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Robustness of enhanced shortcuts to adiabaticity in lattice transport
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Shortcuts to adiabaticity (STA) are a collection of quantum control techniques that achieve high fidelity outside
of the adiabatic regime. Recently an extension to shortcuts to adiabaticity was proposed by the authors [Whitty,
Kiely, and Ruschhaupt, Phys. Rev. Research 2, 023360 (2020)]. This method, enhanced shortcuts to adiabaticity
(eSTA), provides an extension to the original STA control functions and allows effective control of systems not
amenable to STA methods. It is conjectured that eSTA schemes also enjoy an improved stability over their STA
counterparts. We provide numerical evidence of this claim by applying eSTA to fast atomic transport using an
optical lattice and evaluating appropriate stability measures. We show that the eSTA schemes not only produce
higher fidelities but also remain more stable against errors than the original STA schemes.
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I. INTRODUCTION

Quantum devices and technologies have the potential to
revolutionize a broad range of scientific and engineering disci-
plines [1,2]. However, fast and stable control of these systems
is a significant barrier to building practical devices [3]. Quan-
tum control needs to be fast to avoid decoherence, while
simultaneously being robust and stable against implementa-
tion errors. Furthermore, it should be effective within the
constrained resources of the physical implementation, such as
energetic cost or pulse bandwidth [4].

Often practical quantum control relies heavily on nu-
merical optimization, which has some drawbacks: it can be
computationally expensive and difficult to scale, and it may be
unclear how to understand or generalize the resulting schemes
[5–7]. Analytical control techniques have been developed for
specific control problems, for example, transport of a rigid
harmonic trap [8]. There exist further analytic techniques,
such as shortcuts to adiabaticity (STA), which can also give
exact quantum state transfer. However, analytic techniques
such as STA are known exactly for only a limited number
of physical systems [9–11]. Recently an extension to STA
methods has been developed, known as enhanced shortcuts to
adiabaticity (eSTA), that provides control for a broader class
of systems [12]. Crucially, eSTA is an analytic technique that
allows physical insight into the control scheme. Additionally,
eSTA has a much lower computation cost compared with full
numerical optimization. eSTA has been applied to population
inversion in a two-level system without the rotating-wave
approximation and to the transport of a Gaussian trap with
one and two ions [12]. Recently, there has already been an
application of eSTA techniques to the transport of atoms in an
optical lattice [13].
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STA schemes are extremely robust to noise and systematic
errors [14–18]. An obvious question is whether robustness
remains in the eSTA framework. Therefore, the main goal of
this paper is to provide a thorough investigation into how this
stability is affected by the application of eSTA.

We choose atomic transport using an optical lattice to
examine the robustness of eSTA, since the coherent control
of lattice systems has many practical quantum technological
applications, for example, transport in atomic chains [19],
modeling condensed matter systems [20], many-body phe-
nomena in ultracold gases [21], and the trapping and control
of ions [22,23]. Optical lattices with optical tweezers have
also been used as an architecture for quantum computation
[24,25], with optimal control derived transport [26] and op-
timized spatial adiabatic passage [27]. Recently, there has
been experimental and theoretical exploration of atom trans-
port via a lattice potential around the quantum speed limit
[28]. We consider similar physical parameters with transport
times near this proposed speed limit [28,29]. We then show
that the eSTA schemes provide improved robustness over the
corresponding STA schemes, when considering a variety of
imperfections.

In the following section we give a brief review of the
formalism of eSTA. In Sec. III we present the physical op-
tical lattice model we are considering; we introduce different
control schemes and we examine and compare the fidelities
achieved by eSTA. In Sec. IV, we first define and then exam-
ine the deviation of the eSTA control function under variations
of the Hamiltonian. This gives a preliminary indication of the
stability of eSTA. In the following sections we compare the
stability of eSTA and STA in more detail. This includes a
definition of a sensitivity quantity and an error bound for a
quantitative comparison of the stability of different schemes.
In Sec. V we consider systematic errors during the transport.
In Sec. VI the stability of lattice transport is examined for
noisy fluctuations.
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FIG. 1. (a) Schematic representation of fidelity versus μ. The
fidelity of Hμ using �λ0 is the dash-dotted blue line. The blue square
is Hμs using �λ0. The red dot is the improved fidelity of Hμs using
�λs. The dashed orange line represents the assumed parabolic profile
of the fidelity as H0 → Hμs , with the improved eSTA control �λμ

calculated for each μ. The slopes of each line at μs are depicted
as solid black lines. (b) Diagram of eSTA in control space (�λ, F ).
The fidelity of the starting STA control vector �λ0 (blue square) and
the resulting fidelity using the eSTA control vector �λs = �λ0 + �ε (red
dot) are shown. Also highlighted are the gradient (black arrow), the
approximate eSTA parabola (dashed red line), and the true fidelity
landscape (solid blue line).

II. eSTA FORMALISM

The purpose of eSTA is to provide a formalism by which
existing STA methods can be extended to quantum control
problems beyond their current scope.

We start with a system with the Hamiltonian Hs that has a
difficult quantum control problem. However, we assume that
the Hamiltonian Hs can be approximated by another Hamilto-
nian H0 of an idealized system that has an exact STA solution.
In the following we construct the improved eSTA protocol for
Hs using the solutions of the idealized system H0.

A. Construction of eSTA control scheme

To make the approximation of Hs by H0 precise, we
assume there is a parameter μ and Hamiltonians Hμ such
that Hμ=μs = Hs and Hμ=0 = H0. We also assume we can
parametrize the control scheme by a vector �λ. We set �λ0 to
denote the STA scheme and set �λs to denote the eSTA scheme.

Our goal is to evolve the initial state |�0〉 at time t = 0 to
the target state |�T 〉 in a given total time t f . As previously
discussed, we assume there exists an idealized system with
known STA solutions and Hamiltonian H0(�λ0; t ). �λ0 solves
the control problem for H0, and we assume it works approxi-
mately for Hμs .

To state this formally we define the fidelity

F (μ, �λ) = |〈�T |U
μ,�λ(t f , 0)|�0〉|2, (1)

where Uμ,�λ is the time-evolution operator using the Hamilto-

nian Hμ with the control scheme �λ. We have that F (μs, �λ0) <

F (0, �λ0) = 1 [see also Fig. 1(a)].
The goal of eSTA is to produce a �λs that is built upon �λ0,

such that we maximize F (μs, �λs) with F (μs, �λs) > F (μs, �λ0).
We define �λs = �λ0 + �ε, and eSTA is now used to calculate �ε.

We assume in the following that μs is small and that the
fidelity landscape about H0 at μ = 0 and �λ = �0 is smooth and
can be approximated well if considering only up to second
order in μ and �λ

To find �ε, we use information about the fidelity and the
gradient of the fidelity with respect to �λ to construct a parabola
in the parameter space of �λ and F , as illustrated in Fig. 1(b).
We assume that this parabola is a good approximation to the
fidelity landscape in the direction of the gradient at (μs, �λ0).
The form of the parabola follows from, and is consistent with,
the approximation of the fidelity landscape only up to second
order in μ and �λ. This is schematically shown in Fig. 1(b),
with the dashed red line representing the parabolic approx-
imation and the solid blue line denoting the actual fidelity
landscape. Furthermore we assume that the maximum of this
parabola gives perfect fidelity, i.e., F (μs, �λ0 + �ε) ≈ 1. We can
then write

�ε ≈ 2[1 − F(μs, �λ0)]

|∇�λF (μs, �λ0)|
∇�λF (μs, �λ0)

|∇�λF (μs, �λ0)| . (2)

We now calculate �ε using an approximation of the gradient
and fidelity at the point (μs, �λ0), shown as the blue square in
Fig. 1. We begin the derivation of these estimates by assuming
that the initial state |�0〉 and the final target state |�T 〉 are
both the same for the H0 and Hμs systems. We assume that
the idealized H0 system can be treated with STA techniques,
i.e., there is a solution |χ0(t )〉 of the time evolution leading
to a fidelity of 1, with |χ0(0)〉 = |�0〉 and |χ0(t f )〉 = |�T 〉.
In addition, we assume that there are solutions of the time
evolution of H0 labeled {|χn(t )〉}n∈N such that {|χn(t )〉}n∈N0

form an orthonormal basis for solutions of the Hμs system. So
we have

|χn(t )〉 = U0,�λ0
(t, 0)|χn(0)〉, (3)

U0,�λ0
(t, s) =

∑
n

|χn(t )〉〈χn(s)|. (4)

Note that in the following examples, we use invariant-based
inverse engineering to design the STA solutions and in these
cases {|χn(t )〉}n∈N0 are (up to a phase) the instantaneous
eigenstates of the corresponding invariant.

We use time-dependent perturbation theory to calculate
an approximation of the fidelity F (μs, �λ0) and the gradient
of the fidelity ∇F (μs, �λ0). We assume that we can neglect
higher-order contributions in both μ and �ε. The details of
the calculations can be found in Ref. [12]. For the fidelity
F (μs, �λ0) we then obtain up to second order in μs

F (μs, �λ0) ≈ 1 − 1

h̄2

∞∑
n=1

|Gn|2, (5)

where

Gn =
∫ t f

0
dt〈χn(t )|[Hμs (�λ0; t ) − H0(�λ0; t )]|χ0(t )〉. (6)

For the gradient approximation we find

∇F (μs, λ0) ≈ − 2

h̄2

∞∑
n=1

Re(Gn �K∗
n ), (7)
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with

�Kn =
∫ t f

0
dt 〈χn(t )|∇Hμs (�λ0; t )|χ0(t )〉. (8)

Using Eq. (2), we can now write the analytical expression
for the eSTA protocol �λs ≈ �λ0 + �ε as

�ε = −
(∑N

n=1 |Gn|2
)[∑N

n=1 Re
(
G∗

n
�Kn

)]∣∣∑N
n=1 Re

(
G∗

n
�Kn

)∣∣2 , (9)

where Gn is given by Eq. (6), Kn is given by Eq. (8), and we
have truncated the infinite sums to the first N terms.

It is important to note that Gn and �Kn can both be eas-
ily calculated as only the Hamiltonians and the known STA
solutions for the idealized system with Hamiltonian H0 are
needed. We also note that eSTA can produce protocols which
are outside the class of STA schemes and offers improvement
over previous perturbation-based optimization [12].

B. Expected stabilities of eSTA and STA

We now provide a general heuristic argument of why it is
expected that eSTA protocols not only have improved fidelity
but also have improved stability compared with their corre-
sponding STA schemes. Let us consider Fig. 1(a), showing
schematically the fidelity versus μ; μ = 0 corresponds with
the approximated system and μs the system of interest. The
fidelity of Hμ using the initial STA control scheme �λ0 is the
dot-dashed blue line; the dashed orange line represents the fi-
delity using the improved eSTA control �λμ calculated for each
μ. Since the STA and eSTA control schemes agree at μ = 0,
the fidelity must be 1 for both at this point. By construction,
for a given μ the fidelity produced using the eSTA control
scheme (dashed orange line) is higher than the corresponding
one for the STA scheme (dot-dashed blue line). Assuming that
the fidelity behaves as a parabola, the magnitude of the slope
of the eSTA fidelity must be less than the slope of the STA
fidelity at μs.

We now consider the effect of a systematic error δ, such
that the STA and eSTA schemes derived using μs are now
applied to the system at a different, nearby μ = μs(1 + δ).
We expect that the derivative of the fidelity in both cases
can be approximated by the slopes shown in Fig. 1(a) (solid
black lines). Therefore, the fidelity in the eSTA case should
vary less than the fidelity in the STA case. Thus, the eSTA
protocol should have higher stability against changes in μ

than the corresponding STA scheme. To confirm this intuitive
reasoning, in the following we examine the stability in more
detail.

III. PHYSICAL MODEL

We consider atomic transport in an optical lattice that
currently has no STA solution. For sufficient trapping depths
the lattice potential can be well approximated locally by a
harmonic potential. The transport of a harmonic potential has
an exact STA solution for all transport times using Lewis-
Riesenfeld invariants [10,11]. Hence, we choose the harmonic
potential transport STA solutions as the starting point to pro-
duce an eSTA protocol for the lattice transport problem.

The lattice potential is given by

VS (x) = U0 sin2 (k0x), (10)

where U0 = αErec, Erec = 2(π h̄)2/mλ2, and k0 = 2π/λ. The
motion of the lattice is described by a function q0(t ), and
Hamiltonian Hμs = HS , where

HS = p2

2m
+ VS[x − q0(�λ, t )]. (11)

For designing the STA trajectories, we apply a harmonic
approximation to the potential VS . A series expansion of VS (x)
results in

VS (x) = V0(x) + O(x4), (12)

where

V0(x) = 1
2 mω2

0x2, (13)

and ω0 =
√

2U0
m k0 = √

α(4π2h̄)/mλ2. The corresponding ide-
alized Hamiltonian H0 = H0 is

H0 = p2

2m
+ V0[x − q0(�λ, t )]. (14)

Note that in this case as U0 → ∞, HS → H0.
We also define a time unit τ = 2π/ω0 and a spatial unit

σ = √
h̄/(mω0).

A. STA control functions

There exist known STA techniques to design trajectories
q0(t ) that give fidelity F = 1 for the harmonic potential H0

and arbitrary transport times [10,11]. In the following, we will
use Lewis-Riesenfeld invariants to obtain STA trajectories for
H0 [11,30]. For harmonic trap transport a known dynamical
invariant has the form [11]

I (t ) = 1

2m
(p − mq̇c)2 + 1

2
mω2

0[x − mqc(t )]2, (15)

where qc(t ) must satisfy the auxiliary equation

q̈c + ω2
0(qc − q0) = 0. (16)

Note that Eq. (16) describes a single-particle classical equa-
tion of motion, where q0(t ) is the trajectory of the potential
minimum and qc(t ) is the resulting classical particle trajec-
tory.

Solutions of the Schödinger equation ih̄∂/∂t�(x, t ) =
H0�(x, t ) can be expressed in terms of weighted transport
modes,

�(x, t ) =
∑

n

cneiθn (t )ψn(x, t ), (17)

where ψn(x, t ) are orthonormal eigenstates of the invariant I
satisfying I (t )ψn(x, t ) = λnψn(x, t ), cn are constants, and the
Lewis-Riesenfeld phase is given by

θn(t ) = 1

h̄

∫ t

0
〈φ(t ′, n)|ih̄ ∂

∂t ′ − H0(t ′)|φ(t ′, n)〉dt ′. (18)

In the specific case of harmonic transport, the resulting
transport modes in Eq. (17) are

χn(x, t ) = eiθn (t )ψn(x, t ) = eiθn (t )e
i
h̄ mq̇cxφn(x − qc), (19)
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FIG. 2. Plot of STA and eSTA control functions. All of these plots use t f /τ = 0.8 and d = λ/2 (one lattice site). The vertical dashed lines in
panels (a) and (b) indicate the smoothing boxes of length t f /8 about the discontinuities in qc,2 and qc,3. (a) Plot of the auxiliary functions qc,1(t )
(dot-dashed blue), qc,2(t ) (dashed green), and qc,3(t ) (solid red). (b) Corresponding plots of the STA transport functions q0,1(t ) (dot-dashed
blue), q0,2(t ) (dashed green), and q0,3(t ) (solid red). (c) Example of the vector components of the eSTA correction �ε, with q0,1 (dashed blue)
and Q1 (solid orange). (d) Examples of the eSTA control functions Q1(t ) (dot-dashed blue), Q2(t ) (dashed green), and Q3(t ) (solid red).

where

θn(t ) = − i

h̄
[(n + 1/2)h̄ω0]t +

∫ t

0

mq̇c
2

2
dt ′, (20)

with λn = (n + 1/2)h̄ω0, and φn(x) are solutions to the
Schrödinger equation at t = 0, i.e., harmonic eigenstates.

To ensure I (t ) and H0(t ) agree at initial and final times, we
set [I (t ), H0(t )] = 0 for t = 0 and t f . This is equivalent [via
Eqs. (16) and (19)] to the boundary conditions

qc(0) = 0, qc(t f ) = d,

q̇c(0) = q̈c(0) = 0, q̇c(t f ) = q̈c(t f ) = 0. (21)

The key idea is that qc(t ) can be chosen first, for example,
to be a polynomial that satisfies the boundary conditions in
Eq. (21), and then q0(t ) can be inverse engineered using
Eq. (16).

Throughout this paper we enforce further boundary condi-
tions on qc(t ), namely,

q(3)
c (t ′) = q(4)

c (t ′) = 0, for t = 0, t f , (22)

so that the resulting trap trajectory q0(t ) ensures the trap is
at rest for initial and final times. In the following, we use
three different auxiliary functions qc(t ) and calculate the cor-
responding STA trajectories q0(t ).

Polynomial function qc,1(t ). One of the simplest choices for
an auxiliary function is a polynomial ansatz qc,1(t ) [11], i.e.,

qc,1(t ) =
J∑

j=1

a jt
j, (23)

where J is the number of boundary conditions. For the bound-
ary conditions in Eqs. (21) and (22), J = 10 and we solve for

the a j to get qc,1(t ). We then use Eq. (16) to produce q0,1(t ).
Examples of qc,1(t ) and q0,1(t ) can be seen in Figs. 2(a) and
2(b), respectively (blue dot-dashed lines).

Quasioptimal function qc,2(t ). Moving beyond the simple
polynomial ansatz for qc, we consider a trajectory introduced
in Ref. [31] as a quasioptimal solution to minimizing the
quartic term in the potential (1/2)mω2

0[x − q0(t )]2 − β[x −
q0(t )]4. We label this auxiliary function qc,2(t ) and our mo-
tivation for using this function is that it should reduce the
effect of the anharmonic contribution within Hs. This auxiliary
function was derived using Pontryagin’s maximal principle
and relies on first calculating a function fc that minimizes the
quartic term contribution to the potential during transport [31],

fc(t ) = 3d

8

(
1 − 2

t

t f

)7/3

+ 7d

4

t

t f
− 3d

8
. (24)

This function fc does not satisfy the boundary conditions in
Eq. (21) and it is the root of a complex-valued equation [31].
We simplify the definition of fc, by mapping fc from (0, t f /2)
to (t f /2, t f ) appropriately. We also enforce the boundary con-
ditions from Eq. (21),

qc,2(t ) =

⎧⎪⎨⎪⎩
0, t � 0,

fc(t ), 0 < t < t f /2,

− fc(t f − t ) + d, t f /2 < t < t f ,

d, t � t f .

(25)

To calculate q0,2(t ), it is convenient to define fu(t ) =
1/ω2

0 f ′′
c (t f − t ), where

fu(t ) = 14d

3ω2
0t2

f

(
2

t

t f
− 1

)1/3

. (26)
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Similarly we first consider fu on (t f /2, t f ) and map appropri-
ately to (0, t f /2), and we obtain

q0,2(t ) =

⎧⎪⎨⎪⎩
0, t � 0,

fc(t ) + fu(t f − t ), 0 < t < t f /2,

− fc(t f − t ) − fu(t ) + d, t f /2 < t < t f ,

d, t � t f ,

(27)

which has discontinuities at t = 0, t = t f /2, and t = t f . These
jump points may be difficult to implement practically, so we
smooth qc,2(t ) in a time interval of length tT around the jump
points, using polynomial interpolation. Later we show that
high performance can be achieved even with this smoothing
process and that the exact time-interval chosen is not critical
to robust and high-fidelity transport. Using Eq. (16) we can
now calculate q0,2(t ) as

q0,2(t ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p′′

0(t )/ω2
0 + p0(t ), 0 � t < t0,

fc(t ) + fu(t f − t ), t0 � t � t1,
p′′

1(t )/ω2
0 + p1(t ), t1 < t < t2,

− fc(t f − t ) − fu(t ) + d, t2 � t � t3,
p′′

2(t )/ω2
0 + p2(t ), t3 < t � t f ,

(28)

where t0 = tT , t1 = (t f − tT )/2, t2 = (t f + tT )/2, and t3 =
t f − tT /2. By design, the polynomials p j (t ) are matched
to fc(t ) and − fc(t ) on the appropriate boundary points.
Throughout this paper we choose tT = t f /8. An example of
qc,2(t ) and q0,2(t ) can be seen in Figs. 2(a) and 2(b), respec-
tively (green dashed lines).

Quasioptimal classical function qc,3(t ). Lastly we use
a quasioptimal classical auxiliary function as described in
Ref. [28]. This auxiliary function is also derived via trans-
port time-minimization in Ref. [32]. One motivation for this
function is to consider the classical version of the particle
transport problem. The intuitive optimal strategy in this case
is to maximally accelerate the particle during the first half
of the transport and maximally decelerate the particle in the
second half of the transport. In Ref. [28] a sudden initial and
final displacement of the potential is also included; we omit
this since these displacements will occur within the smooth-
ing intervals. We call this auxiliary function the quasioptimal
classical function and define it by

qc,3(t ) =
⎧⎨⎩2d

(
t
t f

)2
, 0 � t <

t f

2 ,

d
[
1 − 2

(
t
t f

− 1
)2]

,
t f

2 < t � t f .
(29)

We obtain q0,3 using Eq. (16), giving

q0,3(t ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, t � 0,

2d
[(

t
t f

)2
+ 2

ω2
0t2

f

]
, 0 < t <

t f

2 ,

−2d
(

t
t f

− 1
)2

− d
(

4
ω2

0t2
f
− 1

)
,

t f

2 < t < t f ,

d, t � t f .

(30)

We perform the same smoothing procedure as in the previous
section. In the next section we investigate the impact smooth-
ing has on fidelity for this trajectory. Examples of qc,3(t ) and
q0,3(t ) can be seen in Figs. 2(a) and 2(b), respectively (solid
red lines).

B. Derivation of eSTA control functions

To derive the eSTA control function, we must calculate �ε
in Eq. (9). In Fig. 1(b) the improved eSTA control vector is
shown schematically, with �λs = �λ0 + �ε. �λ0 characterizes the
STA control function, while �ε parameterizes the eSTA correc-
tion. The purpose of this distinction is to highlight how eSTA
improves the control of a system, starting with an idealized
STA system with the control vector �λ0.

Now we wish to parametrize explicitly the eSTA modifi-
cation and, without loss of generality, we can simplify our
chosen parametrization by choosing �λ0 = �0. This allows us
to define the new improved eSTA control function Qj (�ε, t )
as the sum of the original STA control function and a second
function �q0, j (�ε, t ),

Qj (�ε, t ) = q0, j (t ) + �q0, j (�ε, t ). (31)

We now have the freedom to define �q0, j and the �ε
parametrization in any manner that is convenient, provided
that Qj (�ε, t ) remains consistent with the boundary conditions
of q0, j (t ).

We define �ε by values that �q0, j takes for equally spaced
points in time during the transport. It is then convenient to set
�q0, j to be a polynomial,

�q0, j (�ε, t ) =
L+5∑
l=0

blt
l , (32)

which satisfies

�q0, j (t
′) = 0, t = 0, t f ,

∂n

∂t n
�q0, j (t

′) = 0, t = 0, t f and n = 1, 2,

�q0, j

(
l t f

L

)
= εl , l = 1, . . . , L. (33)

We choose L = 8 in this paper as a good compromise between
numerical implementation and optimization freedom; further
details can be found in Ref. [12].

To implement eSTA for a given trajectory, we calculate �ε
using Eq. (9). The states |χn(s)〉 are known analytically from
Eq. (19), and so the integrals Gn and Kn can be calculated for
each n. We choose N = 4 for all the results presented in this
paper as terms beyond N = 4 do not have an impact on the
resulting fidelities or robustness, for this physical setting.

Both �q0, j and �ε are illustrated in Fig. 2(c), with the
STA trajectory q0,1(t ) (dot-dashed blue line) and the im-
proved eSTA trajectory Q1(�ε, t ) (solid orange line) shown for
t f /τ = 0.8. The magnitude of the �ε components εl are shown
explicitly as changes to the original STA trajectory at the times
lt f /L, where l = 1, . . . , L and L = 8.

Before examining the fidelities, we note that the analytic
nature of eSTA control schemes has several advantages. eSTA
allows us to immediately improve analytically an existing
STA control field, thus any physical intuition gained from
STA can now be examined with respect to eSTA. In particular,
symmetries of control functions are much more easily studied
if the control functions are analytic, and eSTA can be designed
to preserve the symmetries from the original STA control
function. Furthermore, knowledge of symmetries that may be
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required for stable control can lead to a better understanding
of the physical system itself (e.g., when it is stable, are there
phase transitions, etc.?). If the control function is analytic,
it is also easier to see at which times the most significant
corrections to the original STA control field occur. eSTA also
provides several useful quantities that can be used to obtain
further physical intuition behind the system dynamics; the
approximation of the fidelity Eq. (5) and the gradient Eq. (7),
where we highlight that evaluating these expressions does not
require full time evolution.

We also underline that by using the eSTA formalism, one
has the freedom to choose different starting STA protocols and
can apply many different types of conditions to the eSTA ana-
lytical correction, e.g., conditions on the Fourier transform of
the correction, symmetries, bounds on properties of the con-
trol field, etc. Given that calculating the eSTA control function
requires little computational effort, optimization beyond eSTA
can be employed easily by allowing extra parameters within
the eSTA parametrization. Then a variational approach, or
other numerical technique, could be used to optimize a system
with a specific difficult control task.

C. Fidelities for STA and eSTA schemes

We investigate the fidelities using STA and eSTA by nu-
merically simulating the Schrödinger equation with the lattice
Hamiltonian from Eq. (11), for short transport times. We
choose m = 133 amu (133Cs), λ = 866 nm, and α = 150,
motivated by the physical values stated for lattice transport
near the quantum speed limit in Ref. [28]. This choice of units
corresponds to a natural time unit of τ = 20 μs, where τ is
approximately the quantum speed limit for this transport given
in Ref. [28].

We first consider the fidelity of the STA trajectories q0,1(t ),
q0,2(t ), and q0,3(t ), and the results are shown in Fig. 3.
The STA trajectories based on quasioptimal solutions [q0,2(t )
and q0,3(t )] perform better than a simple polynomial ansatz
[q0,1(t )]. We now fix a reference fidelity FR = 0.9, and we see
that both q0,2(t ) and q0,3(t ) have F > FR for t f /τ � 1.2, while
t f /τ � 1.5 is required for q0,1(t ). Since the performance of
STA is already optimal for t f /τ ≈ 1.45, we focus on the
region t f /τ < 1.5.

The fidelities for the three eSTA optimized trajectories
Q1(t ), Q2(t ), and Q3(t ) are also shown in Fig. 3. They show
improvement over their corresponding STA trajectories for the
transport times considered. As with the STA trajectories, the
eSTA trajectories also show that the quasioptimal solutions
outperform the polynomial ansatz. Furthermore, the eSTA
trajectories produce higher fidelities for shorter times than the
STA trajectories; Q0,2(t ) has F > FR for t f /τ � 1.025 and
Q0,3(t ) has F > FR for t f /τ � 0.98.

As a side remark, we investigated whether the smoothing
we performed on the trajectories had a significant impact on
fidelity. As an example, in the inset of Fig. 3 the fidelities for
different smoothing possibilities are shown for Q3(t ). It was
found that the smoothing interval tT was not critical in obtain-
ing high fidelities. While the highest fidelity is obtained for
the fully discontinuous trajectory (dashed line), very similar
results are found using a smoothing interval even as large as
tT = t f /8 (dashed line). An alternative approach is to use a

FIG. 3. Fidelity F versus final time t f , for δ = 0. The fidelities
for the STA trajectories are given by the broken lines: q0,1(t ) (dot-
dashed blue), q0,2(t ) (dashed green), and q0,3(t ) (dotted red). The
corresponding eSTA optimized fidelities are solid lines: Q1(t ) (blue),
Q2(t ) (green), and Q3(t ) (red). Inset of panel (a): Fidelity F versus
final time t f /τ using Q3 with different smoothing options. The solid
red line uses a fully discontinuous qc,3, and the dashed black line
on top of it uses qc,3 with only the center discontinuity smoothed
over a tT = t f /16 interval. The dotted red line uses qc,3 smoothed in
an interval of length tT = t f /16 around the three discontinuities and
the dashed red line uses qc,3 smoothed in an interval of length tT =
t f /8 around the three discontinuities. The dot-dashed red line uses
smoothing applied to q0,3 in an interval of length tT = t f /8, starting
from a fully discontinuous qc,3.

fully discontinuous qc,3(t ) and perform a smoothing proce-
dure on the resulting eSTA trajectory Q0,3(t ). However, this
was found to give poorer performance, as shown in the inset
of Fig. 3 (dash-dotted line). Thus, for the results in this paper
the STA trajectories qc, j (t ) were smoothed using tT = t f /8,
and then the eSTA trajectories Qj (t ) were calculated.

IV. eSTA CONTROL FUNCTION DEVIATION

Before starting with an examination of the robustness of
eSTA, we first examine the related question of how much the
eSTA control function deviates when parameters within the
potential are slightly changed. We define the deviation CQ of
the control function Q. The motivation for examining CQ is
an expectation that if the control function does not depend
strongly on a specific parameter of the potential, then this
could result in stability concerning systematic errors in that
parameter.

In detail, we define the deviation CQ as

CQ := lim
δ→0

1

δ
‖Q(δ) − Q(0)‖ =

∥∥∥∥ ∂

∂δ
Q

∣∣∣
δ=0

∥∥∥∥, (34)

where δ is some variation of the potential.
There is freedom in the choice of norm in Eq. (34), in the

following we use the L1 norm

‖Q(δ)‖ =
∫ t f

0
ds|Q(δ, s)|. (35)
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As in Eq. (31), we assume that the solution to the eSTA
system with Hamiltonian H(δ) takes the form

Q(δ, t ) = q0(δ, t ) + �q0[�ε(δ), t], (36)

where q0(δ, t ) is the STA control function that solves the
approximate STA system, and �q0 is a polynomial as defined
in Eq. (33). We set �q0[�0, t] = 0 and assume �q0 does not
depend on the STA control function q0(δ, t ). We also have that

∂Q

∂δ

∣∣∣
δ=0

= ∂q0

∂δ

∣∣∣
δ=0

+ ∂

∂δ
�q0(�ε(0), t )

∣∣∣
δ=0

= ∂q0

∂δ

∣∣∣
δ=0

+
N∑

j=1

∂�q0

∂ε j
(�ε(0), t )

∂ε j

∂δ

∣∣∣
δ=0

. (37)

Using the definition of CQ in Eq. (34) we obtain

CQ : =
∥∥∥∥∥∂q0

∂δ

∣∣∣
δ=0

+
N∑

j=1

∂�q0

∂ε j
(�ε(0), t )

∂ε j

∂δ

∣∣∣
δ=0

∥∥∥∥∥. (38)

By using the eSTA formalism, we can calculate ∂ε j

∂δ
explicitly

as shown in Appendix A. Starting from Eq. (38), we can also
derive an upper bound of the quantity CQ:

CQ �
∥∥∥∥∂q0

∂δ

∣∣∣
δ=0

∥∥∥∥ +
N∑

j=1

∥∥∥∥∂�q0

∂ε j
(�ε(0), t )

∥∥∥∥∣∣∣∣∂ε j

∂δ

∣∣∣∣
δ=0

�
∥∥∥∥∂q0

∂δ

∣∣∣
δ=0

∥∥∥∥ +
[

max
j

∥∥∥∥∂�q0

∂ε j
(�ε(0), t )

∥∥∥∥] N∑
j=1

∣∣∣∣∂ε j

∂δ

∣∣∣∣
δ=0

.

(39)

The first term ∂q0/∂δ is the deviation of the STA trajectory.
The second term is a measure of the eSTA dependence with
respect to the control function Q, and this is the term we wish
to investigate. Note that the calculation of CQ can be done
fully analytically as shown in Appendix A and so requires far
less computation than the numerical derivative of the fidelity
which we consider in the next section. We highlight here that
CQ offers potential as a tool to evaluate and classify possible
eSTA trajectories in lieu of full numerical treatment. As an ex-
ample, we consider a correlated error in the lattice amplitude
U0 and the wave number k0:

V c
err(x, t ) = U0(1 + δ) sin2

{
k0

[x − Qj (t )]√
(1 + δ)

}
, (40)

such that ω = ω0 =
√

2U0
m k0 is kept constant. Hence the STA

trajectories do not depend on δ, and we need only apply
CQ to the eSTA control functions. Systematic errors in the
lattice amplitude or the wave number alone are considered in
following sections.

The corresponding results of CQ can be seen in Fig. 4.
We find that the trajectories Q2 and Q3 (solid lines) show
a lower deviation with changes in δ than the trajectory Q1.
The upper bound on CQ from Eq. (39) is also shown and
we see that the upper bound can be also used for classifying
the different schemes. From these results, one would expect
that the trajectories Q2 and Q3 are more stable concerning
a systematic error δ. This is examined in the next section in
detail and is shown to be the case.

FIG. 4. Control function deviation CQ versus t f /τ for correlated
systematic error V c

err(x, t ). Solid lines: CQ as defined in Eq. (34), using
Q1(t ) (solid blue), Q2(t ) (solid green), and Q3(t ) (solid red). Broken
lines: Upper-bound definition of CQ from Eq. (39), using Q1(t ) (dot-
dashed blue), Q2(t ) (dashed green), and Q3(t ) (dotted red).

V. ROBUSTNESS TO SYSTEMATIC ERRORS

In this section we compare the robustness of the eSTA
and STA trajectories by considering how the fidelity changes
under three systematic errors in the lattice potential.

We first consider the correlated error V c
err introduced in

the last section for a specific final time and then define the
sensitivity S of a given trajectory. We compare eSTA to STA
using three systematic errors: the correlated error V c

err, an error
in the lattice amplitude V A

err, and an error in the lattice wave
number V k

err. The amplitude and wave number errors can occur
in the physical implementation of lattice potentials [33].

We define δ to be the strength of the systematic error, and
the lattice amplitude error potential is given by

V A
err(x, t ) = U0(1 + δ) sin2 {k0[x − Qj (t )]}, (41)

and the wave number error potential is

V k
err(x, t ) = U0 sin2{k0

√
1 + δ[x − Qj (t )]}, (42)

with ω = ω0
√

(1 + δ) in both cases.
As a first step, we consider the correlated error V c

err for a
fixed final time of t f /τ = 1.1. In Fig. 5, the fidelity F versus
the error strength δ is shown for the three eSTA and three STA
trajectories. The STA trajectories q0,2 and q0,3 show similar
fidelities about δ = 0, and the same is true for the eSTA
trajectories Q2 and Q3. We see significant higher fidelities of
the eSTA schemes Q2 and Q3 over the STA schemes q0,2 and
q0,3, respectively. While the eSTA polynomial ansatz Q1 has a
fidelity much higher than that of the STA q0,1, Q1 has fidelity
F < 0.9 for all δ in the range considered.

We see that there is no significant change in the fidelity for
the eSTA trajectories in a neighborhood about δ = 0, and that
even for larger values of δ the eSTA trajectories maintain their
higher fidelity over their related STA trajectories.

We show later that even ∂F/∂δ at δ = 0 is smaller for the
eSTA trajectories Q2 and Q3 than for the STA trajectories q0,2

and q0,3 (see Fig. 6). This can also already be seen in Fig. 5,
as the slopes of the eSTA lines (solid green and red line) are
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FIG. 5. Fidelity at t f /τ = 1.1 versus δ. The fidelities for the
STA trajectories q0,1(t ) (dot-dashed blue), q0,2(t ) (dashed green),
and q0,3(t ) (dotted red). The corresponding eSTA optimized fidelities
Q1(t ) (solid blue), Q2(t ) (solid green), and Q3(t ) (solid red). The
horizontal solid black arrows show |δ|, such that F (δ) > FR = 0.9
using Q2. The vertical solid black arrow at δ = 0 is F (δ = 0) − FR,
again using Q2. These quantities are used in the definition of the
systemic error bound B, in Eq. (45).

less than those for the STA lines (dashed green line and dotted
red line).

Note that for V c
err, increasing δ corresponds with deepening

of the lattice. As the lattice is deepened we find increased
fidelity and stability for both Q2 and Q3 and q0,2 and q0,3.

A. Systematic error sensitivity

To examine the robustness of eSTA quantitatively for the
three types of systematic errors we define the sensitivity

S :=
∣∣∣∣∂F

∂δ

∣∣∣
δ=0

∣∣∣∣. (43)

A smaller value of S corresponds to a more robust protocol,
i.e., less sensitivity to the error induced by δ. We evaluate
S for the different errors and trajectories numerically around
δ = 0 by simulating the full transport. Note that, using time-
dependent perturbation theory, S can be expressed as

S = 1

h̄

∣∣∣∣∫ t f

0
dt 〈�T (t )|∂H

∂δ

∣∣∣
δ=0

|�0(t )〉〈�T (t f )|�0(t f )〉
∣∣∣∣,
(44)

where |�0(0)〉 is the initial state, |�T (t f )〉 is the target state,
and |�0(t )〉 is the time-evolved solution of the Schrödinger
equation.

In the following, we evaluate both eSTA and STA for the
three systematic errors stated previously. Since we are inter-
ested in trajectories that give the highest fidelity, we restrict
our focus to Q2 and Q3 (q0,2 and q0,3, respectively).

In Fig. 6(c) we consider the correlated error V c
err. For

t f /τ � 0.95, eSTA shows reduced sensitivity over STA. Note
that the fidelities are also higher in this t f range (see Fig. 3).
We also find that Q2 and Q3 in Fig. 6(c) both agree qualita-
tively with their analytic CQ behavior in Fig. 4.

FIG. 6. Sensitivity S for systematic errors versus t f /τ for (a) am-
plitude error V A

err, (b) wave number error V k
err, and (c) correlated error

V c
err. STA trajectories: q0,2 (dashed green line) and q0,3 (dotted red

line). eSTA trajectories: Q2 (solid green line) and Q3 (solid red line).

We show the sensitivity of eSTA and STA versus t f /τ for
V A

err in Fig. 6(a) and V k
err in Fig. 6(b). For these errors, the eSTA

trajectories (solid lines) generally have lower sensitivities than
the STA trajectories (dashed and dotted lines).

If we first consider longer transport times, S is approaching
zero for every trajectory. This behavior is expected given the
adiabatic theorem; as t f /τ approaches the adiabatic limit,
small perturbations in the potential will have less impact on
the instantaneous eigenstate of the system. Thus, F → 1, and
S → 0.

For very short final times (t f /τ < 1), S becomes a less
useful description of robustness since the fidelity is rapidly
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decreasing for all trajectories. Hence, a more useful quantity
would consider the fidelity F and sensitivity S together, and
this motivates us to define a new quantity in the next section
that we call the systemic error bound B.

As a side remark, we note that eSTA should also provide a
good initial starting point for further numerical gradient-based
optimization. One would expect that the robustness of eSTA
will even be improved after further numerical optimization,
given the heuristic argument given in Sec. II B.

B. Systematic error bound

For practical implementation, we are interested in proto-
cols that exceed a chosen threshold fidelity FR while also
having stability against a systematic error within a certain
bound. To address these concerns, we now define a new quan-
tity B called the systematic error bound.

For a given final time, we approximate a bound B on the
strength of the systematic error δ, such that for |δ| < B we
ensure that the fidelity satisfies F > FR, with FR being a given
reference fidelity. We can approximate B by assuming a linear
dependence of the fidelity on δ, with

B =
{

F (δ=0)−FR

S : F (δ = 0) > FR,

0 : F (δ = 0) � FR,
(45)

where for simplicity we have used the convention that B = 0
for F (δ = 0) � FR. The systematic error bound B indicates
that for a given final time the trajectory achieves fidelity
above FR for |δ| < B. Hence, higher values of B mean higher
fidelity and lower sensitivity. (In contrast, higher values of S
correspond with decreased stability at a given δ.)

In Fig. 5 we show a specific example of the quantities
needed to calculate B. For Q2 (solid green line), the horizontal
solid black arrows in Fig. 5 show |δ| symmetric about δ = 0,
such that F (δ) > FR = 0.9. To calculate B, we find the dif-
ference F (δ = 0) − FR (the vertical solid arrow in Fig. 5) and
then scale by 1/S. Note that, for this example, S can be seen
in Fig. 6(c).

The systematic error bound B is shown in Fig. 7 for the
same trajectories and errors as shown previously in Fig. 6.
In Fig. 7 we choose FR = 0.9 and note that the quasioptimal
eSTA trajectories Q2 and Q3 show significant improvement
over the polynomial ansatz eSTA Q1. We include the poly-
nomial ansatz trajectories Q1 and q0,1 as a reference case to
highlight the usefulness of B as a robustness measure. For all
three errors the eSTA trajectories achieve a higher or equal
B over their STA counterparts, and this reflects the previous
fidelity results (Fig. 3) and sensitivity results (Fig. 6).

For t f → ∞, for both the eSTA and STA error bounds
B → ∞, since as discussed in the last section S → 0 in the
adiabatic limit. This is not an inherent problem with B, since
we are interested in applying B in regions far from adia-
baticity. Thus we restrict our investigation to t f /τ < 1.45, as
shown in Fig. 7.

In Fig. 7 we note that the three error types produce similar
B behavior for each trajectory, although the magnitude of B
is different in each case. We find that from t f � 1 the eSTA
trajectories Q2 and Q3 give larger values of B than the STA
trajectories q0,2 and q0,3. These values are increasing, indicat-
ing that even when the fidelities are very high, a larger value

FIG. 7. Systematic error bound B versus t f /τ with FR = 0.9 for
(a) amplitude error V A

err, (b) wave number error V k
err, and (c) correlated

error V c
err. STA trajectories: q0,2 (dashed green line) and q0,3 (dotted

red line). eSTA trajectories: Q2 (solid green line) and Q3 (solid red
line).

of B informs us that the eSTA sensitivity must be decreasing
faster than the STA sensitivity. In this way the error bound B
gives us a useful comparison between trajectories, as it allows
both the fidelity and the sensitivity of different trajectories to
be compared simultaneously.

VI. ROBUSTNESS OF eSTA TO NOISE

We now consider the robustness and stability of eSTA with
respect to noise. Specifically we consider lattice transport
with classical Gaussian white noise in position and lattice
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amplitude. The noise sensitivity of lattice transport using STA
has previously been studied in Refs. [16,33,34].

We consider a Hamiltonian H = H0(t ) + η ξ (t )H1(t ),
where η is the noise strength, ξ (t ) is a realization of the noise,
and H1(t ) is the operator coupling the system to the noise
[35–37]. As shown in Appendix B a master equation can be
derived [16,33]:

d

dt
ρ = − i

h̄
[H0, ρ] − η2

2h̄2 [H1, [H1, ρ]], (46)

where H0 is from Eq. (11).
We define the noise sensitivity SN as

SN =
∣∣∣∣ ∂F

∂ (η2)

∣∣∣∣ =
∣∣∣∣1

2

∂2F

∂η2

∣∣∣∣, (47)

and in Appendix B we use a perturbation approach to the
master equation [16,38] to obtain

SN = 1

h̄2

∣∣∣∣∣
∫ t

0
ds

× [
Re

{〈�T (s)|H2
1 (s)|�0(s)〉〈�0(s)|�T (s)〉}

− |〈�T (s)|H1(s)|�0(s)〉|2]∣∣∣∣∣, (48)

where we use the same notation as in Eq. (44) regarding
|�0(s)〉 and |�T (s)〉. We focus on transport of the ground state
of the lattice, but the results in this section can be generalized
naturally. The quantity SN in Eq. (48) is useful as it allows
us to measure the system’s sensitivity to noise without having
to numerically simulate the full open system dynamics, for
example, using quantum trajectories.

Let us first consider the special case of the adiabatic limit.
Let ψ0(x) be the ground state of the lattice; thus,

�0(t, x) = �T (t, x) = ψ0[x − Qj (t )]eiφ(t ). (49)

Then Eq. (48) simplifies to

SN = t f C, (50)

where C is given by

C = 1

h̄2

∣∣〈ψ0|H2
1 |ψ0〉 − |〈ψ0|H1|ψ0〉|2

∣∣. (51)

We again consider the error bound defined in the previous
section which combines the fidelity and the sensitivity, defined
as

BN =
{F (δ=0)−FR

SN
: F (δ = 0) > FR,

0 : F (δ = 0) � FR,
(52)

where we again adopt the convention BN = 0 for F � FR. We
note that in the adiabatic limit, BN ≈ 1−FR

C
1
T , i.e., the error

bound goes to zero for T → ∞, where T = t f /τ (in contrast
with the systemic errors considered in the previous section).

A. Position noise

As a first example we consider position noise described by
the potential

V P
N = V [x − Qj (t ) − σηξ (t )], (53)

with V being the lattice potential and σ the unit of space
defined in Sec. III. Using only first order in η, we have

HP
1 = −σ

∂

∂x
V [x − Qj (t )]

= −σU0k0 sin {2k0[x − Qj (t )]}. (54)

We evaluate Eq. (48) using both STA and eSTA trajectories
and plot BN in Fig. 8(a). The eSTA trajectories again out-
perform their STA counterparts, showing a greater BN over
a larger range of shorter final times.

In Fig. 8(b) we look at larger t f /τ and we see the STA
trajectories (dashed colored lines) approach the adiabatic limit
(dashed black line).

Note that when the ground state is known analytically as
with the harmonic oscillator, then explicit formulas for the
constant C in Eq. (51) can be found. Using the harmonic os-
cillator ground state as an approximation to the lattice ground
state, we obtain an approximation for Eq. (51):

CP ≈ 1

2

(
U0k0σ

h̄

)2

[1 − e−4k2
0σ 2

]

= ω2
0Ũ0

4
[1 − e−2/Ũ0 ], (55)

where Ũ0 = U0/(h̄ω0). For the values considered here,
τ 2CP = 0.0112 and the approximation in Eq. (55) gives
τ 2CP ≈ 0.0108.

B. Amplitude noise

For noise in the lattice amplitude we define the noise po-
tential as

V A
N = [1 + ηξ (t )]V [x − Qj (t )], (56)

with V being the lattice potential. In this case we have

HA
1 = V [x − Qj (t )]. (57)

The results for the STA and eSTA trajectories are shown
Fig. 8(d). As with the position noise, the eSTA trajectories
are an improvement over the STA trajectories.

Both noise sources have similar BN scales, with the po-
sition noise eSTA results showing greater improvement over
STA than the amplitude noise eSTA results have over their
STA counterparts

In Fig. 8(c) the STA trajectories for amplitude noise are
shown for values of t f /τ approaching the adiabatic limit, and
for t f /τ > 4 they agree.

As with the previous section, we can approximate CA

by using the analytic harmonic ground state with the lattice
potential,

CA ≈ 1

8

(U0

h̄

)2

e−4k2
0σ 2

(e2k2
0σ 2 − 1)2,

= ω2
0Ũ 2

0

8
e−2/Ũ0 (e1/Ũ0 − 1)2, (58)

and again Ũ0 = U0/(h̄ω0). The approximation gives τ 2CA ≈
2.70 × 10−3, while the exact value is τ 2CA = 2.97 × 10−3.
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FIG. 8. Noise error bound BN versus t f /τ with FR = 0.9. (a) Po-
sition noise V P

N ; eSTA trap trajectories Q1(t ) (solid blue line), Q2(t )
(solid green line), and Q3(t ) (solid red); STA trap trajectories q0,1(t )
(dot-dashed blue line), q0,2(t ) (dashed green line), and q0,3(t ) (dotted
red line). (b) Position noise BN versus larger t f , using the STA tra-
jectories. All the trajectories converge to the adiabatic limit (dashed
black line) for large t f . (c) Amplitude noise BN versus larger t f , again
using the STA trajectories. They also converge to the adiabatic limit
(dashed black line) for large t f . (d) Amplitude noise V A

N , with same
details as in panel (a).

VII. CONCLUSION

We applied the general eSTA formalism developed in
Ref. [12] to the practical problem of atom transport using an
optical lattice potential, near the quantum speed limit [28].
By examining the robustness of the eSTA control schemes,
we found that the eSTA transport protocols result in higher

fidelity and improved robustness against several types of sys-
tematic errors and noise errors.

We have provided a general heuristic argument that the
eSTA schemes should result in higher fidelities and improved
stability compared with the original STA schemes. Further-
more, we have shown strong numerical evidence of this
claim by considering noise and systematic errors in the lattice
potential.

Finally, we have quantified this increased robustness by
defining new measures. These include an eSTA-specific eval-
uation tool CQ that allows possible control functions to be
evaluated without full numerical treatment and a practical
error bound B that combines fidelity and sensitivity such that
eSTA and STA control functions can be compared qualita-
tively. In the future the robustness of eSTA schemes and the
error bound B could be considered in further quantum control
applications. In addition, we envisage eSTA to be a good
initial starting point for numerical optimization, since further
improvement in robustness is expected; this is an interesting
avenue for future work.
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APPENDIX A: DERIVATION OF CQ

We can evaluate CQ using the formalism of eSTA. As
before with eSTA, we write the system Hamiltonian H(δ) as
an expansion about the STA system that approximates it:

H(δ) = HSTA
0 (δ) + μH1(δ) + μ2H2(δ) + · · · . (A1)

We generalize the definitions of �Kn and Gn from the eSTA
formalism to include the δ dependence in the Hamiltonian,
giving

�Kn(δ) =
∫ t f

0
dt 〈χn(t )|∇HS (�λ0; t ; δ)|χ0(t )〉 (A2)

and

Gn(δ) =
∫ t f

0
dt〈χn(t )|[HS (�λ0; t ; δ) − H(0)(�λ0; t )]|χ0(t )〉.

(A3)

Hence we have that the eSTA control vector is given by

�ε(δ) ≈ −
[∑N

n=1 |Gn(δ)|2]{∑N
n=1 Re

[
G∗

n(δ) �Kn(δ)
]}∣∣∑N

n=1 Re
[
G∗

n(δ) �Kn(δ)
]∣∣2 . (A4)
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Now we look at the derivative with respect to δ and evaluate at δ = 0:

∂

∂δ
ε j (0) = ε j (0)

(∑N
n=1 2Re

[
G∗

n(0) ∂
∂δ

Gn(0)
]∑N

n=1 |Gn(0)|2 +
∑N

n=1

{
Re

[
K∗

n, j (0) ∂
∂δ

Gn(0)
] + Re

[
G∗

n(0) ∂
∂δ

Kn, j (0)
]}∑N

n=1 Re
[
G∗

n(0) �Kn, j (0)
]

+
∑M

j=1

{∑N
n=1 Re

[
G∗

n(0) �Kn, j (0)
]∑N

n=1 Re
[
K∗

n, j (0) ∂
∂δ

Gn(0)
] + Re

[
G∗

n(0) ∂
∂δ

Kn, j (0)
]}

∑M
j=1

∣∣∑N
n=1 Re

[
G∗

n(0) �Kn, j (0)
]∣∣2

.

)
(A5)

While this expression is detailed, the individual terms are
known exactly and can be calculated entirely analytically.

APPENDIX B: DERIVATION OF SN

To consider the effect of noise on eSTA protocols, we start
with a system obeying the Schrödinger equation

ih̄
∂

∂t
|�〉 = H0(t )|�〉, (B1)

where H0(t ) = p2/2m + V (x, t ), and V is the potential. We
consider noise of the form η ξ (t )H1(t ), where ξ (t ) is a given
noise realization, H1(t ) is the operator coupling the system to
the noise, and η is the noise strength [16,35,36]. In this paper
we assume that the statistical expectation E[ξ (t )] = 0, with

E[ξ (t )ξ (t ′)] = α(t − t ′), (B2)

where α(t − t ′) is the correlation function of the noise. Fol-
lowing the approach taken in Ref. [38], a master equation can
be derived [16,33]:

d

dt
ρ = − i

h̄
[H0, ρ] − iη

h̄
[H1, 〈ξρ〉], (B3)

where η is the perturbation parameter and ρ is the average
over realizations of ξ (t ). Now we assume Gaussian white
noise, i.e., α(t − t ′) = δ(t ′ − t ), and using Novikov’s theorem
[39], 〈ξρ〉 = −iη/2h̄[H1, ρ], we obtain

d

dt
ρ = − i

h̄
[H0, ρ] − η2

2h̄2 [H1, [H1, ρ]]. (B4)

We define

d

dt
ρ0 = − i

h̄
[H0, ρ0],

|ρ0(t )〉〉 = U0(t, 0)|ρ0(0)〉〉, (B5)

where |ρ0(t )〉〉 denotes ρ0(t ) written in superoperator notation.
Let

L(t )|ρ〉〉 = − 1

2h̄2 [H1, [H1, ρ]], (B6)

then [16,38]

|ρ(t )〉〉 = |ρ0(t )〉〉+η2
∫ t

0
dsU0(t, s)L(s)U0(s, 0)|ρ0(0)〉〉+O(η4)

= |ρ0(t )〉〉 + η2
∫ t

0
dsU0(t, s)L(s)|ρ0(s)〉〉 + O(η4).

(B7)

We denote the target state as |�T 〉 and set |ρT 〉〉 = |�T 〉〈�T |.
The fidelity is then

F = 〈〈ρT |ρ〉〉 = Tr(ρ†
T ρ) = 〈ψT |ρ(t )|ψT 〉

= 〈〈ρT |ρ0〉〉 + η2
∫ t

0
ds〈〈ρT (s)|L(s)|ρ0(s)〉〉 + O(η4). (B8)

We define the noise sensitivity SN ,

SN =
∣∣∣∣ ∂F

∂ (η2)

∣∣∣∣ =
∣∣∣∣∫ t

0
ds〈〈ρT (s)|L(s)|ρ0(s)〉〉

∣∣∣∣. (B9)

Using ρ0 = |�0〉〈�0| and the explicit form of L from
Eq. (B6), this expression can be simplified to

SN = 1

h̄2

∣∣∣∣∣
∫ t

0
ds

× [
Re

{〈�T (s)|H2
1 (s)|�0(s)〉〈�0(s)|�T (s)〉}

− |〈�T (s)|H1(s)|�0(s)〉|2]∣∣∣∣∣. (B10)
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