Aφ,kAt,k (k2 − εF ) − 2At,kmφ,k]2 . (H13)
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d. Total

∂kλ = −λ2
k

h2
k

∂kmφ,k + A1 +
4∑

i=1

Bi +
4∑

i=1

Ci. (H14)

4. Fermion renormalization

∂kmψ,k = h2
kk

At,kAφ,kπ

∫ π

−π

dθ

2π

�
(−k2 − 2mt,k

At,k

)
�[p2 − 2kp cos(θ )]
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At,k
− 2mφ,k
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− 2p2 + 4kp cos(θ )

∣∣∣∣∣
p=√

εF

+ h2
kk

At,kAφ,kπ

∫ π

−π

dθ

2π

�
(−k2 − 2mt,k
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)
�[p2 + 2kp cos(θ )]
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− 2mφ,k
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+ p2 + 2kp cos(θ )

∣∣∣∣∣
p=√

εF

− λkk

2πAφ

�

(
−k2 − 2mt,k

At,k

)
,

(H15)

∂kAψ,k = − 2h2
kk

At,kAφ,kπ

∫ π

−π

dθ

2π

�
(−k2 − 2mt,k

At,k

)
�[p2 − 2kp cos(θ )][−k2 + 2mt,k
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− 2p2 + 4kp cos(θ )

]2

∣∣∣∣∣
p=√

εF

− 2h2
kk

At,kAφ,kπ

∫ π

−π

dθ

2π

�
(−k2 − 2mt,k

At,k
− p2 − 2kp cos(θ )

)
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εF

. (H16)

5. Effective potential

∂kUk = 1

4π

(
∂k

mt,k

At,k

)
min

(
k2,−2

mt,k

At,k
�

(
−mt,k

At,k

))
+ 1

4π

(
∂k

mψ,k

Aψ,k

)(
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(
εF − mψ,k

Aψ,k
, 0

)
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(
εF − mψ,k

Aψ,k
− k2, 0

))
.

(H17)
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