
PHYSICAL REVIEW A 105, 013314 (2022)
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We analyze how the presence of the bound state on top of strong intercomponent contact repulsion affects the
dynamics of a two-component ultracold Fermi gas confined in a one-dimensional harmonic trap. By performing
full many-body numerical calculations, we retrieve dynamics of an initially phase-separated state that has been
utilized to excite the spin-dipole mode in experimental settings. We observe an appearance of pairing correlations
at the domain wall, heralding the onset of a molecular fraction at the interlayer between the components.
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I. INTRODUCTION

For decades, investigations of multicomponent mixtures
have provided deep insight into details of intercomponent
interplay. Specifically, an effective repulsion between con-
stituents may result in their spatial separation [1,2] and induce
an itinerant ferromagnetism in metals [3,4], where electrons
spontaneously form extended, spin-polarized domains. This
phenomenon was explained by the Stoner model, where
a short-ranged screened Coulomb repulsion overcomes the
Fermi pressure that favors a paramagnetic state [5]. While
the simplified Stoner approach qualitatively describes many-
electron systems, it does not capture effects related to beyond
short-range interactions that may promote different, compet-
ing mechanisms suppressing ferromagnetism [6,7].

Here we investigate a two-component atomic Fermi gas
with tunable short-range repulsive interactions, for which the
stability of a ferromagnetic state has been debated both in
theory [8–26] and in experiment [27–34]. It stems from the
fact that repulsive interactions due to the Feshbach resonance
support a weakly bound molecular state [35]. Then, ferro-
magnetic correlations appear only in an excited state of the
many-body system, in contrast to the superfluid ground state
of paired atoms.

Since the late 2000s, experiments have tried to settle
whether pairing processes prevent the ferromagnetic domains
from appearing. In the initial attempts, some signatures,
such as increase of a kinetic energy, suggested the onset of
ferromagnetism; however, these efforts proved inconclusive
[29,31]. Only after the system was initialized in an artificial
domain structure did the phase separation undoubtedly persist
for some finite time in a strong interaction regime [30,33].
Recently, time-resolved investigation provided deeper insight
into many-body dynamics of a quenched system [34,36].

*piotr@cft.edu.pl

On the theory side, approaches neglecting pairing pro-
cesses showed that a ferromagnetic transition should occur
in a three-dimensional (3D) geometry [10,12,14,15,37–42].
However, pairing was included either only at the mean-field
level or by the introduction of phenomenological terms. In the
context of Stoner ferromagnetism, many-body eigenstates of
small one-dimensional (1D) contact interacting systems were
analyzed [43–46]. Nevertheless, in such a case the pairing is
supported only by purely attractive interactions in the absence
of the repulsive core characterizing realistic atomic potentials.
To capture short-range details of the interatomic potential in
1D, we utilize the so-called three-δ potential [47–54]:

W↑↓(x) = c0δ(x) + c�δ(x − �) + c�δ(x + �), (1)

where x denotes the relative position between opposite spin
fermions. The parameters c0 > 0 and c� < 0 describe contact
repulsion and finite-range attraction at a distance �, respec-
tively. It can be understood as a first correction to the contact
repulsion due to finite-range interactions and was shown to
reproduce van der Waals forces under quasi-1D confinement
[54] in the limit of weak interactions. Note that the potential
(1) should be realizable in optical lattices where the peripheral
δs would play a role of nearest neighbor interactions. Addi-
tionally, the intracomponent interactions are assumed to be
negligible, as the considered ultracold system is brought close
to the Feshbach resonance of opposite spins. Therefore, in the
considered two-component (spin-↑ and spin-↓) model, intra-
component interactions are excluded and fermions belonging
to the ↑ (↓) component can interact only with fermions pos-
sessing opposite spin, i.e., ↓ (↑). The paradigmatic scenario
analyzed here involves a strongly repulsive core with a weakly
attractive well (0 < −c� � c0). Our aim is to explore dynam-
ics of two initially separated Fermi clouds—a setup inspired
by former experiments [33,55,56]; see Fig. 3(b). We argue that
the potential W (x) can give insight to many-body processes
involved in the competition between pairing and ferromag-
netic instabilities.
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The paper is organized as follows. We start with presenting
the details of the considered model. We discuss the most
important features of the employed interaction potential (1)
and its range of applicability. This is followed by the ground-
state analysis with a special focus on the two-body problem
relevant for pairing processes. The many-body problem is
studied numerically. Next, we move to the dynamics of the ini-
tially phase-separated state. We introduce relevant correlation
functions and other observables used to study pairing between
opposite-spin fermions. In our results, we observe qualitative
differences between the dynamics of two fermions in com-
parison to the systems involving more particles. This can be
attributed to the fact that conservation laws prohibit molecule
formation in the two-body systems. Interestingly, for strong
finite-range attractive interactions we find signatures of the
super-Tonks-Girardeau physics suppressing pairing processes
between fermions belonging to different components.

II. MODEL

Mapping continuous, extended interactions onto discrete
set of δ potentials was first analyzed in the 1980s [47–49]. It
was soon realized that the three-δ potential is a minimal exten-
sion of a realistic short-range potential between atoms [50,51]
and was later utilized to study extended versions of the Gross-
Pitaevskii and Lieb-Liniger models [52,53]. Recently, it was
shown that the three-δ potential provides valuable insight into
the qualitative behavior of the many-body system that goes
beyond standard contact interactions and quantitatively repro-
duces scattering properties of quasi-1D dilute bosons with
not very strong interactions [54]. There, the scattering theory
implies c0 + 2c� = g1D, where g1D is a 1D coupling constant
(see Appendix D). In Ref. [54], the relation between the
three-δ potential parameters and the scattering ones (s-wave
scattering length, effective range) was established. However,
such a map was ambiguous, as some additional parameter
was needed, e.g., energy of the bound state or the p-wave
scattering volume. We leave this ambiguity on purpose to
study effect of interatomic potential short-range details on
systems usually described only in terms of s-wave scattering
properties—the strength of the beyond-contact attraction is
treated as a free parameter.

It needs to be noted that in the regime of strong inter-
actions, mg1D�/h̄2 � 1, the comparison to quasi-1D dilute
gases showed spurious transmission peaks, suggesting that
the use of the three-δ potential might be limited in ultracold
settings. Yet, we still argue that it may give insights into qual-
itative behavior of such systems, while potentially providing
quantitative description in more complex, e.g., molecular or
optical lattice, systems. Specifically, in the latter case, such a
model should be attainable, with on-site and nearest neighbor
interactions being optically tuned.

For � much smaller than other system length scales, it
was shown that a simple contact interaction description can
be retrieved with the effective coupling constant ceff = g1D

+ corrections depending on �, c0, c�; see Ref. [53]. In our
work, the length scale associated with � is finite, which affects
the system beyond the contact approximation. Intuitively, the
length scale � should reflect a range of the real interatomic
potential, but in our analysis it is much larger. Thus, the scal-

FIG. 1. Diagram of a bound-state existence for the M = 1 sys-
tem. Shaded area represents the region of dimensionless parameters
u0 = mc0�/h̄2, u� = mc��/h̄2 where a bound state exists. Dashed line
marks the critical value ucrit

� = −1 below which the three-δ potential
has a bound state no matter how strong the short-range repulsion
u0 is.

ing with decreasing � needs to be addressed. The many-body
simulations we performed (see Sec. IV B) are not attainable
for significantly larger number of sites that would allow for
studies of the system behavior when � is smaller. Neverthe-
less, we have found no evidence of qualitative differences
when � was increased twice and other parameters were ad-
equately rescaled. This may suggest that our findings hold
also if smaller—and more realistic in unconstrained atomic
systems—values of � were to be used.

III. GROUND STATE

A. Two-body case

Our considerations are restricted to a balanced system con-
sisting of M identical fermions with mass m in each of spin-↑
and spin-↓ components. The ground state may be investigated
analytically in the M = 1 case both for a free space and a
harmonic potential confinement characterized by ω frequency,
U (x) = 1

2 mω2x2 (for details, see Appendixes A and B). The
Hamiltonian reads

H = − h̄2

2m

(
∂2

x + ∂2
y

) + V (x) + V (y) + W↑↓(x − y), (2)

where either V (x) = U (x) or V (x) = 0. The corresponding
two-body Schrödinger equation can be exactly solved by in-
troducing center of mass (c.m.) R = (x + y)/

√
2 and relative

r = (x − y)/
√

2 coordinates. In particular, we may determine
values of parameters c0, c� and � for which the ground-
state energy becomes negative. The diagram of the bound-
state existence determined for a free space case is presented
in Fig. 1.

While the pointlike repulsion characterized by c0 is as-
sumed to be extremely strong, we modify the weak attraction
strength c�. Consequently, a ground-state wave function
�(x↑, x↓) has a distinct cusp along x↑ = x↓. However, an
increase of |c�| entails an enhancement of |�|2 around |x↑ −
x↓| ≈ �, which is a premise of a bound-state formation. In-
deed, by energy considerations we found that for each c0 there
exists some critical value of c� below which � represents
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a bound state. As we show later, many-body dynamics of
initially separated components with M > 1 reveals a similar
probability density accumulation for finding two fermions
with opposite spins at a distance �, heralding the onset of the
bound state.

B. Lowest order constrained variational approximation

For large M, the many-body ground state can be studied
within the lowest order constrained variational (LOCV) ap-
proximation [37,57–62]. Within this approach, the balanced
gas, M = N/2, in a free space is described by the following
Hamiltonian,

H = − h̄2

2m

∑
i,σ

∂2
xσ

i
+

∑
i, j

W (x↑
i − x↓

j ), (3)

where xσ
i denotes a spatial coordinate of spin-σ atom labeled

by i ∈ {1, . . . , M} and W (r) is a short-range two-body inter-
action potential between particles belonging to different spin
components, with no spin flipping allowed. Here, the total
wave function is approximated by means of the Jastrow-Slater
ansatz [63],

�({x↑
i }, {x↓

j }) = J ({x↑
i }, {x↓

j })
∏
σ

Dσ

({
xσ

i

})
, (4)

where D↑ and D↓ are Slater determinants,

Dσ

({
xσ

i

}) = 1√
M!

∣∣∣∣∣∣∣∣∣∣

ϕσ
1

(
xσ

1

)
. . . ϕσ

1

(
xσ

M

)
. .

. .

. .

ϕσ
M

(
xσ

1

)
. . . ϕσ

M

(
xσ

M

)

∣∣∣∣∣∣∣∣∣∣
, (5)

of plane waves ϕσ
i , and J is the so-called Jastrow factor,

J ({x↑
i }, {x↓

j }) =
∏
i, j

f (|x↑
i − x↓

j |), (6)

with f being a Jastrow function that accounts for a two-
body relative wave function of opposite spin atoms. Such an
ansatz is not valid for general Fermi systems, e.g., neutron
matter; however, it proved to be a good approximation for
cold atomic systems in which short-range interactions are
dominant [23,37].

We assume that the Jastrow factor slightly modifies the
whole wave function at short relative distances only and that
the parameter Fi j = f ∗(|x↑

i − x↓
j |) f (|x↑

i − x↓
j |) − 1 is small.

Thus, we can expand |J|2 = 1 + ∑
i, j Fi j + O(F 2).

Let us proceed to evaluate the normalization of the wave
function. By the orthonormality of plane waves, we find that
up to the first order in Fi j , n

∫
dr| f (r)|2 = N , where r = x − y

is the relative coordinate and nσ = n/2 denotes the σ -particle
density.

Now, we need to introduce physical assumptions on the
behavior of the Jastrow function. We demand that for long
separations between the atoms, J asymptotically tends to 1
not to affect the long-range behavior of the wave function.
Even more than that, we introduce the healing length ξ that is
of order of average interparticle separation 1/n beyond which
the Jastrow function does not modify �. It expresses the in-
tuition that on average only the nearest neighbors of opposite

spins are correlated and the correlations with atoms at longer
distances are negligible. This constraint and the requirement
for smoothness at the healing distance, i.e., f (|r| � ξ ) = 1
and f ′(ξ ) = f ′(−ξ ) = 0, are two out of three constraining
conditions. The last one comes from the normalization of
the Jastrow factor. We assume that f deviates from 1 only
inside the sphere with radius ξ , K (ξ ), and on average there is
only a single ↑-↓ pair inside K (ξ ). Therefore, starting with
n

∫
dr| f (r)|2 = N , assuming L to be the system size, one

rewrites

n

2

[∫
K (ξ )

dr| f (r)|2 +
∫

V −K (ξ )
dr 1

]
= N

2
, (7)

which by noting that
∫

V −K (ξ ) dr = (1 − 2/N )L results in the

last constraint: n
2

∫
K (ξ ) dr | f (r)|2 = 1.

These three constraints are needed in variational calcu-
lations in order to reproduce the experimental data [37,57].
Unconstrained calculations were utilized to study nuclear
matter; however, each time the Jastrow function tended to
be unphysically long ranged. On the other hand, constrained
studies provided an extremely good fit to the experimental
data [62,64]. Note that introduction of these constraints will
also imply some kind of the effective two-body interaction.
If the Jastrow function were to satisfy the usual two-body
Schrödinger equation for the relative wave function, it would
not tend to 1 for long distances. Therefore, some kind of
alternation of interaction is needed in order to satisfy the
constraints, which will be addressed later.

We will now proceed to evaluate the energy within the
Slater-Jastrow ansatz. The noninteracting contribution comes
from the kinetic energy of the orbitals and in large atom
number limit is equal to E0/L = nEF /3, where the Fermi
energy EF = h̄2π2n2L/8m. The interaction part comes as a
two-body cluster expansion of the total energy that takes into
account both the kinetic energy from the Jastrow function
and the influence of a bare two-body potential. Namely, since
Eint = 〈Ĥ〉 − E0, one finds

Eint

L
≈ n↑n↓

∫
dr f ∗(r)

(
− h̄2

2μ
∂2

r + W (r)

)
f (r). (8)

Now, Eq. (8) needs to be extremized with respect to varia-
tions of f . However, in order for f to satisfy the constraints,
two-body interaction needs to be altered. The easiest way
to do so is by adding additional constant external potential
λ in such a way that W → W − λ [64]. It is not the only
way of renormalization, but it was shown to provide reliable
results and to be equivalent to the so-called Moszkowski-Scott
separation [65] and Brueckner theory [66]. This procedure
can be understood as an effect of average pressure of further
neighbors and sometimes it is interpreted as a contribution of
two-body correlations to average field felt by a given atom.

Therefore, to find a minimum, one needs to solve δEint = 0
with Eint (8) where W → W − λ, which yields the following
two-body Schrödinger-like equation,

−
[

h̄2

2μ
∂2

r + W (r)

]
f (r) = λ f (r), (9)

that needs to be solved with the above-mentioned constraints.
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FIG. 2. Interaction energy of the ground state within the LOCV
approximation for n� = 0.25. The sharp transition from positive to
negative energy is clearly visible at mc��/h̄2 ≈ −1 and indicates an
appearance of the bound state in the system.

Finally, we find Eint/L = nλ/2, which indicates that on
average we have n/2 pairs, each one contributing energy λ.

The LOCV approximation proved to provide reliable ex-
perimental predictions in many settings, from dense nuclear
matter to ultracold quantum mixtures. However, it was mostly
utilized in three-dimensional geometries, in which the level
of its accuracy matches state-of-the-art quantum Monte Carlo
calculations [37,62]. Analysis of low-dimensional systems
was scarce, but the preliminary results in two-dimensional
Fermi gas suggest that LOCV fares worse in such geometries.
The probable reason is a larger role of quantum fluctuations
in lower dimensions and the resulting need to go beyond the
lowest order in the cluster expansion to match the more sen-
sitive approaches. Nevertheless, the qualitative match can be
expected as LOCV should reproduce leading-order behavior
of systems considered.

We have performed calculations for the system with three-δ
interactions W↑↓ within the LOCV approximation (for details,
see Appendix C). Taking the limit c0 → ∞, we found that
the interaction energy in the ground state within the LOCV
approximation becomes negative for c� � ccrit = − h̄2

m�
(see

Fig. 2). Note that the critical value ccrit does not depend on
M, corresponding to ceff = 0 from Ref. [53].

In agreement with LOCV, the analysis of the two-body
Schrödinger equation specifies ccrit as a boundary value of
interaction below which in the limit c0 → ∞ there exists a
bound state [see Fig. 1(a)]. Therefore, when crossing ccrit,
we expect to observe a change of dynamical behavior of the
initially separated ferromagnetic state, as signatures of bound
structures may appear.

IV. DYNAMICS

We now proceed to study dynamical properties of the
initially phase-separated system, where the components are
confined to their respective halves of the trap due to a high
potential barrier in the center. Both components do not have
any meaningful overlap and are effectively noninteracting.
The barrier is then instantaneously released and the system
evolves freely. As the intercomponent overlap starts to accu-
mulate, the corresponding correlations begin to appear around
the trap center.

A. Two-body dynamics

First, we focus on M = 1 case which can be analyzed
analytically, again thanks to the separation of c.m. and relative
coordinates (see Appendix B for details). The eigenstates take
the form

�n,μ(x, y) = φn

(x + y√
2

)
ψμ

(x − y√
2

)
, (10)

where φn, n = 0, 1, 2, . . . is a harmonic oscillator eigenstate
whereas ψμ represents an eigenstate of Hrel. The evolution of
the initially separated state is obtained via

�(x, y; t ) =
∑
n,μ

e− i
h̄ En,μtCn,μ�n,μ(x, y) (11)

Here Cn,μ = 〈�n,μ|�0〉 and the initial state corresponding to
two atoms separated with an infinitely high and very thin
potential barrier reads

�0(x, y) = 2φ1(x)φ1(y)θ (x)θ (−y), (12)

with θ (x) denoting the Heaviside step function. We stick
to the case in which �/d ≈ 0.238, where d = √

h̄/mω is
the harmonic trap length. For convenience, the following di-
mensionless interaction parameters, γα = 21/4 cα

dh̄ω
with α =

0, �, crit, are utilized. Throughout our analysis, the repulsive
core constant is set to γ0 = 100 (γ0 � |γ�|), corresponding to
large g1D, which guarantees a phase separation of fermionic
clouds at the mean-field level.

Despite |γ�| � γ0, the beyond-contact attraction has dra-
matic consequences on the system dynamics. When it is
sufficiently weak, the preservation of the initial phase separa-
tion is guaranteed over several trap periods due to the central
core repulsion; cf. Fig. 3(d). Note that in 1D systems phase
separation is never infinitely stable for finite interactions and
the initial domain structure will eventually melt [67]; however,
we are focused on much shorter timescales, during which the
phase separation is supported.

Surprisingly, the initial domain structure is also preserved
when the finite-range attraction is sufficiently strong; see
Fig. 3(f). The relevant mechanism responsible for such a
behavior was studied in detail in Ref. [68] and has a lot in
common with the super-Tonks-Girardeau gas phase [69,70].
The origins of metastability in the regime of large, negative γ�

may be understood by looking at the spectrum of the relative
part of the Hamiltonian.

We consider the limit γ0 → ∞, fix �/d = 0.2, and analyze
the spectrum as a function of c�. Due to infinite contact re-
pulsion, the spectrum is double degenerate and states may be
grouped into pairs consisting of one symmetric and antisym-
metric characterized by equal energies. Similarly to purely
contact interactions [68,71], there is a relation between spectra
in the limits c� → ±∞. Namely, the spectrum of relative
Hamiltonian in the strongly attractive case consists of eigen-
states of the c� → ∞ regime supplemented by two deep
bound states with negative, diverging energy (cf. Fig. 4). In
general, the dynamics of the system is given by (11). Let
us focus on the case c�/h̄ωd → −∞. As the initial state,
�0, corresponds to two initially separated atoms, the wave
function is zero when x = y and is still very small for |x −
y| = �. On the other hand, the bound states, �b, are tightly
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FIG. 3. Illustration of how the phase separated state with M = 3
is prepared [(a), (b)] and then subsequently evolved after the re-
moval of the central barrier (c). Time evolution of particle densities
(normalized to a number of particles M) of two Fermi components
interacting via the three-delta potential obtained for M = 1 [(d)–(f)]
and M = 3 [(g)–(i)]. In the considered timescales, for sufficiently
weak and sufficiently strong beyond-contact attraction γ�, the domain
structure is stabilized for both M = 1 and M = 3. In contrast to
the M = 1 case, at the moderate attraction (γ� ≈ γcrit = −5), M = 3
system remains separated.

localized at |x − y| = � and almost zero elsewhere. Conse-
quently, 〈�0|�b〉 → 0 and both symmetric and antisymmetric
bound states effectively do not contribute to the dynamics
(11). The remaining states that do have a meaningful over-
laps, are at the same time eigenstates of the system with
c�/h̄ωd → ∞. As a result, the dynamics of the system with
strong finite-range attraction closely follows the dynamics of
the system with strongly repulsive potential c�/h̄ωd → ∞.
Further analysis of this mechanism is provided in Ref. [68].
On the other hand, intermediate regime, γ� ≈ γcrit, does not
support the short-time stabilization of the spatial separation,
as atoms mix with each other; cf. Fig. 3(e). It can be explained

FIG. 4. The spectrum of the relative part of the Hamiltonian in
the limit c0/h̄ωd → ∞ for �/d = 0.2 as a function of c�. Due to
the degeneracy, each curve corresponds to two states: Symmetric
and antisymmetric. There are two bound states (symmetric and an-
tisymmetric) for sufficiently negative c�/h̄ωd . The inset presents
a pictorial representation of the relationship between spectra for
c�/h̄ωd → ∞ and c�/h̄ωd → −∞, where red dots represent bound
states.

through the involvement of the bound state in the dynamics.
Indeed, by examining Fig. 4, one can see that the fastest spin
dynamics happens in the region close to the avoided crossing
between the bound states and the excited states at γ� ≈ γcrit.

Let us now proceed to a similar analysis in the few-body
system.

B. Many-body dynamics

In order to tackle the many-body problem, we first dis-
cretize the following Hamiltonian,

Ĥ =
∑

σ=↑,↓

∫
dx ψ̂†

σ (x)
[

− h̄2

2m
∂2

x + 1

2
mω2x2

]
ψ̂σ (x)

+
∫

dxdy ψ̂
†
↑(x)ψ̂†

↓(y)W↑↓(x − y)ψ̂↑(x)ψ̂↓(y), (13)

where ψ̂σ (x) denotes the canonical Fermi field annihilation
operator satisfying standard fermionic anticommutation rela-
tions. To do so, we switch from the continuous space to the
lattice consisting of Ns sites with spacing � and introduce
new fermionic operators acting directly on lattice sites, i.e.,
ψ̂σ (xi ) → √

�âσ,i, where xi represents a position of ith lattice
site. In result, we arrive at the Fermi-Hubbard (FH) model
with beyond on-site interactions

ĤFH = T
∑
σ,i

(â†
σ,iâσ,i+1 − n̂σ,i + H.c.) + U

∑
σ,i

x2
i n̂σ,i

+
∑

i

(
c0

�
n̂↑,in̂↓,i + c�

�
n̂↑,in̂↓,i+s + c�

�
n̂↑,i+sn̂↓,i

)
,

(14)

where T = h̄2/2m�2, U = mω2/2, n̂σ,i = â†
σ,iâσ,i is the spin-

σ particle number operator at site i, and s represents the
distance � in lattice sites, i.e., � = s�. Here, for the purpose
of our analysis we set s = 1. Therefore, the contact interaction
becomes the on-site one, while peripheral δs correspond to
the nearest neighbor attraction. More specifically, we use the
units where h̄ = m = 1 and restrict ourselves to the lattice
system of size L = 10 and Ns = 50 sites. The lattice spacing
� equals the distance between δs, i.e., � = L/Ns = � = 0.2.
To investigate the many-body dynamics, we employ matrix
product states (MPS) [72,73] ansatz with open boundary con-
ditions, where we assumed that the system edges and lattice
site positions are located at xOBC = ±L/2 and x j=1,...,Ns =
−L/2 + �( j − 1/2), respectively. The harmonic confinement
is realized by employing the trap of frequency ω = √

2 cen-
tered at x = 0, which guarantees that particles in the systems
under considerations (M � 3) never feel the hard-wall bound-
aries. The initially separated state is prepared with the help
of a standard density matrix renormalization group (DMRG)
method [72–76] in the presence of a Gaussian barrier Vb(x) =
Ae−x2/2σ 2

, starting with a state where fermions of opposite
spins occupy sites in different halves of the trap far from
x = 0; cf. Fig. 3(a). For this purpose, we used A = 10(M + 1)
and σ = �. It yields a matrix product state (MPS) in which
the clouds of atoms belonging to different components are
well separated and they are mirror images of each other with
respect to the trap center; cf. Fig. 3(b). After removing the
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barrier at time t = 0, the system dynamics is investigated with
the help of an algorithm combining one-site time-dependent
variational principle (TDVP) procedure [77] and a global ba-
sis expansion [78]; cf. Fig. 3(c).

Generally, time evolution within the MPS approach is error
prone and computationally demanding. It is due to the fact that
together with a ballistic increase of an entanglement entropy
in the course of dynamics, it is required to deal with increasing
bond dimension. This issue was partially overcome by a re-
cent development of the time-dependent variational principle
(TDVP) algorithm [79–81], which allows for a time propaga-
tion with a fixed bond dimension (one-site TDVP). It is much
less error prone in comparison with other earlier techniques
like the time-evolving block decimation (TEBD) routine [82].
Nevertheless, to reproduce a system dynamics properly, the
bond dimension has to be first enlarged enough, which can be
done, for example, as in the “hybrid” TDVP strategy, where
the desired bond dimension is obtained through the initial
application of the two-site TDVP scheme [82–84]. Here, we
employ a recent approach in which the basis for MPS |�〉
is enlarged by means of a subspace expansion by global
Krylov vectors {|�〉, Ĥ |�〉, . . . , Ĥk−1|�〉}, where Ĥ is the
Hamiltonian governing the system dynamics and k denotes
the so-called Krylov order. The method is meticulously de-
scribed in Ref. [78], where the authors argue that this strategy
is more accurate and more efficient than the two-site TDVP
approach. Moreover, this method turns out to be more reliable
in the case of beyond-nearest-neighbor interactions. We use
the algorithm implementation based on the ITensor library
provided by the authors of Ref. [78] under the ITensor/TDVP
repository.

The calculations we performed with the time step �t =
0.02 and k = 3, where the truncation error of each application
of Ĥ to |�〉 and the truncation error controlling diagonaliza-
tion of the sum of the reduced density matrices were chosen
to be equal 10−8. Additionally, we preserve exact unitarity
by imposing no truncation during one-site TDVP sweeps.
This choice of parameters guarantees a balance between cost
and accuracy, when testing in the most demanding M = 3
case. We let the bond dimension χ of the time-evolved MPS
grow up to predetermined value χmax = 750 and switch off
the global basis expansion routine when χmax is reached. For
convergence analysis, see Appendix E.

In contrast to the M = 1 case, the domain structure is
preserved over a couple of trap periods for all the inter-
action strengths (see Fig. 3). It can be further analyzed
through the intercomponent density-density correlation func-
tion G(x, y; t ) = 〈�(t )|n̂↑(x)n̂↓(y)|�(t )〉/M2, with n̂σ (x) =
ψ̂†

σ (x)ψ̂σ (x), where ψ̂σ (x) is a canonical Fermi field operator
for spin σ at x, |�(t )〉 is the time-evolved MPS at time t ,
and

∫
G(x, y; t )dxdy = 1. In Fig. 5, we compare 〈G〉(x↑, x↓)

obtained for M = 1, 3 and different finite-range attraction
strength γ�, where 〈...〉 denotes a temporal average over five
trap periods. Far from γcrit both systems evolve similarly, sug-
gesting that mechanisms described in the previous section are
present also for M > 1. On the other hand, in the intermediate
regime γ� ≈ γcrit, an escalation of 〈G〉 at |x↑ − x↓| ≈ � is
revealed for M = 3, alongside a slight flow of atoms to the op-
posite side of the domain wall. We interpret this enhancement
as the onset of the bound state contribution (molecule fraction)

appearing in the course of time evolution. It can be viewed
as an extension of similar structures present in the relative
wave function of the bound state in the two-body problem
(see Appendix B). Additionally, this growth takes place at
the critical interaction strength predicted by the LOCV ap-
proximation and M = 1 exact solution. Note that for M = 1,
the dynamics reveals no molecular formation as there are no
additional atoms to absorb excess kinetic energy.

This effect can be further investigated by analysis
of the pair distribution function g(r; t ) = ∫

Kr (x; t )dx,
where Kr (x; t ) = 1

2

∑
q=±[G(x, x + qr; t ) + G(x + qr, x; t )]

describes spatial correlations between spin-↑ and spin-↓
fermions at a distance r. The value of g(r; t ) corresponds to
the probability density of finding opposite-spin fermions at
a distance r. A temporal variability of g(r; t ) obtained for
M = 1, 3 and different γ� is presented in Figs. 5(k)–5(o).
For M = 1, independently of the γ� value, g(r; t ) oscillates,
closely following the dynamics of single-particle densities;
cf. Figs. 3(e)–3(f) and upper panels of Figs. 5(k)–5(o). In
contrast, for γ� ≈ γcrit, the M = 3 case reveals a steady and
gradual growth of g(r; t ) at r = �, being the distance at
which signatures of anticipated bound pairs are expected.
Since the dominant contribution to g(�; t ) comes from the
trap center, cf. Figs. 5(h) and 5(i), we interpret this result as
a footprint of molecular fraction in the interlayer between
components. Far from γ� ≈ γcrit, the resulting g(�; t ) is
inappreciable, suggesting that stabilization mechanisms
noticed and described in the two-body case are also present
in larger systems.

To study the molecular fraction in more detail, one can
compute N �

↑-↓ = Mg(�; t )� representing the expectation value
of the number of ↑-↓ pairs of size ≈ �. Since the components
in the initial state are spatially separated, the anticipated ↑-↓
bound structures may appear in the course of time evolution.
Therefore, in Fig. 6(a), we investigate how the temporal aver-
age 〈N �

↑-↓〉 depends on M and the beyond-contact attraction
γ�. It is striking that while 〈N �

↑-↓〉 turns out to be almost
M independent for γ� > γcrit, at γ� ≈ γcrit one observes an
abrupt splitting between the results obtained for M = 1 and
M > 1. For both M = 2 and M = 3, 〈N �

↑-↓〉 is very similar and
reveals a dramatic growth up to ≈0.2. When γ� becomes more
negative, it rapidly decays approaching the values obtained for
M = 1. The escalation of 〈N �

↑-↓〉 for M > 1 around γcrit can
be better understood when looking at the spatial distribution
〈K�〉(x). That is, as shown for M = 3 in Fig. 6(b), in the vicin-
ity of γcrit there is a significant accumulation of ↑-↓ pairs of
size � in the center of the trap. This is an additional signature
of an appearance of a molecular fraction that resides between
the two components forming a domain wall. Coexistence of
paired and unpaired fermions has been observed experimen-
tally in a three-dimensional system, where strong evidence of
a microscale phase separation was provided [34,36].

V. CONCLUSIONS

We proposed to utilize the three-δ interaction potential to
study competing effects, intercomponent pairing and ferro-
magnetism, in an ultracold two-component Fermi gas. We
have analyzed many-body dynamics of the system initially
prepared in the experimentally inspired artificial domain
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FIG. 5. Temporally averaged over five trap periods density-density correlation functions 〈G〉(x↑, x↓) calculated for M = 1, panels (a)–(e),
and M = 3, panels (f)–(j), and for different finite-range attraction strengths γ�. In accordance with the results shown in Fig. 3, mixing between
the components takes place only for M = 1 in the presence of intermediate attraction; see panels (b)–(d). In contrast to the M = 1 case, for
M = 3 with moderate attraction one can observe an accumulation of 〈G〉(x↑, x↓) in the trap center; see panels (g)–(i). In right panels (k)–(o), we
show a temporal behavior of g(r; t ) obtained for M = 1, 3 and different γ�. While for M = 1 the pair distribution g(r; t ) oscillates together with
single-particle densities plotted in Fig. 3(d)–3(f), for γ� ≈ γcrit the M = 3 case reveals a steady and gradual increase of correlations between
opposite-spin fermions separated by r ≈ �. Such correlations are strictly related to the presence of the finite-range attraction.
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FIG. 6. Panel (a) shows the expectation value of the number
of molecules 〈N �

↑-↓〉 averaged over five trap periods vs finite-range
attraction strength γ�. The results obtained for M = 2 and M = 3 are
very similar and reveal a dramatic growth of ↑-↓ pair correlations
at a distance r ≈ � for γ� ≈ −5. On the other hand, for M = 1, an
increase of 〈N �

↑-↓〉 is much less pronounced, which may indicate lack
of the molecule formation in the two-body system. Panel (b) presents
the M = 3 case of 〈K�〉(x) determined for different beyond-contact
attraction strengths γ�. The correlations are significantly amplified
for γ� ≈ γcrit = −5 and reveal maximum in the trap center, sug-
gesting that the molecular fraction accumulates between two Fermi
clouds.

structure. We have found that the formation of molecules
does not immediately destroy the phase separation within
the considered timescales of several trap periods. Instead, the
molecular fraction accumulates between the components, co-
existing with unpaired fermions. Moreover, the simple model
we consider should be realizable in optical lattices with ultra-
cold atoms.
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APPENDIX A: BOUND STATES IN TWO-BODY PROBLEM

In this Appendix, we investigate a one-dimensional prob-
lem of two particles interacting via a three-δ potential and
determine a criterion for a bound-state formation in the ab-
sence of external confinement. The Hamiltonian of our system
reads

H = − h̄2

2m

(
∂2

x + ∂2
y

) + W↑↓(x − y) (A1)

with W↑↓(x) = c0δ(x) + c�δ(x − �) + c�δ(x + �) and we as-
sume that c0 > 0 and c� < 0. We decouple center of mass
(c.m.) and relative motion by introducing new coordinates
R = (x + y)/

√
2 and r = (x − y)/

√
2 obtaining H = Hc.m. +

Hrel, where Hc.m. = − h̄2

2m ∂2
R and Hrel = − h̄2

2m ∂2
r + W ′(r). Here

W ′(r) denotes the three-δ potential with �′ = �/
√

2 and c′
0,� =

FIG. 7. Bound state relative wave functions of the three-δ po-
tential in the regime of strong contact repulsion. Note that with
increasing |c�| the particles localize more eagerly at r = ±�′ (marked
with dashed lines). The relative wave functions vanish at r = 0 due to
the strong pointlike repulsion. Results were obtained for h̄ = m = 1,
c0 = 5000, and � = 0.2.

c0,�/
√

2. We focus on Hrel and seek for localized eigenstates
(bound states) describing a pair bound due to attractive part
of W ′(r). In general, the potential may have at most two
bound states: one symmetric (+) and one antisymmetric (−).
The problem is solved by imposing the following standard
continuity and δ-potential-related conditions

ψ±(r) =

⎧⎪⎪⎨
⎪⎪⎩

A±ekr r < −�′

B±ekr + C±e−kr −�′ � r < 0
±C±ekr ± B±e−kr 0 � r < �′

±A±e−kr r � �′
, (A2)

where k = √
2m|E |/h̄, with E being the binding energy.

The above-mentioned conditions lead to the following re-
lations, B+ = C+(2 − u0/t )/(2 + u0/t ), A+ = −2C+te2t/u�

for symmetric solutions and B− = −C−, A− = −2C−te2t/u�

for antisymmetric ones, where the dimensionless parameters
u0 = mc0�/h̄2, u� = mc��/h̄2, and t = k�′ were introduced.
The energies E can be determined thanks to relations{

2 cosh t + u0
t sinh t + (2t + u0) et

u�
= 0 for (+)

tet = −u� sinh t for (−)
. (A3)

As the lowest energy state is always symmetric, our poten-
tial hosts a bound state only if (A3) has a positive solution.
Assuming a very strong contact repulsion c0 → ∞, we take
the limit t → 0+ in (A3) and find the critical value of at-
tractive coupling ucrit

� = −1 below which there exists a bound
state in the system. While the regime of bound-state existence
is shown in Fig. 1, exemplary shapes of the corresponding
bound-state wave functions can be found in Fig. 7.

APPENDIX B: TWO-BODY PROBLEM
IN A HARMONIC TRAP

Let us now study the problem of two initially separated
particles interacting via three-δ potential. We show that exact
solutions provide us with a lot of insights about the time evo-
lution and the structure of the energy spectrum. Additionally,
it will serve as a benchmark for numerical methods employed
when investigating larger systems.

Here, applying methods similar to those in Refs. [71,85],
we solve the problem that may be viewed as an extension of
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the problem analyzed in Ref. [71]. Namely, we consider the
Hamiltonian

H = − h̄2

2m

(
∂2

x + ∂2
y

) + 1

2
mω2(x2 + y2) + W↑↓(x − y).

(B1)

As in the previous section, we introduce R and r variables
obtaining H = Hc.m. + Hrel, where Hc.m. describes the stan-
dard Hamiltonian of harmonic oscillator and thus we focus
only on Hrel = − h̄2

2m ∂2
r + mω2

2 r2 + W ′(r). In the absence of
potential W ′(r), the corresponding Schrödinger equation de-
scribes a standard harmonic oscillator in 1D, i.e., Eψ (r) =
− h̄2

2m ∂2
r ψ (r) + mω2

2 r2ψ (r). The most general solutions of the
problem can be grouped into symmetric and antisymmetric
ones and cast into the following forms:

ψ+(r) = α+F̃σ
2 , 1

2
(r) + β+Ũ σ

2 , 1
2
(r), (B2)

ψ−(r) = α−
r

d
F̃κ

2 , 3
2
(r) + β−

r

d
Ũ κ

2 , 3
2
(r), (B3)

where d = √
h̄/mω is the oscillator length and the

energy-related coefficients κ = 3/2 − E/h̄ω and σ = 1/2 −
E/h̄ω [85,86]. Additionally, for convenience we intro-
duced functions F̃ξ,ζ (r) = exp( − r2/2d2) 1F1 (ξ ; ζ ; r2/d2)
and Ũξ,ζ (r) = exp( − r2/2d2)U (ξ, ζ , r2/d2), where U and
1F1 are confluent hypergeometric functions of the first and
second types, respectively. It is important for further analysis
to list the most important properties of 1F1 and U in order
to construct physical eigenstates (taking δ functions into the
account) similarly to the case without confinement [85,86]. If
σ = −n with n = 0, 1, 2, . . ., then 1F1 ( − n

2 ; 1
2 ; x2) ∼ H2n(x)

and for κ = −n (n = 0, 1, 2, . . .) we get 1F1 ( − n
2 ; 3

2 ; x2) ∼
H2n+1(x). In this way, we retrieve free oscillator solutions
out of general forms (B2) and (B3). However, when in-
teractions shift values of energies so that σ and κ are no
longer nonpositive integer numbers, the functions F̃σ

2 , 1
2
(r)

and r
d F̃κ

2 , 3
2
(r) become non-normalizable. This means that in

the region where |r| > �′ we have solutions with α(+) = 0
(α(−) = 0) in the symmetric (antisymmetric) case. On the
other hand, in that case functions Ũ σ

2 , 1
2
(r) and r

d Ũ κ
2 , 3

2
(r) de-

cay sufficiently quickly, assuring normalizability of the wave
function. Now, regarding behavior of the wave functions at
the origin, functions F̃σ

2 , 1
2
(r) and r

d F̃κ
2 , 3

2
(r) are continuous and

have continuous derivatives at r = 0. The situation is slightly
different for Ũ σ

2 , 1
2
(r) and r

d Ũ κ
2 , 3

2
(r), which are continuous at

r = 0 but reveal discontinuities in derivatives at this point,
which we use to fulfill the abovementioned Dirac δ conditions.
These properties motivate us to propose solutions in the form

ψ+(r) =
{

A+Ũ σ
2 , 1

2
(r) |r| � �′

B+F̃σ
2 , 1

2
(r) + C+Ũ σ

2 , 1
2
(r) |r| < �′ , (B4)

ψ−(r) =
{

A− r
d Ũ κ

2 , 3
2
(r) |r| � �′

B− r
d F̃κ

2 , 3
2
(r) |r| < �′ . (B5)

Now, we proceed similarly as in the case with no con-
finement; i.e., we impose continuity and δ-potential-related
conditions at r = 0,±�′. Let us start with the symmetric
solutions, where continuity of the wave function at r = ±�′
implies

A+U

(
σ

2
,
1

2
,
�′2

d2

)
=B+ 1F

1

(
σ

2
;
1

2
;
�′2

d2

)
+C+U

(
σ

2
,
1

2
,
�′2

d2

)
(B6)

and δ-induced condition at r = 0 yields (see Ref. [86] for
details)

C+h̄ωd

√
πσ

�
(
1 + σ

2

) + c′
0

[
B+ + C+

√
π

�
(

1
2 + σ

2

)
]

= 0. (B7)

Applying the same conditions but at r = ±� together with
relations (B6) and (B7), one finds

B+ =−�σC+, (B8)

A+ = 2�σ 1F1
(
1+ σ

2 ; 3
2 ; �′2

d2

)+U
(
1+ σ

2 , 3
2 , �′2

d2

)
U

(
1+ σ

2 , 3
2 , �′2

d2

)−2 c′
�

h̄ω�′σ U
(

σ
2 , 1

2 , �′2
d2

) C+, (B9)

where �σ = √
π [h̄ωdσ/c′

0�(1 + σ
2 ) + 1/�( 1

2 + σ
2 )] was in-

troduced for convenience. By plugging these equalities into
the continuity condition, we determine the equation for σ

(directly related to energies)

σU
(

σ
2 , 1

2 , �′2
d2

)

U
(

σ
2 , 1

2 , �′2
d2

)
− �σ 1F1

(
σ
2 ; 1

2 ; �′2
d2

) =
σU

(
1 + σ

2 , 3
2 , �′2

d2

)
+ 2c′

�

h̄ω�′ U
(

σ
2 , 1

2 , �′2
d2

)

2�σ 1F1

(
1 + σ

2 ; 3
2 ; �′2

d2

)
+ U

(
1 + σ

2 , 3
2 , �′2

d2

) . (B10)

When dealing with antisymmetric solutions, the corresponding wave functions are not affected by the δ potential at r = 0 and
thus it is enough to focus on r = ±�′ cases, where from the continuity and δ-related conditions we find

A−U

(
κ

2
,

3

2
,
�′2

d2

)
= B− 1F

1

(
κ

2
;

3

2
;

�′

d2

)
, (B11)

A− = −
κ

[
A−
2 U

(
1 + κ

2 , 5
2 , �′2

d2

)
+ B−

3 1F1

(
1 + κ

2 ; 5
2 ; �′2

d2

)]

c′
�U

(
κ
2 , 3

2 , �′2
d2

) . (B12)
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Finally, κ gives the energies of antisymmetric states and can be determined from

−κ =
2c′

�

h̄ω�′ U
(

κ
2 , 3

2 , �′2
d2

)
1F1

(
κ
2 ; 3

2 ; �′2
d2

)

1F1

(
κ
2 ; 3

2 ; �′2
d2

)
U

(
1 + κ

2 , 5
2 , �′2

d2

)
+ 2

3U
(

κ
2 , 3

2 , �′2
d2

)
1F1

(
1 + κ

2 ; 5
2 ; �′2

d2

) . (B13)

Our eigenproblem is now solved. Energies are readily
obtained as numerical solutions of (B10) and (B13). Wave
functions are determined from Eqs. (B8), (B9), and (B11)
together with the normalization condition. Ground states for
different parameters are presented in Fig. 8. In summary, let
us note that full eigenstates of the two body problem can be
cast into the following form

�n,μ(x, y) = φn

(x + y√
2

)
ψμ

(x − y√
2

)
, (B14)

where φn, n = 0, 1, 2, . . . is a harmonic oscillator eigenstate
whereas ψμ represents an eigenstate of Hrel. Here μ denotes
either κ or σ depending on the symmetry of a given state in
the relative coordinate r.

APPENDIX C: THREE-δ POTENTIAL
IN LOCV APPROXIMATION

We consider a specific potential consisting of three δ con-
tributions

W↑↓(x) = c0δ(x) + c�δ(x − �) + c�δ(x + �), (C1)

where we choose the contact interaction strength c0 to be
large and positive to mimic the repulsive core of realistic
interparticle potential. On the other hand, beyond-contact part,
c�, is chosen to be small and negative to support a weakly
bound state and provide the simplest extension of a contact
part toward full van der Waals forces.

In a three-dimensional two-component Fermi mixture, the
contact repulsion given by the Fermi-Huang pseudopotential
∝ δ(r) ∂

∂r r reproduces both the weakly bound pairs (attractive
branch of the many-body system) and the repulsive, anticor-
related, phase-separated Fermi clouds (repulsive branch). This
is not the case in a one-dimensional space as repulsive contact
interactions do not support a bound state.

FIG. 8. Ground states of the relative Hamiltonian Hrel for �/d =
0.2, c0/h̄ωd = 200, and different c�. Similarly to the case without
confinement, the solution becomes more localized at r = ±�′ as we
increase |c�|.

To simplify our considerations, we will work in the regime
of infinite repulsion, c0 → ∞, yielding f (0) = 0.

We compute the interaction energy within the LOCV ap-
proximation solving Eqs. (9). If the bound state is considered,
λ = −h̄2κ2/2m is negative. Then, we assume the Jastrow
function to take form

f (x) =
⎧⎨
⎩

A sinh(κx) : x ∈ [0, �]
B sinh(κx) + D cosh(κx) : x ∈ (�, d]
1 : x > d,

(C2)

FIG. 9. Interaction energy at the attractive (top panel) and the
repulsive (bottom panel) branch of the many-body spectrum with the
three-δ potential within the LOCV approximation as a function of
n� and mc��/h̄2. The bound state is supported only when mc��/h̄2 �
−1.
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and needs to be self-consistently solved for A, B, D, d, κ with
LOCV constraints introduced in the main text. It simplifies to
the following two equations,

2

na
= cosh2(κ1 − κ2)

[
coth(κ1)

κ1
− csch2(κ1)

]

+ 1

2κ1
[2κ2 − 2κ1 + sinh(2κ2 − 2κ1)], (C3)

tanh(κ2) = 1

tanh(κ1)
+ κ1

λ2

1

sinh2(2κ1)
, (C4)

where we define κ1 = κ�, κ2 = κd , λ2 = mc��/h̄2. The inter-
action energy density then equals

Eint

V
= n

2
λ = −n

2

h̄2κ2
1

2m�2
. (C5)

It is evaluated numerically and presented in Fig. 9(left).
Note that the bound state is not supported for every value

of c�. Most notably, numerical evaluation allows us to write
down the simple expression for the existence of the bound
state

c� � − h̄2

m�
, (C6)

which does not depend on the gas density.
On the other hand, similar procedure for the first excited

state (the repulsive branch) yields

2

na
= [k1 − sin(k1) cos(k1)][cos(k2) cot(k1) + sin(k2)]2

+ 1

2k1
[2k2 − 2k1 + sin(2k2 − 2k1)], (C7)

tan(k2) = −
[

1

tan(k1)
+ k1

λ2

1

sin2(2k1)

]
, (C8)

where λ = h̄2k2

2m is positive and we define k1 = k�, k2 = kd ,
λ2 = mc��/h̄2. The result is presented in Fig. 9(right).

The lowest energy branch of positive solutions to the
constrained equations tends to 0 at mc��/h̄2 ≈ −1, i.e., the
interaction strength at which the bound state starts to be sup-
ported. In Fig. 2, the energy dependence on parameter c� for
the many-body ground state at a given density is presented.
The sharp transition is clearly visible, suggesting nontrivial
behavior of the system at the critical value of c�.

APPENDIX D: SHORT-RANGE ATOMIC POTENTIALS

1. Scattering in quasi-one-dimensional geometry

Here we sum up the analysis of Ref. [54], where the authors
show how finite-range corrections to the standard pointlike δ

interaction can be modeled through the effective pseudopo-
tential

Wp(x) = g1D(1 + g′ p2)δ(x), (D1)

where g1D denotes a one-dimensional mean field interaction
strength, g′ is a parameter depending on the details of the
physical situation, and following Ref. [54], h̄p represents a
one-dimensional momentum operator.

The system under consideration involves ultracold atoms
interacting via the attractive part of the van der Waals po-

tential WvdW(r) = −C6/r6 with a characteristic length (mean
scattering length) ā = 2π

�(1/4)2 (2μC6/h̄2)1/4, where μ is the
reduced mass of the atomic pair [87] and � is the Euler γ

function. It can be rephrased in terms of the van der Waals
radius RvdW as ā = 0.955978RvdW.

In the presence of tight harmonic confinement 1
2μω2ρ2

ρ =
√

y2 + z2 and ω denotes trapping frequency, the usual
Fermi-Huang pseudopotential can be generalized to account
for an energy dependence

WFH(r) = −2π h̄2

μ

tan δ3D(k)

k
δ(r)

∂

∂r
r, (D2)

where h̄2k2/2μ is the kinetic energy of the relative motion and
δ3D(k) is the the phase shift due to interactions. Consequently,
the corresponding energy-dependent scattering length reads
a3D(k) = − tan δ3D(k)/k.

One notes that the full three-dimensional scattering analy-
sis can be reduced to the 1D problem in the s-wave channel
with the pseudopotential [54,88–91]

W1D = g1D(p)δ(x), (D3)

where

g1D(p) = − h̄2

μ
p tan [δ1D(p)]. (D4)

Here, δ1D(p) is a 1D phase shift depending on 1D momentum
h̄p, where k2 = p2 + 2/d2

⊥ with d⊥ = √
h̄/μω.

Expanding (D4) in small p up to the second order, one finds

g1D(p) ≈ g1D(1 + g′ p2), (D5)

with

μ

h̄2 g1D = 2

d⊥

(
d⊥
a3D

− C − r3D

d⊥

)−1

, (D6)

g′ = d⊥
2

r3D − C̃d⊥
d⊥
a3D

− C − r3D
d⊥

, (D7)

where C̃ = ζ (3/2)/8 ≈ 0.3265 and C = −ζ (1/2) ≈
1.46035. The effective range r3D can be determined from
the expansion

k cot [δ3D(k)] = − 1

a3D
+ 1

2
r3Dk2 + O(k2). (D8)

In vicinity of the Feshbach resonance, the effective range
of a single-channel van der Waals potential can be determined
analytically [92–94],

r3D = �(1/4)4ā

6π2

(
1 − 2ā

a3D
+ 2ā2

a2
3D

)
− 2R∗

(
1 − abg

a3D

)2
,

(D9)

where R∗ = h̄2/(2μabg�δμ), abg is the background scattering
length away from the resonance, � denotes the resonance
width, and δμ is the magnetic moment difference between
channels. This expression approximately holds for open chan-
nels, but can fail in the presence of the closed ones [94]. Then,
it is more accurate to use formula

r3D(B) ≈ v + r0[a3D(B) − aex]2

a3D(B)2
, (D10)
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where the magnetic field dependence of a3D reads

a3D(B) = abg

(
1 − �

B − B0

)
, (D11)

with B0 being the resonance point, and the fitting parameters
v, r0, and aex depend on a particular resonance and can be
evaluated through the numerical solutions of a full multichan-
nel Schrödinger equation.

2. Mapping onto three-δ potential

We will now proceed to discretize effective interaction
potential (D1). The starting point is to consider two-body
problem with a total wave function

� f (x, y) = �R(R)�(r), (D12)

where R = x + y describes the decoupled center-of-mass mo-
tion of two atoms, r = x − y describes the relative motion,
and x, y represent positions of atoms. For the δ interaction
Wa(x − y) = gδ(x − y − a), the interaction energy reads

E =
∫

dxdy�∗
f (x, y)Wa(x − y)� f (x, y) = g

2
|�(a)|2.

(D13)

The position representation of potential (D1) can be written
as

Wp(x) = g1D

[
δ(x) + g′

2

(←−
∂2

x δ(x) + δ(x)
−→
∂2

x

)]
. (D14)

After discretizing the second derivative, i.e., f ′′(x) ≈ [ f (x +
�x) + f (x − �x) − 2 f (x)](�x)−2, the energy associated
with the last term of the sum in (D14) reads

E = − g1Dg′

4(�x)2

∫
dx[�∗(x + �x)

+�∗(x − �x) − 2�∗(x)]δ(x)�(x). (D15)

After realizing that

1

2
[�∗(x + �x)�(x) + �(x + �x)�∗(x)]

= �∗(x + �x)�(x + �x) + O
(
(�x)2

)
, (D16)

one finds the interaction energy related to the finite-range
correction

E = − g1Dg′

2(�x)2

[∣∣∣∣�
(

�x

2

)∣∣∣∣
2

+
∣∣∣∣�

(
−�x

2

)∣∣∣∣
2

− 2|�(0)|2
]
.

(D17)

By Eq. (D13), it corresponds to the following potential,

Wb(x) = − g1Dg′

(�x)2

[
δ

(
x + �x

2

)
+ δ

(
x − �x

2

)
− 2δ(x)

]
,

(D18)

where �x can be arbitrarily chosen. It is convenient to denote
� = √|g′|/α with some arbitrary real number α > 0. As a
result, we reproduce the three-δ potential

W↑↓(x) = c0δ(x) + c�δ(x − �) + c�δ(x + �), (D19)

FIG. 10. Comparison between dynamics of the center of mass
of the spin-↑ component obtained in continuous and discretized
models with M = 1, different number of sites Ns = 50, 100, 150, and
different beyond contact attraction γ� = −3, −5, −7, −10.

with ⎧⎨
⎩

c0 = (1 + 2α2 sgn g′) g1D

c� = −α2 sgn g′ g1D

� = √|g′|/2α

, (D20)

and inversely g1D = c0 + 2c�, g′ = −4�2c�/(c0 + 2c�).
Note that g′ and g1D can be uniquely determined by c0,

c�, and �, while α provides additional information on how
to perform inverse transformation. It is due to the fact that g′
and g1D describe only the scattering properties of the physical
system. Effectively, α fine-tunes the length scale introduced
through the equality � = √|g′|/2α and can be evaluated by
considering other properties of the two-body problem, such
as the bound-state energy.

APPENDIX E: CONVERGENCE ANALYSIS

First, we benchmark obtained results in the M = 1 case,
where the exact results in the continuous space are known.
Namely, we consider the system with different numbers of
sites Ns = 50, 100, 150, but with the same � = 0.2 in the
three-δ W↑↓(x) potential, Eq. (1). Since � = L/Ns, in order to
compare the numerical results with the analytical predictions,
it is required to take into account different beyond-contact
attraction term in the discretized space, i.e., different values of
the integer s in the Hamiltonian (14). That is, while for Ns =
50 we employ nearest neighbor attraction (s = 1), for Ns =
100 and Ns = 150 we incorporate next to nearest neighbor
(s = 2) and second next to nearest neighbor (s = 3) interac-
tions, respectively. The comparison between dynamics of the
center-of-mass position of ↑-component, Xc.m.,↑, determined
analytically in the continuous model and numerically in the
discretized system for γ� = −3,−5,−7,−10 is illustrated
in Fig. 10. Note that the results obtained for Ns = 100 and
Ns = 150 are almost identical to the analytical ones, showing
the convergence and reliability of the TDVP evolution we
employed. On the other hand, in the case of Ns = 50 the
considered center-of-mass position evolves slightly different
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FIG. 11. Comparison between time evolution of g(�; t ), cal-
culated for different beyond-contact attraction strengths γ� =
−3, −5, −7, −10, when setting different maximal bond dimension
χmax = 250, 500, 750. Left column, (a)–(d), corresponds to the re-
sults obtained for M = 2, while right column, (e)–(h), shows g(�; t )
computed in the M = 3 case.

in comparison with the analytical results. Nevertheless, the
discretized system behavior is still very similar to the con-
tinuous one, which allows us to suppose that conclusions
we formulated basing on the analysis performed in the dis-
cretized model with Ns = 50 are also valid in the continuous
systems.

Second, we show the convergence of our main results
determined for Ns = 50 by comparing g(�; t ) obtained with
different maximal bond dimension χmax = 250, 500, 750 for
M = 2 and M = 3 and different beyond-contact attraction
strengths γ� = −3,−5,−7,−10 (see Fig. 11). In addition, in

FIG. 12. Time evolution of the von Neumann entanglement en-
tropy Sj (t ) calculated across the bond between j and j + 1 lattice
sites for M = 3, Ns = 50, and two central bonds j = 20 (left col-
umn) and j = 25 (right column). The results obtained for different
maximal bond dimensions χmax = 250, 500, 750 are very similar in
the whole considered range of beyond contact attraction strength
γ� = −3, −5, −7, −10.

Fig. 12 we present the comparison between dynamics of the
von Neumann entanglement entropies, S j , calculated across
the bond between j and j + 1 sites for M = 3, different χmax,
and two central bonds j = 20, 25.
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