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Hydrodynamic generation of skyrmions in a two-component Bose-Einstein condensate
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When an obstacle is moved in a superfluid faster than a critical velocity, quantized vortices are gener-
ated behind the obstacle. Here we propose a method to create more complicated topological excitations,
three-dimensional skyrmions, behind a moving obstacle. We numerically show that, in a two-component Bose-
Einstein condensate, component-dependent obstacle potentials can generate skyrmions in the wake, made up
of quantized vortex rings in different components that are linked with each other. The lifetime of generated
skyrmions can be prolonged by a guiding potential, which enables the formation of a skyrmion train.
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I. INTRODUCTION

Skyrmions are particlelike topological excitations of fields.
They were originally proposed to describe mesons and
baryons in nuclear physics [1] and were later applied to other
physical systems, such as quantum Hall systems [2–4], mag-
netic materials [5], liquid crystals [6], and multicomponent
Bose-Einstein condensates (BECs) [7,8]. In these systems,
skyrmions can be generated by various means. For exam-
ple, in a magnetic film, two-dimensional skyrmions can be
created by applying a magnetic field perpendicular to the
surface [9]. Using the tip of a scanning tunneling microscope,
magnetic skyrmions can be written or deleted in a controlled
manner [10].

Here we focus on the generation schemes of skyrmions
in a multicomponent BEC. Experimentally, two-dimensional
skyrmions have been created by Raman transitions [11]
and by magnetic-field-induced spin rotations [12]. Three-
dimensional skyrmions were recently realized in a spin-1
BEC by spin rotation with a controlled magnetic field [13].
Theoretically, several schemes to generate skyrmions in mul-
ticomponent BECs have been proposed: Rabi transitions with
topological phases [7], spin rotation by a fictitious or real
magnetic field [8,14–16], capillary instability [17], spin-orbit
coupling [18,19], decay of domain walls [20], and light-matter
coupling [21]. The stability and dynamics of skyrmions have
also been studied [22–34]. In this paper, we propose an alter-
native scheme to generate three-dimensional skyrmions in a
two-component BEC: hydrodynamic generation of skyrmions
behind an obstacle moving in the BEC. This scheme is remi-
niscent of that in Ref. [35], in which trefoil and linked vortices
are created in water using hydrofoils with special shapes.
Such generation schemes of topological excitations explore an
interdisciplinary field of hydrodynamics and topology, paving
the way for understanding such phenomena as the topological
excitations in quantum turbulence [36].

A quantized vortex is the simplest topological excitation
in a BEC and can be generated by an external potential
moving in a BEC [37–39]. Such hydrodynamic generation
of quantized vortices has been realized in experiments, where
pairs of vortices and antivortices (vortex dipoles) were created

behind Gaussian laser beams swept through BECs [40–43].
The successive generation of vortices by a moving obstacle
potential forms a periodic pattern, which is a quantum analog
of the Bénard–von Kármán vortex street [44,45]. In a spinor
or two-component BEC, a moving obstacle potential can be
used to generate half-quantum vortices [46,47]. Quantized
vortices have also been observed in exciton-polariton super-
fluids flowing around obstacle potentials [48]. Thus, so far,
the hydrodynamic generation of topological excitations in
superfluids has been restricted to quantized or half-quantized
vortices, which are essentially topological structures in two
dimensions.

The aim of the present study is to generate more intrigu-
ing topological excitations, three-dimensional skyrmions, by
an obstacle potential moving in a miscible two-component
BEC. We propose a special configuration of external po-
tentials that depend on the components and move them in
the two-component BEC. We show that quantized vortex
rings generated in different components are linked with each
other. Such a structure is characterized by a nonzero integer
winding number and is regarded as a skyrmion. As in the
case of quantized-vortex generation, successive generation of
skyrmions is possible in this method. When the generated
skyrmions are kept stable, they form a skyrmion train, just
like a vortex street behind an obstacle.

The remainder of the paper is organized as follows.
Section II reviews structures of skyrmions in a two-
component BEC and defines a topological structure to be
created hydrodynamically. Section III A proposes poten-
tial configurations for creating skyrmions and numerically
demonstrates skyrmion generation in an ideal uniform system.
Section III B studies a realistic system confined in a harmonic
potential. Section IV provides a summary and conclusions of
this study.

II. SKYRMION IN A TWO-COMPONENT
BOSE-EINSTEIN CONDENSATE

We consider a two-component BEC at zero temperature,
described by the macroscopic wave functions ψ1(r, t ) and
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ψ2(r, t ) in the mean-field approximation. The two-component
wave functions can generally be written as

�(r) =
(

ψ1(r)
ψ2(r)

)
=

√
ρ(r)

(
ζ1(r)
ζ2(r)

)
, (1)

where ρ = |ψ1|2 + |ψ2|2 is the total density and |ζ1|2 +
|ζ2|2 = 1. (We assume ρ �= 0 to avoid discontinuities in ζ.)
The vector (ζ1, ζ2) can be regarded as a state of pseudospin
1
2 , which has the SU(2) manifold. A skyrmion in a two-
component BEC is defined as a state in which the physical
space r is continuously mapped onto the SU(2) manifold in a
topologically nontrivial manner. In this mapping, (ζ1, ζ2) must
go to a common state at infinity (r → ∞). Mathematically,
the topology of this map is represented by the third homotopy
group π3[SU(2)] = Z and the skyrmion is characterized by an
integer winding number.

A simple expression of a skyrmion is given by

�(r) = √
ρe−iχ (r)σ·n

(
1
0

)
= √

ρ

(
cos χ − i sin χ cos θ

−i sin χ sin θeiφ

)
, (2)

where σ = (σx, σy, σz ) is the vector of the Pauli matrices
and n = r/r = (sin θ cos φ, sin θ sin φ, cos θ ) is a unit vec-
tor pointing in the radial direction with polar coordinates
(r, θ, φ). The continuous function χ (r) must be integer multi-
ples of π at r = 0 and r = ∞ in order that the state does not
depend on θ and φ at the origin and infinity. If we impose the
boundary condition χ (0) = 0 and χ (∞) = π , exp(−iχσ · n)
covers whole elements of SU(2). In fact, Eq. (2) runs over
whole spin states. It is apparent from the real and imaginary
parts of each component in Eq. (2) that the manifold corre-
sponds to the surface of a unit sphere in four dimensions with
an area 2π2. The winding number is defined by the number of
times that the sphere is wrapped around:

W = 1

2π2

∫ χ (∞)

0
dχ

∫ π

0
dθ

∫ 2π

0
dφ sin2 χ sin θ. (3)

When χ (r) changes from χ (0) = 0 to χ (∞) = 
π with an
integer 
, W = 
.

The variables χ , θ , and φ in Eq. (2) can be regarded as
functions of the Cartesian coordinates r = (x, y, z). Let us
allow continuous deformation of these functions, which we
denote by α(r), β(r), and γ (r). A general form of the wave
function can then be expressed as

�(r) =
√

ρ(r)

(
cos α(r) − i sin α(r) cos β(r)

−i sin α(r) sin β(r)eiγ (r)

)
. (4)

Changing the integration variables from those in Eq. (3) to
the Cartesian coordinates, we obtain a general form of the
winding number as

W = 1

2π2

∫
dr sin2 α(r) sin β(r)det

(
∂ (α, β, γ )

∂ (x, y, z)

)
, (5)

where det(· · · ) is the Jacobian. The winding number in Eq. (5)
is an integer as long as the wave function is continuous.

The macroscopic wave functions obey the coupled
Gross-Pitaevskii (GP) equations given by

ih̄
∂ψ1

∂t
=

(
− h̄2

2m1
∇2 + V1 + g11|ψ1|2 + g12|ψ2|2

)
ψ1,

(6a)

ih̄
∂ψ2

∂t
=

(
− h̄2

2m2
∇2 + V2 + g22|ψ2|2 + g12|ψ1|2

)
ψ2,

(6b)

where mj is the atomic mass of component j, Vj (r, t ) is the
external potential for component j, and gj j′ = 2π h̄2a j j′/mj j′

is the interaction coefficient with a j j′ and mj j′ the s-wave scat-
tering length and reduced mass between components j and j′,
respectively. Here, for simplicity, we assume that the atoms
in both components have the same mass m ≡ m1 = m2 and
the same intracomponent interaction g ≡ g11 = g22. In this
section, we consider the case in which V1 = V2 = 0. In numer-
ical simulations, the real-time and imaginary-time evolutions
of Eq. (6) are solved using the pseudospectral method [49]. In
the results shown in this section and in Sec. III A, length, time,
energy, and density are normalized by h̄/(2mgn0)1/2, h̄/(gn0),
gn0, and n0, respectively, where n0 is the uniform density far
from the skyrmion.

Let us consider a skyrmion structure in Eq. (2) with a
winding number W = 1. This state consists of a quantized
vortex ring in component 1 and a toroidal-shaped component
2 with a quantized circulation along the torus [7], as shown
in Figs. 1(a)–1(c). The core of the vortex ring of component
1 is filled with component 2 and the total density is almost
constant. Numerically, this skyrmion state is obtained by a
short imaginary-time evolution (duration of ∼100) of the
GP equation starting from an initial state in Eq. (2) with
an appropriate χ (r). Since the skyrmion state is not a lo-
cal minimum of the energy, long imaginary-time evolution
eliminates the skyrmion or expands it to infinity. After the
short imaginary-time evolution, a small numerical noise is
added to break the numerically exact symmetry, followed by
the real-time evolution. The dynamics of the skyrmion for
g = g12 shown in the video provided in the Supplemental
Material [50] indicates that the skyrmion is stable.1 Since
the vortex ring has a momentum along the axis of the ring
(z direction), the skyrmion moves at a constant velocity in a
uniform system [33]. We therefore use the frame of reference
moving with the skyrmion by adding a term ih̄vz∂zψ j to the
right-hand side of Eq. (6). The velocity vz is chosen to be
0.08 in Fig. 1 so that the skyrmion is at rest in the real-time
evolution.

In most previous studies, the structure as shown in
Figs. 1(a)–1(c) has been studied as a skyrmion in a two-
component BEC, which is also referred to as a vorton [20].
Alternatively, topologically equivalent states can be obtained
by rotating the state in the pseudospin space, since the wind-
ing number W is unchanged by the global spin rotation.
Figures 1(d)–1(f) show a state that is obtained by the spin

1The energy of the skyrmion is conserved and the shrinkage does
not occur in the real-time evolution.
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FIG. 1. (a)–(c) Skyrmion state obtained by imaginary-time prop-
agation of the GP equation starting from Eq. (2), where g12 = g.
(a) Isodensity surface of component 2 (|ψ2|2 = 0.5). (b) Density
and phase (inset) profiles of component 1 on the plane of x = 0.
(c) Density and phase (inset) profiles of component 2 on the plane
of z = 0. (d)–(f) Spin state of (a)–(c) rotated by π/2 using Eq. (7).
(d) Isodensity surfaces of both components (|ψ1|2 = |ψ1|2 = 0.2).
(e) and (f) Density and phase (insets) profiles of components 1 and
2 on the plane of x = 0. The white arrows indicate the positions
of quantized vortex cores. (g) Time evolution of the isodensity sur-
faces for g12 = 0.95g. The size of the boxes in (a), (d), and (g) is
128×128×128 in units of the healing length. See the Supplemental
Material for videos of the real-time dynamics in (a), (d), and (g) [50].

rotation of the state in Figs. 1(a)–1(c) by π/2 around the y
axis,

exp

(
−i

π

2

σy

2

)
= 1√

2

(
1 −1
1 1

)
. (7)

In this skyrmion state, both components contain vortex rings,
and the two vortex rings in components 1 and 2 link with
each other [51], as shown in Fig. 1(d). The dynamics of
this skyrmion state is shown in the video provided in the
Supplemental Material [50]. The linked vortices slowly re-
volve about the z axis at a frequency of ∼10−3. This rotation
can be understood from the fact that, in the original state
in Figs. 1(a)–1(c), the torus-shaped component 2 and the
surrounding component 1 have different chemical potentials
μ1 �= μ2, resulting in an increase in the relative phase between
the two components as (μ1 − μ2)t/h̄. The relative phase also
increases with the angle φ around the z axis, since the torus of
component 2 has a quantized vortex, as shown in Figs. 1(a)
and 1(c), and thus the relative phase is (μ1 − μ2)t/h̄ − φ.
Thus, the spin structure in Fig. 1(d) revolves about the z
axis at a frequency (μ1 − μ2)/h, since the relative phase be-

tween the two components before the spin rotation determines
the spin structure of Fig. 1(d). The stability of the state in
Figs. 1(d)–1(f) is the same as that of Figs. 1(a)–1(c), since
the GP equation is invariant with respect to the spin rotation
for g = g12.

We examine the stability of the skyrmion state for g12 < g.
Figure 1(g) shows the time evolution of the skyrmion state
with linked vortices for g12 = 0.95g. The initial state is pre-
pared by a short imaginary-time evolution of the state in
Fig. 1(d) with g12 = 0.95g. In Fig. 1(g), the linked vortices
are first stretched at t = 1600 and nearly divide into individ-
ual vortex rings, which are however kept linked after that.
The link survives at least until t = 3200. Through the time
evolution, the winding number W is kept to almost unity. If the
state in Fig. 1(d) (prepared with g12 = g) is used as the initial
state of the time evolution for g12 = 0.95g (without the short
imaginary-time evolution), the linked vortices are unlinked at
t 
 800 (data not shown) because of the excess energy due to
the change of g12, which was reduced by the short imaginary-
time evolution in Fig. 1(g). These results imply that there is
an energy barrier to unlink the vortex rings. This is because
there must appear a phase singularity with zero density [U(1)
vortex] at which the vortices are unlinked.

For the present purpose, i.e., hydrodynamic generation of
skyrmions by a moving obstacle, the skyrmion state as in
Figs. 1(d)–1(g) (linked vortices) is more suited than that in
Figs. 1(a)–1(c) (vorton). The vorton state cannot be created
just by moving an obstacle in component 1, because N2 is
conserved within the GP equation; a localized component
2 must be added to create a vorton. On the other hand, for
the linked-vortex state generation, such an extra procedure is
not needed, since both components exist from the start. In the
next section, we aim to produce the linked-vortex state by a
moving obstacle.

III. SKYRMION GENERATION BY A MOVING OBSTACLE

A. Uniform system

In this section, we consider an ideal uniform system with-
out a trapping potential. We use an obstacle potential that
is different for components 1 and 2, V1 �= V2. Such spin-
dependent potentials are realized by nearly resonant laser
beams [52,53]. Here we propose an obstacle potential given
by ( j = 1, 2)

Vj (r, t ) = V0(t )e−[(x+δ j )2+η2+(4ζ )2]/R2
,

η = y cos λ j − z sin λ j,

ζ = z cos λ j + y sin λ j, (8)

where V0 is the strength of the oblate Gaussian potential, and
δ j and λ j are the spin-dependent shift in the x direction and
rotation angle about the x axis, respectively. The shape of this
potential is depicted in Fig. 2(a), where the parameters are
taken to be V0 = 1, δ1 = −δ2 = 3, λ1 = −λ2 = π/16, and
R = 14. The two oblate potentials for components 1 and 2
are tilted and shifted in opposite directions and they partly
overlap with each other. An important point in this potential
configuration is that the circular edges of these spheroids are
linked with each other, so they resemble the configuration of
the linked vortex rings in the skyrmion in Fig. 1(d).
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FIG. 2. (a) Isosurfaces of the obstacle potentials (V1 = V2 =
0.5V0) in Eq. (8). The parameters of the potential are V0 = 1,
δ1 = −δ2 = 3, λ1 = −λ2 = π/16, and R = 14. (b)–(f) Dynamics of
skyrmion generation for g12 = 0.98g. The potential in (a) is moved
at a velocity vz = 0.18, which is linearly ramped down and vanishes
at t = 100. Isodensity surfaces of both components (|ψ1|2 = |ψ2|2 =
0.2) are shown, where the densities are smaller inside the surfaces.
The frame of reference is moved at vz = 0.18 in the z direction. The
size of the boxes in (b)–(f) is 128×128×128 in units of the healing
length. See the Supplemental Material for a video of the dynamics
in (b)–(f) [50]. (g) Time evolution of the winding number W defined
in Eq. (5). (h) Critical velocity vc above which skyrmions are gener-
ated. The parameters of the potential are V0 = 1, δ1 = −δ2 = 3, and
λ1 = −λ2 = π/16.

In the numerical simulation of the GP equation, the ground
state in the presence of the potential in Fig. 2(a) is prepared
by the imaginary-time evolution. In the subsequent real-time
evolution, the term ih̄vz∂zψ j is introduced in the right-hand
side of the GP equation, which corresponds to the situation
in which the potential starts to move in the z direction at a
velocity vz. At the same time, the strength of the potential
V0(t ) is linearly ramped down from V0(0) = 1 to V0(100) = 0.
After t = 100, the potential is kept at zero.

Figures 2(b)–2(f) demonstrate the real-time dynamics of
the skyrmion generation behind the obstacle potential. In
these figures, the tubelike surfaces contain vortex lines of
the corresponding component filled with the other com-

ponent, i.e., they indicate half-quantum vortex lines. First,
half-quantum vortex lines emerge from the upstream potential
edges [Fig. 2(c)]. After the potential vanishes (t > 100), the
linked vortex rings remain [Figs. 2(d) and 2(e)], which is a
skyrmion similar to that in Fig. 1(d). The winding number
W increases from 0 to 
1, as shown in Fig. 1(g). The mech-
anism of the skyrmion generation is quite simple: The vortex
line for each component is generated near the circular edge
of the oblate potential, where the flow velocity exceeds the
critical velocity of vortex generation. The skyrmion is thus
formed from the linked configuration of the circular edges of
the oblate potentials. The skyrmion survives for a long time,
as shown in Fig. 2(f). The lifetime of a generated skyrmion is
typically ∼1000. In Figs. 2(b)–2(f), the velocity of a skyrmion
moving in the +z direction is slower than vz and it travels in
the −z direction in the moving frame of reference.

In Fig. 2(h), we show the critical velocity vc above which
skyrmions are generated. The parameters δ j and λ j are the
same as those in Figs. 2(a)–2(g) and the strength of the poten-
tial V0 = 1 is kept constant. To determine the critical velocity
for each R, we start from the ground state for vz = 0 and
gradually increase vz from zero in the real-time evolution. It
is found from Fig. 2(h) that the critical velocity vc decreases
with an increase in the obstacle size R.

Figure 3 shows the sequential generation of skyrmions,
where the strength V0 of the potential is kept constant. In
this case, after the skyrmion is generated behind the potential
[Fig. 3(a)], the two linked vortex rings are stretched [Fig. 3(b)]
and then detach from each other at t 
 1300 [Fig. 3(c)]. When
the linked vortex rings are detached, the winding number
W is decreased by 
1. Although the skyrmions are created
sequentially with a period of ∼1000, they are broken with a
lifetime of ∼1000, resulting in an oscillation of W , as shown
in Fig. 3(e). We examined various parameters and found that
the skyrmions always have finite lifetimes, which makes it
difficult to maintain three or more skyrmions at the same time.

To enhance the stability of the created skyrmions, we in-
troduce a cylindrical potential

Vcyl(r) =
{

0, r⊥ � Rc

−gn0, r⊥ > Rc,
(9)

where r⊥ = (x2 + y2)1/2. This potential makes the density at
r⊥ > Rc large. The vortices tend to be confined within the
cylinder of r⊥ � Rc, which can prevent the stretching and
detaching of vortices in the transverse direction, as shown in
Figs. 3(b) and 3(c). Figures 3(f)–3(i) show the dynamics in
the presence of the cylindrical potential with Rc = 32. The
wave functions are normalized in such a way that the density
inside the cylinder is almost the same as that without the
cylinder. We see that the cylindrical potential serves as a
guide for the skyrmions and the skyrmions generated behind
the obstacle potential are maintained, forming a skyrmion
train. The winding number W thus increases monotonically, as
shown in Fig. 3(j). In the longer time evolution, although the
skyrmion generated first accidentally detaches and disappears
at t 
 5000, the other skyrmions survive for a long time,
forming a train of eight skyrmions at t = 10 000 (data not
shown).
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FIG. 3. Sequential generation of skyrmions for g12 = 0.95g,
vz = 0.16, V0 = 1, δ1 = −δ2 = 0.5, λ1 = −λ2 = π/24, and R = 10.
The strength of the potential V0 is constant. (a)–(e) Uniform system.
(f)–(j) Cylindrical potential in Eq. (9) with Rc = 32 is added. In
(a)–(d) and (f)–(i), isodensity surfaces of both components (|ψ1|2 =
|ψ2|2 = 0.2) are shown. The size of the boxes is 128×128×256 in
units of the healing length. In (f)–(i), the radius of the cylinder is
shown by shading. See the Supplemental Material for videos of the
dynamics in (a)–(d) and (f)–(i) [50]. (e) and (j) Time evolution of the
winding number W without and with the cylindrical potential.

Next we study the case of small shifts δ j and rotation
angles λ j of the potentials in Eq. (8), i.e., the ellipsoidal
potentials in the two components almost overlap. In this case,
unlike Figs. 2 and 3, the vortex lines generated in different
components almost overlap. Figure 4 shows the dynamics of
vortices generated by the potential with δ1 = −δ2 = 0.5 and
λ1 = −λ2 = π/200, which are much smaller than those in
Figs. 2 and 3. Since the vortex cores generated in the two
components initially overlap, they practically form a vortex
ring with the U(1) vortex line and therefore the thickness of
the vortex core is smaller than those of half-quantum vortex
lines in a skyrmion, as shown in Fig. 4(a). As time elapses, the
small deviation between the two vortex rings grows [Fig. 4(b)]
and they develop into linked half-quantum vortex rings, i.e.,

FIG. 4. Growth of a skyrmion from overlapped vortex rings for
g12 = 0.95g at (a) t = 100, (b) t = 1800, and (c) t = 2800. The
vortex rings are generated by the potential in Eq. (8) with V0 = 1,
δ1 = −δ2 = 0.5, λ1 = −λ2 = π/200, R = 14, and vz = 0.35. The
potential is linearly ramped down and vanishes at t = 100. Isodensity
surfaces of both components (|ψ1|2 = |ψ2|2 = 0.2) are shown. The
size of the boxes is 128×128×128 in units of the healing length. See
the Supplemental Material for a video of the dynamics [50].

a skyrmion. This result implies that a U(1) vortex ring as in
Fig. 4(a) is dynamically unstable against splitting into two
half-quantum vortex rings. This instability is similar to that in
a U(1) vortex in a two-dimensional system [54,55]. Such dy-
namical instabilities in a vortex ring and decay into skyrmions
merit further study.

B. Trapped system

We consider a realistic system, in which a BEC of 87Rb
atoms is confined in a harmonic potential. For simplicity,
we assume that the two components experience the same
isotropic harmonic potential given by Vtrap(r) = mω2(x2 +
y2 + z2)/2 with a trap frequency ω = 2π×100 Hz. For com-
ponents 1 and 2, we assume the hyperfine states |F = 1, mF =
1〉 and |F = 1, mF = 0〉 of an 87Rb atom, where F is the
hyperfine spin and mF is the magnetic sublevel. The s-
wave scattering lengths are therefore a11 = a12 = 100.4aB

and a22 = 100.86aB, with aB the Bohr radius [56,57], and the
miscible condition a11a22 > a2

12 is satisfied. The numbers of
atoms are N1 = N2 = 3×105. In this section, we normalize
the length, time, and density by aho = (h̄/mω)1/2, ω−1, and
Nj/a3

ho, respectively.
A three-dimensional isolated Gaussian potential as in

Eq. (8) is difficult to realize in experiments if laser beams
penetrating through the BEC are used to produce the potential.
Instead, we use a potential produced by four Gaussian laser
beams crossed with an angle π/4 as

fcross(r) =
3∑

n=0

e−{[x cos (nπ/4)−y sin (nπ/4)]2+(4z)2}/R2
. (10)

Using these crossed Gaussian beams, we can increase the peak
height of the potential, suppressing the effect of the incoming
and outgoing beams, which mimics an isolated potential as in
Eq. (8). We tilt the potential in Eq. (10) about the x axis by an
angle ±λ and shift it in the x direction by ±δ, giving

f±(r) = fcross(x ± δ, η, ζ ),

η = y cos λ ∓ z sin λ,

ζ = z cos λ ± y sin λ. (11)
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FIG. 5. (a) Isosurfaces of the obstacle potentials V obs
1 = V obs

2 =
2V0 (inner) and 1.05V0 (outer) in Eqs. (10)–(12) with R = 3aho,
λ = π/12, δ = 0.5aho, b1 = b2 = 0.85, and V0 = 10h̄ω. (b)–(d)
Dynamics of skyrmion generation, where N1 = N2 = 3×105 atoms
are confined in an isotropic harmonic potential with a frequency
ω = 2π×100 Hz: (b) ωt = 4, (c) ωt = 6, and (d) ωt = 18. The ob-
stacle potentials in (a) are moved at a velocity vz = 0.5ahoω and the
strength V0 is linearly ramped down and vanishes at ωt = 3. The iso-
density surfaces of both components (|ψ1|2 = |ψ2|2 = 10−4Nj/a3

ho)
are shown, where the surfaces at r > 6aho are made transparent. The
size of the boxes in (b)–(d) is (17.92aho)3. See the Supplemental
Material for a video of the dynamics in (b)–(d) [50].

In general, using nearly resonant laser beams, the fields f±(r)
generated by laser frequencies ω± produce different potentials
for components 1 and 2 [52,53] and we assume an obstacle
potential of the form

V obs
1 (r) = V0[ f+(r) + b1 f−(r)],

V obs
2 (r) = V0[ f−(r) + b2 f+(r)], (12)

where V0, b1, and b2 are constants. Figure 5(a) shows the
isosurfaces of the potentials in Eq. (12) with R = 3aho, λ =
π/12, δ = 0.5aho, b1 = b2 = 0.85, and V0 = 10h̄ω. Although
the outer surfaces (V obs

1 = V obs
2 = 1.05V0) are star shaped,

reflecting the superposition of the four Gaussian beams,
the inner surfaces (V obs

1 = V obs
2 = 2V0) have oblate shapes,

similar to those of the oblate potentials in Fig. 2(a). Replac-
ing z with z(t ) = z − z0 − vzt in Eqs. (10)–(12), the obstacle
potential can be moved in the z direction at a velocity vz.
The total potential in the GP equation thus has the form
Vj (r, t ) = V obs

j (r, t ) + Vtrap(r).

Figures 5(b)–5(d) show the dynamics of skyrmion gener-
ation (see also a video in the Supplemental Material [50]),
where the initial state is the ground state with the obstacle
potential in Fig. 5(a) at z0 = −2. In the time evolution, the
obstacle potential is moved at a velocity vz = 0.5ahoω and
at the same time the magnitude V0 is linearly ramped down
and vanishes at ωt = 3. We can see that vortex rings are
generated in both components and they are linked with each
other, forming a skyrmion. The skyrmion moves in the +z
direction, and when it reaches the edge of the BEC, the vortex
rings expand and move back in the −z direction along the
periphery of the BEC. The skyrmion is then destroyed by the
excitations left in the BEC.

IV. CONCLUSION

We proposed a method to generate three-dimensional
skyrmions behind an obstacle moving in a two-component
BEC. The linked-vortex configuration of a skyrmion in
Fig. 1(d) is more suitable than that in Fig. 1(a) for
hydrodynamic generation. We proposed a shape of an obstacle
potential in which two oblates bite into each other, as shown
in Fig. 2(a), and numerically demonstrated that it can create
a skyrmion, as shown in Figs. 2(b)–2(g). We also showed
that skyrmions are released behind the obstacle successively
and these skyrmions can be stabilized by a guiding potential
(Fig. 3). Such skyrmion generation can be realized in a re-
alistic experimental system with a feasible number of atoms
(6×105 atoms of 87Rb), as shown in Fig. 5.

The potential used in Fig. 5 needs eight Gaussian laser
beams, which requires considerable experimental effort. If
we optimize the parameters, it may be possible to reduce
the number of laser beams in experiments. Considering
that a vortex ring in a single-component BEC can be
generated by a single Gaussian laser beam [58], it may be
possible to generate a skyrmion by only two laser beams.
Machine-learning techniques will be useful in determining
an optimized protocol [58]. Also, through machine-learning
optimization, we expect that the lifetime of skyrmions
after generation can be prolonged by optimizing the poten-
tial shapes, the manner of moving the potentials, and other
parameters. If successive long-lifetime skyrmions can be gen-
erated and if some symmetry-breaking instability arises in
the flow near the obstacle, alternate generation of skyrmions
and antiskyrmions might occur, resulting in a Bénard–von
Kármán–like skyrmion street.
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