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Quantum criticality and universality in the p-wave-paired Aubry-André-Harper model
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We investigate the quantum criticality and universality in Aubry-André-Harper (AAH) model with p-wave
superconducting pairing � in terms of the generalized fidelity susceptibility (GFS). We show that the higher order
GFS is more efficient in spotlighting the critical points than lower order ones, and thus the enhanced sensitivity
is propitious for extracting the associated universal information from the finite-size scaling in quasiperiodic
systems. The GFS obeys power-law scaling for localization transitions and thus scaling properties of the GFS
provide compelling values of critical exponents. Specifically, we demonstrate that the fixed modulation phase
φ = π alleviates the odd-even effect of scaling functions across the Aubry-André transition with � = 0, while
the scaling functions for odd and even numbers of system sizes with a finite � cannot coincide irrespective of
the value of φ. A thorough numerical analysis with odd number of system sizes reveals the correlation-length
exponent ν � 1.000 and the dynamical exponent z � 1.388 for transitions from the critical phase to the localized
phase, suggesting the unusual universality class of localization transitions in the AAH model with a finite p-wave
superconducting pairing lies in a different universality class from the Aubry-André transition. The results may
be testified in near term state-of-the-art experimental settings.
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I. INTRODUCTION

Quantum phase transitions (QPTs) have attracted the
intense interest of both theorists and experimentalists in
condensed matter physics for decades. With variation of
a nonthermal variable in the many-body Hamiltonian, the
ground-state properties show abrupt changes as a result of
competing ground-state phases [1–3]. The Landau-Ginzburg-
Wilson (LGW) paradigm has provided a well-established
framework, which rests on the assumption that a continuous
equilibrium phase transition can be accessed by the onset of
an order parameter associated with spontaneous symmetry
breaking. A broad regime of order parameter fluctuations are
controlled by proximity to a quantum critical point (QCP).
It has been a long time to recognize that the symmetry
breaking occurs spontaneously only in infinite-size quantum
many-body systems, while recently they are sometimes ob-
served in surprisingly small systems [4] and even few-body
systems [5–7]. Despite the enormous success, the breakdown
of the LGW paradigm appears in a few different situations,
for example, deconfined QCPs [8,9] and deconfined critical
universality classes [10].

In recent years, an immense effort has been expended
to understand QPTs in quasiperiodic systems [11–22]. The
quasiperiodic system possesses a long-range periodicity,
which is intermediate between that of the clean and ran-
domly disordered cases, offering a rich playground to study
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quasiperiodic QCPs and unusual characteristic features, such
as hierarchical energy spectra [23–25] and localization-
delocalization transitions. A paradigmatic model of the
quasiperiodic system is the Aubry-André-Harper (AAH)
model [26–45], in which the quasiperiodicity is embodied in
the form of a cosine modulation incommensurate with lattice
spacing. With the rapid development of experimental tech-
nologies, the AAH model can be realized in optical waveguide
lattices [46–48], photonic crystals [49–51], and cold atom sys-
tems [52]. For instance, the AAH Hamiltonian has been exper-
imentally realized by cold atomic gases in a one-dimensional
optical lattice perturbed by another weak incommensurate
optical lattice [52]. These feasible platforms allow us to ex-
plore the emerging topological states of matter with additional
interactions in incommensurate systems, including modu-
lated off-diagonal hopping [29], nearest neighbor p-wave
superconductivity [53], a long-range p-wave superconducting
pairing [34], and many-body interactions [38,54].

The AAH model has gained popularity since it acts as a
proxy for random potentials in the study of generic disordered
system. An obstacle to comprehending the critical phenom-
ena in the disordered systems is the undecidability of local
order parameters. In close proximity to QCPs, the complex
and nonlocal entanglement between individual constituents
becomes extremely prominent at all distance scales. As such,
it has been recognized that the exploration of quantum critical
phenomena from the perspective of quantum information sci-
ence is a great privilege, such as the von Neumann entropy
[55] and quantum concurrence [56]. The quantum fidelity
susceptibility (QFS) has proved to be particularly useful for
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detecting the critical points of a symmetry-knowledge un-
known system [57–60]. It was shown that the QFS can not
only identify the QCPs but also satisfy the scaling ansatz,
where the universal information can be retrieved. The most
significant implication is that the finite-size scaling of such a
universal order parameter dictates position of QCPs and the
critical exponent of the correlation length ν. For a quasiperi-
odic system with spatial complexity, the scaling theory of
the QFS and the universality of localization transition have
been partially understood. Notably, the finite-size scaling of
the usual fidelity susceptibility is irrelevant to the dynamical
exponent z. However, the critical exponents obey the scaling
and hyperscaling relations, implying that there are only two
independent exponents. Thus, a second independent critical
exponent plays a decisive role in determining the univer-
sality class, which lies at the heart of critical phenomena.
In this work, we apply the generalization of fidelity sus-
ceptibility to the one-dimensional AAH model with p-wave
superconducting pairing, and devise a direct pathway to the
determination of critical points and universal critical expo-
nents of localization-delocalization transitions. Importantly,
the theoretical predictions could be testified in state-of-the-art
experiments.

The rest of the paper is organized as follows. Section II
reviews the AAH model with p-wave superconductivity and
determines its phase diagram. In Sec. III, we introduce the
concept of the generalized fidelity susceptibility (GFS) and
postulate its scaling hypothesis for the universal part. Sec-
tion IV is devoted to the scaling behavior of the GFS in the
AAH model and identification of critical exponents. Conclu-
sions and discussions are presented in Sec. V.

II. MODEL HAMILTONIAN

The generalized AAH model with p-wave superconducting
pairing in a quasiperiodically modulated potential is given by
the following Hamiltonian:

H =
N∑

j=1

(−Jc†
j c j+1 + �c jc j+1 + H.c.) +

N∑
j=1

Vjc
†
j c j, (1)

where c†
j (c j ) is the fermionic creation (annihilation) operator

at the jth site among total N lattice sites, J is the hopping
strength between nearest-neighbor sites, � denotes the ampli-
tude of p-wave superconducting pairing, and H.c. represents
the Hermitian conjugate. The p-wave pairing amplitudes can
be tuned by the mixture of spin-polarized fermions with a
Bose-Einstein condensate [61], affected by an s-wave Fes-
hbach resonance in a spin-polarized cold Fermi gas [62],
or induced by the proximity effect in stacking a supercon-
ducting wire on top of the normal metal. Here we focus on
quasiperiodicity encoded in the chemical potential, keeping a
constant hopping magnitude and pairing potential. The on-site
potential terms are quasiperiodically varying according to the
Aubry-André rule Vj = V cos(2πα j + φ), where α = (

√
5 −

1)/2 is an irrational frequency and V is the strength of the
incommensurate potential. The parameter φ ∈ [0, 2π ) shifts
the origin of the modulation representing a random phase. The
boundary condition is imposed as cN+1 = σc1, where σ = 1,
−1, and 0 corresponding to periodic, antiperiodic, and open

boundary conditions, respectively. Without losing generality,
� can be assumed to be real [the phase can be otherwise
eliminated under global U(1) transformation] and J = 1 is set
as energy unit throughout the paper. For � = ±1, the model
will be equivalent to quasiperiodic Ising model [63,64]. When
the p-wave pairing term is absent, i.e., � = 0, the AAH model
in Eq. (1) becomes easily tractable as it can be written as
H = ∑

i, j c†
i Hi, j c j . The eigenvectors |ψn〉 and the associ-

ated single-particle energies εn are obtained by diagonalizing
the N × N single-particle Hamiltonian matrix H. In the limit
when V/J → 0, Eq. (1) describes a metallic chain with all
eigenstates being extended, while for V/J → ∞ the eigen-
modes are localized on one site. The Aubry-André transition
from being extended to being localized is known to occur at
V/J = 2 as a consequence of Aubry-André duality between
the Hamiltonian in position and momentum space.

As for a finite p-wave paring, i.e., � �= 0, the Hamilto-
nian (1) can be diagonalized through a canonical Bogoliubov–
de Gennes (BdG) transformation by introducing the new
fermionic operators ηn and η†

n,

ηn =
N∑

j=1

(u∗
n, jc j + vn, jc

†
j ), c j =

N∑
n=1

(un, jηn + v∗
n, jη

†
n ), (2)

where un, j and vn, j denote the two components of the wave
function at site j and n (n = 1, ..., N) is the energy band in-
dex. The eigenstates |ψn〉 = (un,1, un,2, ..., vn,1, vn,2, ...)T can
be determined by solving the Schrödinger equation H |ψn〉 =
En|ψn〉, which can be recast into a 2N × 2N matrix form as

(
A B

−B∗ −AT

)(
un,i

v∗
n,i

)
= εn

(
un,i

v∗
n,i

)
, (3)

where A (B) is a N × N symmetric (antisymmetric) matrix.
The nonzero elements are given by Ai,i = Vi, Ai,i+1 = Ai+1,i =
−J , and Bi,i+1 = −Bi+1,i = �. The matrix elements for the
boundary terms are AN,1 = A1,N = −σJ and BN,1 = −B1,N =
−σ�. The BdG Hamiltonian H in Eq. (3) respects an im-
posed particle-hole symmetry, namely, τ xHT τ x = −H, where
the Pauli matrix τ x acts in the Nambu space. The energy
levels appear in ±εn conjugate pairs, with εn � 0, except
the zero energy mode, which is self-conjugate. As such, for
finite lattices it is convenient to replace α with F�−1/F�, the
ratio of two successive Fibonacci numbers [65,66]. Note that
the irrational limit is reached as far as the numerical results
are extrapolated to the scaling limit (� → ∞). The period
F� then acts like a finite length scale which controls scaling
behavior. The Fibonacci-sequence quasiperiodic potential has
an intimate connection with topological phase transition and
Majorana modes.

While in the translational-invariant case the solution of
Eq. (3) can be further reduced to the 2 × 2 matrix form with
independent momenta, in the quasidisorder case one has to
diagonalize the 2N × 2N BdG matrix numerically, marking
a qualitative difference between the disordered and the clean
model. In terms of the new fermion operators, the Hamiltonian
in Eq. (1) can be diagonalized as

H =
N∑

n=1

εnη
†
nηn − εnηnη

†
n =

N∑
n=1

2εn

(
η†

nηn − 1

2

)
, (4)
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FIG. 1. Phase diagram of the AAH model as a function of p-
wave pairing strength � and incommensurate potential strength V .
The localized phase (LP), critical phase (CP), and extended phase
(EP) are marked by blue, white, and green respectively. Three in-
sets show the typical spatial distribution for localized, critical, and
extended modes.

with the single-particle eigenvalues being ε1 � ε2 � · · · �
εN . The ground state of H is the Bogoliubov vacuum state |ψg〉
annihilated by all ηn for n = 1, ..., N , i.e., ηn|ψg〉 = 0, with an
energy Eg = −∑N

n=1 εn. For a weak quasidisorder strength,
all the eigenstates of the system are extended, while the
system becomes localized for a sufficiently strong disorder.
Recently, it was found that with a nonzero superconducting
pairing, a nonergodic critical phase intervenes the transition
from the delocalized to localized state, and all the eigenstates
are expected to be multifractal. The phase diagram shown in
Fig. 1 consists of the extended phase (EP), critical phase (CP),
and localized phase (LP). The localized wave functions in the
LP can be transformed into the extended ones in the EP by
a Aubry-André duality occurring at � = 0 across a second-
order QCP. The system undergoes a continuous QPT from
the EP to the CP at Vc1 = 2|J − �|. One finds that Eq. (1)
is invariant under the transformation as c j → −c†

j on odd
jth sites and α → α + 1/2 [36]. For the self-duality point
(J = �, V = 0), the EP becomes unstable for arbitrarily weak
disorder. The system displays a second-order QPT from CP to
LP at Vc2 = 2|J + �|. In order to visually characterize the
localized and extended nature of the entire energy spectrum,
we evaluate the normalized inverse participation ratio (IPR)
for each eigenstate |ψn〉 of the model [67–70], given by

Pn =
∑

j

(
u4

n, j + v4
n, j

)
∑

j

(
u2

n, j + v2
n, j

) . (5)

The IPRs can quantify the extent of distribution over the
preferential bases. It should be noted that IPR is erroneously
employed to describe the participation ratio in many liter-
ature reports [18,71], which is the reciprocal of IPR [72].
In a specific N -dimensional bases |ϕk〉, the IPR of the state
|ψn〉 = ∑N

k=1 ck|ϕk〉 reaches a maximal value Pmax = 1 when
the state coincides exactly a single basis state and attains
a minimal value Pmin = 1/N when the state is uniform in
the selective bases. For a set of one-particle states in real

(a)

(b)

FIG. 2. (a) Normalized IPR on a logarithmic scale for all eigen-
modes of Eq. (1) as a function of eigenenergies and V/J with
� = 0.5, N = 987. The dashed lines mark the critical points at
Vc1 = 2|J − �| and Vc2 = 2|J + �|, respectively. The logarithmic
scale is shown to have a better resolution. (b) MIPR as a function
of the quasidisorder strength at � = 0.5J (black circles), � = J
(blue pentagons), and � = 1.5J (red squares). Here we use the phase
φ = π and the lattice site N = 987. Inset shows the finite-size scaling
of P̄−1 for V = 0.2J , 0.5J , 2.0J , 2.5J , 3.5J , and 4.0J for � = 0.5J .

space, the IPR scales inversely with the system size N in the
delocalized state, while appears to be independent of N in the
localized phase and shows intermediate behavior in the CP.
Both transitions at finite strength of quasiperiodic modulation
occur simultaneously for all eigenstates, as is revealed in
Fig. 2(a), in contrast to the presence of mobility edges in
specific systems [73–76]. We thus further define the mean
inverse participation ratio (MIPR) as

P̄ =
2N∑

n=1

1

2N
Pn. (6)

The evolution of MIPR is exhibited in Fig. 2(b) on a loga-
rithmic scale for different p-wave pairing strength � = 0.5J ,
� = 1.0J , and � = 1.5J . One finds the MIPR is capable of
identifying the phase boundaries separating the extended, crit-
ical, and localized phases, which are captured by the turning
points of the MIPR locating respectively at Vc1 = 2|J − �|
and Vc2 = 2|J + �|. The LP is gapless for periodic boundary

013315-3



LV, YI, LI, SUN, AND YOU PHYSICAL REVIEW A 105, 013315 (2022)

conditions while gapped for open boundary conditions. Note
that for a pure state ρ = |ψn〉〈ψn| of the entire system, the von
Neumann entropy is zero and the IPR is inversely proportional
to the participation entropy Sq = ln

∑
k ρ

q
kk/(1 − q) of order

q = 2, i.e., S2 = − ln P, which becomes the diagonal entropy
for the reduced density matrix of the subsystem [77,78]. As
is observed in the inset of Fig. 2(b), the scaling exponents
extracted from the linear fittings for V = 0.2J and V = 0.5J
with � = 0.5J are approximately 0.98, which implies that
the inverse of MIPR tends to scale extensively for extended
states in the AAH model, resembling the volume-law scaling
of the mean first-order Rényi entropy at infinite temperature,
which is conjectured to be universal for translationally invari-
ant quadratic fermionic Hamiltonians [79], while P̄−1 declines
towards a finite value close to O(1) for localized states, in
analogy to the area law of the disordered averaged entangle-
ment entropy [80]. For critical states, the MIPR scales like
N−d∗

[81], where the fractal dimension 0 < d∗ < 1 depends
on the fractal structure of wave functions. The fitting lines of
ln(P̄−1) with respect to ln N for V = 1.5J and V = 2.0J with
� = 0.5J gives rise to d∗ ≈ 0.75, implying that points in the
whole CP belong to the same universality class. Remarkably,
the fractal dimension d∗ and the associated IPR are proved to
host intrinsic relation to the mean entanglement entropy [82].
One should be aware that a typical value of IPR can be used
P̄typ = ∑2N

n=1 ln Pn/(2N ), which is similar to the behavior of
Eq. (6) for the AAH model (1) yet becomes more subtle when
eigenstates display a single-particle mobility edge.

III. GENERALIZED FIDELITY SUSCEPTIBILITY
AND SCALING HYPOTHESIS

It is now well established that the QFS is a good
measure to witness QPTs and manifest critical phenom-
ena in translational invariant quantum systems [83–85]. The
merit of the QFS in characterizing critical phenomena is
the model-independent feature, which is quite suitable for
quantum systems without prior knowledge of order param-
eters. To this end, the fidelity susceptibility is recognized
as a sensitive probe of quantum criticalities in conjugate
field [86], long-range interacting systems [87,88], deconfined
QCP [89], disordered systems, chaotic Hamiltonians [90],
quantum many-body scars [91], excited-state quantum phase
transition [92], and holographic models [93]. Currently the
investigations of the scaling of QFS in the context of quan-
tum disordered systems are still poorly understood. In what
follows, we will focus on the fidelity susceptibility and its
generalization as well as the associated scaling in the AAH
model.

The fidelity susceptibility provides a generic and direct
approach to measure the quantum metric tensor via the tran-
sition probability of the quantum state being excited to other
eigenstates during a sudden infinitesimal quench of the tuning
parameter λ [85]. The GFS of order 2r + 2 at the tuning
parameter λ associated with the state |ψn(λ)〉 is given by [94]

χ
(n)
2r+2(λ) =

∑
m �=n

|〈ψm(λ)|∂λĤ |ψn(λ)〉|2
[Em(λ) − En(λ)]2r+2

, (7)

where |ψm(λ)〉 and Em(λ) correspond to the mth eigenstate
and eigenvalue of this generic Hamiltonian Ĥ (λ), respec-
tively. The numerator in Eq. (7) denotes the probability of
exciting the system away from the state |ψn(λ)〉 through a
relevant (or marginal) perturbation ∂λĤ . The GFS of different
orders is embodied by the power of the denominator. Con-
cretely, Eq. (7) reduces respectively to the second derivative
of the ground-state energy χ1 for r = −1/2 [59] and the
conventional quantum geometric tensor χ2 for r = 0 [85]. We
can anticipate that χ1 has a weaker divergence than χ2 at a
critical point. The QFS can be also devised as the Riemannian
metric tensor upon projecting the dynamics onto a single
(nondegenerate) band [95],

χ
(n)
2 (λ) = 〈∂λψn|(1 − |ψn〉〈ψn|)|∂λψn〉. (8)

Regarding the absence of mobility edge in the energy spec-
trum, in the following we focus on the GFS of the lowest
eigenstate |ψ1(λ)〉. To this end, the superscript of χ

(1)
2r+2 (r =

−1/2, 0, 1) is omitted for abbreviation.
We then start the description of the finite-size scaling the-

ory by recalling its main features that hold in the vicinity of
the usual continuous QPT. The sensitivity is greatly enhanced,
especially for the system at the quantum criticality compared
with that away from the critical region [96]. Single-parameter
scaling posits that the correlation length ξ is the only relevant
length scale in the thermodynamic limit that diverges at the
transition,

ξ ∼ |λ − λc|−ν, (9)

and the single-particle spectral gap εs of size 2ε1 will
vanish as

εs ∼ N−z, (10)

where ν is the correlation length exponent and z is the dynam-
ical critical exponent. For finite chains, the single-parameter
scaling hypothesis implies that the relevant physical quantities
shall depend only of the ratio ξ/N , at least in the vicinity
of the critical point where ξ 
 1 [97]. As λ crosses QCPs
adiabatically, the GFS shows a broad peak for a finite sys-
tem size, signaling the location of pseudocritical points λm.
With increasing system sizes N , the peaks of GFS become
more pronounced and the maximal points of the GFS is
expected that

χ2r+2(λm) ∼ Nμ, (11)

where μ = 2/ν + 2zr is the critical adiabatic dimension. For
relevant operators ∂λĤ on sufficiently one-dimensional large-
size systems, i.e., ν < 2, the pseudocritical points converge
toward the critical points λc, satisfying

|λm − λc| ∝ N−θ , (12)

with θ = 1/ν. Here one should be aware that the shift ex-
ponent θ in Eq. (12) is not necessarily equal to inverse of
the correlation-length exponent ν [98], as it happens to the
entanglement witness [99,100]. Accordingly, the GFS of a
finite system with size N in the neighborhood of a QCP shall
obey the universal scaling form [101],

χ2r+2(λ) = N2/ν+2zrφr (|λ − λm|N1/ν ), (13)
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where φr (x) is a regular universal scaling function of the
GFS of order 2r + 2, a priori unknown. Estimates for crit-
ical parameters can thus be obtained by plotting the scaled
GFS [χ2r+2(λm)−χ2r+2(λ)]/χ2r+2(λ) versus N1/ν (λ − λm) by
subtly adjusting the values of λm, ν, and z until data collapse
is achieved. Alternatively, taking logarithm on both sides of
Eqs. (11) and (12) yields

ln |λm − λc| ∝ c2r+2 ln N, ln χ2r+2(λm) ∝ d2r+2 ln N, (14)

where fitting parameters c2r+2 and d2r+2 can determine the
critical exponents ν and z as

ν = −1/c2r+2, 2rz = d2r+2 + 2c2r+2. (15)

As such, we concentrate our attention on the region close
to the critical point of localization-delocalization transitions,
above which the eigenstates are localized within the finite
localization length ξ [102]. Unlike the Aubry-André model
with � = 0, the BdG Hamiltonian (3) for a finite � acts
in an enlarged expanded Nambu-spinor space [103]. The
second-order derivative of first excitation χ1 ≡ ∂2ε1/∂V 2 in
the neighborhood of Vc2 for various odd number of system
sizes N with � = 0.5 is shown in Fig. 3(a). One can see
that χ1 presents a divergent peak χ1,max at Vm. The lin-
ear fittings give rise to parameters c1 = −0.994 ± 0.066 and
d1 = 0.605 ± 0.010. According to Eq. (14), the fitting values
imply that ν ≈ 1.006 and z ≈ 1.384. Furthermore, the single-
particle spectral gap 2ε1 with several system sizes from N
= 55 up to N = 4181 are considered with periodic bound-
ary conditions for � = 0.5 in Fig. 3(b), indicating that z =
1.381 ± 0.109 according to Eq. (10).

IV. FIDELITY SUSCEPTIBILITY IN THE
AUBRY-ANDRÉ-HAPER MODEL

WITH P-WAVE PAIRING

We obtain all the eigenenergies and the corresponding
wave functions by diagonalizing Eq. (3). The numerical re-
sults tempt us to evaluate the GFS of the AAH model through
Eq. (7). First we recapitulate the finite-size scaling hypothesis
of QFS in the Aubry-André model with � = 0 [37]. Previ-
ous work revealed the QFS near the EP-LP transition can
be separately rescaled onto two different universal curves for
even and odd numbers of lattice sites [32], while the retrieved
critical exponents are quite close, which implies that two
universal scaling functions are not necessary. The logarithm
of QFS ln χ2 of the Aubry-André model as a function of V
for � = 0 with different system sizes is exhibited in Fig. 4(a).
One can find that the fidelity susceptibility presents a maxi-
mum χ2,max at Vm. With increasing the system sizes, the peaks
become more pronounced and Vm gets closer to the critical
point Vc = 2J . The maximum value of ln χ2 against the sys-
tem size N is displayed in the log-log scale, whose linear
fit shows that ln χ2,max = (2.000 ± 0.010) × ln N − 5.400,
implying ν = 1.000 ± 0.005 according to Eq. (11). This is
consistent with the Harris criterion [104], which imposes that
ν < 2 for phase transitions in the presence of incommen-
surate modulation. When the rescaled fidelity susceptibility
[χ2(Vm)−χ2(V )]/χ2(V ) is plotted as a function of the proper
scaling variable N1/ν (V − Vm), all curves of distinct chain
sizes in the vicinity of Vm collapse into a single curve, as

FIG. 3. (a) The second-order derivative of first excitation ε1 with
respect to V . Inset shows the scaling in the vicinity of the critical
point ln(|Vm − Vc|) = −0.994(±0.066) ln N +1.408 (±0.410) and
the scaling behavior between the maximum value of ln(∂2ε1/∂V 2)max

= 0.605 (±0.010) ln N − 2.491(±0.063). The symbols in the insets
denote the numerical results and the solid lines correspond to the
linear fittings. The parameters are � = 0.5, φ = π . (b) The excita-
tion gap 2ε1 around the critical point Vc2 = 3 as a function of N with
� = 0.5, φ = π .

shown in Fig. 4(b), which corroborates the estimated critical
parameter and the validity of the single-parameter scaling
hypothesis (13). In particular, the properly chosen value of
φ = π much alleviates the odd-even effect.

Next, the QFS in the AAH model with respect to the
strength of the incommensurate potential V for odd number of
lattice sizes with � = 0.5 is shown in Fig. 5. The QFS exhibits
an extensive scaling in the off-critical region. Therefore, the
QFS per site χ2/N appears to be an N-independent value.
Instead, the QFS shows a stronger dependence on system size
around Vc2 = 3, signaling the onset of the QCP in the AAH
model. The maximum values χ2,max of the fidelity susceptibil-
ity near the QCP as a function of N in log-log scale are plotted.
The superextensive behavior at the pseudocritical point is re-
flected in the linear fitting ln χ2,max ∝ (2.003 ± 0.033) ln N ,
whose slope suggests that ν = 0.999 ± 0.017. Meanwhile,
the numerical fitting in terms of Eq. (12) yields ν =
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FIG. 4. (a) The logarithm of the fidelity susceptibility χ2 as
a function of the strength of the incommensurate potential V for
different number of lattice and the logarithm of the maximum of
fidelity susceptibility as a function of the logarithm of the system
size, N = 34, 55, 89, 144, 233, 377, 610, 987. (b) Scaled fidelity
susceptibility [χ2(Vm ) − χ2(V )]/χ2(V ) as a function of scaled vari-
able N1/ν (V − Vc ). All curves for number of the lattice sizes collapse
into a single curve when we choose the correlation length critical
exponents ν = 1.000. Here we choose we take periodic boundary
conditions and set � = 0 and φ = π .

0.947 ± 0.090. The accuracy of retrieved ν from the algebraic
law (12) is generally plagued by the precision of numerical
calculation.

In order to extract the dynamical exponent z of CP-LP
transitions, we further study the finite-size scaling of χ4. One
can easily heed that χ4 displays much more divergent peaks
than χ2 in the vicinity of QCP Vc2 = 3, as is disclosed in
Fig. 6. The linear fittings of the peak maxima χ4,max suggests
c4 = −1.018 ± 0.1074 and d4 = 4.773 ± 0.202. According
to Eq. (15), the extracted values of critical exponents ν =
0.993 ± 0.105 and z = 1.380 ± 0.053 for the CP-LP transi-
tion with � = 0.5 agree well with those obtained from the
gap scaling [28]. In this vein, we continue to pick the critical
exponents ν and z via the scaling analysis of χ4 as the p-wave
superconducting pairing � changes. The numerical results in
Fig. 7(a) reveals that ν � 1.000 and z � 1.388 with little
variation. It turns out that there is a discontinuity of z when

FIG. 5. (a) The fidelity susceptibility per site χ2/N as a func-
tion of the strength of the incommensurate potential V with odd
number of lattice sizes around Vc2 = 3. The inset shows the scal-
ing behavior of the maxima versus the system sizes N = 55, 89,
233, 377, 987, 1597, and 4181. (b) Scaled fidelity susceptibility
[χ2(Vm ) − χ2(V )]/χ2(V ) as a function of scaled variable N1/ν (V −
Vm ). All curves for odd number of the lattice sizes collapse into a
single curve when we choose the correlation length critical exponents
ν = 1.00. Here periodic boundary conditions are used with � = 0.5
and φ = π .

� increases from 0 to an infinitesimal value. Distinct values
of z ≈ 2.375 for � = 0 [32] and z ≈ 1.380 for � �= 0 suggest
that their ground states belong to different universality classes.
For all � �= 0, the transitions across QCPs Vc2 = 2|J + �|
belong to the same universality class as the quasiperiodic Ising
chain [19].

V. DISCUSSION AND SUMMARY

In this work, we investigate quantum criticality in the
Aubry-André-Harper (AAH) model with p-wave super-
conducting pairing in terms of the generalized fidelity
susceptibility (GFS). This quasiperiodic fermion system is
Jordan-Wigner equivalent to the quasiperiodically modulated
transverse field XY chain. The interplay of spatial modulation
of potential and symmetry breaking leads to quantum critical
phenomena that are different from either the commensurate
potential or randomly distributed potential. In the absence
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FIG. 6. (a) The GFS per site χ4/N as a function of the strength
of the incommensurate potential V with odd number of lattice sizes
around Vc2 = 3. The inset shows the scaling behavior of the maxima
vs the system sizes N = 55, 89, 233, 377, 987, 1597, and 4181.
(b) Scaled fidelity susceptibility [χ4(Vm ) − χ4(V )]/χ4(V ) as a func-
tion of scaled variable N1/ν (V − Vm ). All curves for odd number of
the lattice sizes collapse into a single curve when we choose the
correlation-length critical exponents ν = 1.00. Here periodic bound-
ary conditions are used with � = 0.5 and φ = π .

of p-wave pairing (� = 0), the AAH model hosts a phase
transition from the extended state to the exponentially lo-
calized state through the self-duality point (V = 2J). With
a finite value of �, the transition from the extended phase
to the localized phase has to pass through an intermediate
phase, and the critical point will develop into a critical re-
gion, which is sandwiched between the extended and localized
states. Various available methods have been incorporated in
identifying quantum critical points (QCPs) from numerical
simulations. A useful quantity in characterizing quantum crit-
icality of disordered systems is the inverse participation ratio
(IPR), which is equivalent to the second-order participation
Rényi entropy. Since there is no mobility edge in the energy
spectrum, we then use the mean inverse participation ratio
(MIPR) to characterize the degree of the extensivity in space
of the wave function in different phases. The MIPR presents
a power-law scaling ∝ N−d∗

in distinct phases, where d∗ = 1
in the extended phase, d∗ = 0 in the localized phase and the
exponent 0 < d∗ < 1 in the intermediate critical phase.

FIG. 7. (a) The fitted values of critical exponents ν and z as
� varies. Here periodic boundary conditions are used with φ = π .
(b) The GFS χ2r+2 as a function of the strength of the incommensu-
rate potential V around Vc2 = 3 for a small system size N = 13. Note
that χ1 and χ2 have been respectively increased by a factor of 9 and
5 for guiding the eyes.

We have developed accelerated methods for the location of
critical points by the extrema of the universal order param-
eters. In this context, higher order GFSs are more efficient
in spotlighting the pseudocritical points, even in the moder-
ately large systems. The enhanced sensitivity is propitious for
extracting the associated universal information from the finite-
size scaling in quasiperiodic QCPs, whose system sizes are
rapidly growing three-subsequence Fibonacci numbers [105].
This distinguishing feature becomes especially crucial in
interacting many-body systems and higher dimensional sys-
tems. One can see from Fig. 7(b) that χ4 has already spied
on the pseudocritical point for N = 13 via the visible peak.
By performing a detailed numerical simulation, we find dif-
ferent orders of GFS obey power-law scaling in the vicinity
of the localization transitions. The single parameter scaling of
these macroscopic observables provide self-consistent results
of critical exponents. Moreover, the generalization of fidelity
susceptibility poses an efficient avenue to dynamic expo-
nent z. The determined values of correlation-length exponent
ν � 1.000 and the dynamical exponent z � 1.388 suggest
that the quantum criticality of localization transitions in the
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AAH model for � �= 0 lies in a different universality class
from the Aubry-André transition (� = 0) with ν = 1.000 and
z = 2.375 [32,102], where a Aubry-André-type duality may
prevent the finite energy excitations from localizing. Under-
standing the nature of the quasiperiodic localization transition,
with and without a finite p-wave superconducting pairing,
may thereby cut to the heart of the phenomenon. The critical
properties of this fixed point are found to be intermediate to
the clean and randomly disordered cases. The former case is
represented by the clean transverse field Ising model in the
celebrated Onsager universality class with ν = z = 1, while
the latter is symbolized by the Anderson model with ν = 2/3,
z = 2 [106].

Last but not the least, another challenge in the study
of quasiperiodic models is to separate physically measur-
able observables from the mathematically intriguing concepts.
The quantum metric tensor has been experimentally mea-
sured with superconducting qubits [107], coupled qubits in
diamond [108], and planar microcavity [109]. Thus, an ex-
perimental measurement of the correlation-length exponent ν

and the dynamical exponent z becomes tractable. For instance,
z governs the low-temperature behavior of the specific heat
Cv ∼ T −z and can be extracted from the density of states ρ ∼
ε1/z−1 or through the Kibble-Zurek mechanism [102]. In this
respect, our results can be explored in state-of-the-art exper-
imental settings for moderate system sizes. Our tentative ap-
proach draws a link between quantum information science and
analog quasiperiodic systems without explicit order param-
eters, and it would be interesting to investigate whether our
results can be extended to more complex disordered models.
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