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Efimov physics implications at p-wave fermionic unitarity
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Efimov physics at p-wave unitarity for three equal mass fermions in multiple symmetries interacting via
Lennard-Jones potentials is predicted to modify the long-range interaction potential energy, but without produc-
ing a true Efimov effect. This analysis treats the total orbital angular momenta and parities, J� = 0+, 1+, 1−,
and 2−, for either three spin-polarized fermions (↑↑↑) or two spin-up and one spin-down fermion (↓↑↑). Our
results for the long-range interaction in some of those cases agree with previous work by Werner and Castin
and by Blume et al., namely, in cases where the s-wave scattering length goes to infinity. The present results
extend those calculated interaction energies to small and intermediate hyperradii comparable to the van der
Waals length, and we consider additional unitarity scenarios where the p-wave scattering volume approaches
infinity. The crucial role of the diagonal hyperradial adiabatic correction term is identified and characterized.
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I. INTRODUCTION

In recent decades it has become routine to manipulate
interactions in the dilute Fermi gas using a Feshbach reso-
nance to produce a quantum system at or near the unitary
limit [1–5]. For instance, the s-wave scattering length be-
tween fermions in different internal quantum states diverges
to infinity as = ±∞, entering a universality regime where
the specific short-range details about the underlying potential
energy function are to a large extent irrelevant [6]. Many
as → ∞ physical phenomena in a two-component Fermi gas
are by now well known and extensively studied; this regime is
often denoted the BCS-BEC crossover problem [7,8]. When
as > 0 is large, two fermions in different spin states can pair
to form a bosonic molecule, while for as < 0 two different
spin fermions can form a Cooper pair [9–11]. In the unitary
regime, the physics is rich, nonperturbative, and challenging.
Our main interest in the present study is in generalizing our
understanding of such systems having a very large p-wave
scattering volume. This interest has been sparked in part by
recent experiments relating to the three-body loss rate and the
unitary limit of spin-polarized Fermi gases [12–14], as well as
theoretical investigations that have predicted and analyzed the
mechanisms of recombination or loss in a single-component
fermion system [15–18]. There are also now multiple ways
of controlling ultracold atom-atom interactions, via not only
magnetic Fano-Feshbach resonances, but also light-induced or
rf-induced resonances or orbital resonances; these experimen-
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tal tools can in principle be used to independently modify both
s-wave and p-wave interactions in a few-body system [19–21].

A major conjecture of this study is that all N-body systems
having finite range interactions, with at least some of their
interactions equal to their unitary limit, will generally show a
key consequence of Efimov physics at unitarity: Namely, a re-
duction of some of the asymptotic adiabatic channel potentials
(including normally the lowest) in their coefficient of 1/R2,
where R is the hyperradius. This reduction appears to be a uni-
versal effect that occurs at unitarity and has previously been
demonstrated at s-wave unitarity for many three-body systems
and for some four-body systems. (See, for instance, recent
evidence presented for three- and four-nucleon systems with
their s-wave interactions tuned to unitarity [22,23]). Only in
some cases, such as three equal mass bosons with all pairwise
scattering lengths infinite, does this asymptotic coefficient
become reduced all the way to negative values, in which case
there is a true Efimov effect with the usual infinite sequence of
weakly bound energy levels converging geometrically to zero
energy. In the cases involving p-wave interactions at unitarity
that are considered in the present study, we document the role
of Efimov physics in the aforementioned sense, but there is no
true Efimov effect for any of the symmetries treated.

The adiabatic hyperspherical representation serves as our
main theoretical tool to analyze these different flavors of the
three-fermion problem. The present focus is mainly on the
system with two spin-up and one spin-down system in various
symmetries J� [24] having total orbital angular momentum J
and parity �. For this case, with no p-wave interactions, we
have obtained accurate numerical results for the symmetries
J� = 0+ and 1−. Moreover, our work goes beyond s-wave
unitarity studies, by introducing the p-wave scattering volume
characterizing the interaction between two spin-up fermions
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that is varied to reach very large magnitudes approaching
infinity. Remarkably, the adiabatic three-body potential curves
are sometimes modified by the presence of p − wave unitarity
in one or more of the pairwise interactions. Our results show
the emergence of a class of three-body fragmentation channels
in the p-wave unitary limit which differ for different angular
momentum and parity symmetry classes.

Different variations of adiabatic approximation or of the
Born-Oppenheimer approximation arise and are utilized in the
physical chemistry of diatomic molecules, where the coordi-
nate treated adiabatically is the internuclear distance [25,26].
In the present study where the adiabatic coordinate is the
hyperradius R, it is important to note that similar issues arise.
Specifically, the starting point of the adiabatic hyperspheri-
cal representation is a solution of the Schrödinger equation
with R held fixed, which yields eigenvalues Uν (R) that we
denote the Born-Oppenheimer potential curves. When the
hyperradial Schrödinger equation is solved using only these
Uν (R) for bound states or scattering or resonance states,
in a single-channel approximation, these results are corre-
spondingly denoted as coming from the Born-Oppenheimer
approximation. When the diagonal term Qνν (R) proportional
to the second derivative in R is included in the potential curve,
this is denoted the adiabatic approximation, and it is nearly
always more accurate than the Born-Oppenheimer approxi-
mation. This terminology is important for calculations based
on the adiabatic hyperspherical representation because exam-
ples have been found (to be further documented below in the
present study) where the Born-Oppenheimer potential curves
(i.e., that neglect the diagonal elements of Q) would appear to
suggest that the Efimov effect [27] occurs in that symmetry,
but after Qνν (R) is included, the apparent Efimov effect goes
away. Moreover, coupled channels calculations confirm in
those cases that there is no true Efimov effect. Parenthetically,
it should be noted that in the standard Efimov scenario for
three equal mass bosons at unitarity, Qνν (R) → 0, so the
Efimov potential already arises for the Born-Oppenheimer
long-range potential and has no difference from the adiabatic
potential curve, at least for zero-range interactions.

The possibility of an s-wave Efimov effect in equal mass
two-component three-fermion systems have been extensively
investigated over the past 15–20 years [28–31]. The existence
of a p-wave Efimov effect in the one-component Fermi gas
was initially predicted to occur by Macek et al. [32] and by
Braaten et al. [33] for the two-component Fermi gas, before
their arguments were shown to be incorrect by Nishida [34].

The Efimov effect [27] is defined here as occurring when-
ever there is a long-range hyperspherical potential curve for a
trimer system of the following form:

W (R) → s2 − 1
4

2μR2
, (1)

where μ = m/
√

3 is the hyperspherical three-body reduced
mass and where s2 < 0. Our study here confirms that the
p-wave Efimov effect, which if it exists would imply that
the system possesses an infinite series of energy levels con-
verging geometrically to zero energy, does not occur for any
system of three equal mass fermions with at least two in
identical spin states, regardless of the s- or p-wave interaction

strength. However, the Efimov-like modification of the long-
range three-body continuum potentials does result in modified
threshold laws at unitarity for the symmetries considered.

II. METHOD

The present study considers two different classes of
fermionic systems: either three spin-polarized fermions (↑↑↑)
or two spin-up fermions interacting with one spin-down
fermion (↓↑↑) with total angular momenta J� = 0+, 1+, 1−,
and 2−, where � is the total parity in the system. First,
the Schrödinger equation is rewritten using modified Smith-
Whitten hyperspherical coordinates [35–37]:

[
− 1

2μ

∂2

∂R2
+ 15h̄2

8μR2
+ �2

2μR2
+ V (R, θ, φ)

]
ψE = EψE .

(2)

Here �2 is the squared “grand angular momentum operator”
and μ = m/

√
3 is the three-body reduced mass for three

identical fermions with mass m. The interaction potential
V (R, θ, φ) is taken to be a sum of the two-body potentials

V (R, θ, φ) = v3(r12) + v1(r23) + v2(r31), (3)

where the ri j are the interparticle distance. The two-body
potential adopted thus far is the Lennard-Jones potential [38]

vn(r) = −C6

r6

(
1 − λ6

n

r6

)
. (4)

In the present treatment the parameter λn is used to adjust
the values to get desired s-wave scattering length or p-wave
scattering volume for a chosen pair of atoms. The two-body
p-wave scattering volume can be represented as [15]

Vp = − lim
k→0

[
tan δ1(k)

k3

]
, (5)

where the δ1(k) is the p-wave scattering phase shift and k is
the wave number. To solve the Schrödinger equation (2), we
use the adiabatic representation. This requires first fixing the
R value, neglecting all R derivatives, and solving the adiabatic
eigenvalue equation in the hyperangles for the chosen symme-
try J�, where J represents the total orbital angular momentum
and � is the total parity:
[

�2

2μR2
+ 15h̄2

8μR2
+ V (R, θ, φ)

]
�ν (R; �) = Uν (R)�ν (R; �).

(6)

Here we denote the eigenvalues Uν (R) as the Born-
Oppenheimer potential curves, and the eigenfunctions
�ν (R; �) are the corresponding channel functions. � rep-
resents the five hyperangles � ≡ (θ, ϕ, α, β, γ ) plus any
relevant spin degrees of freedom. The adiabatic representa-
tion then expands the full desired wave function ψE (R; �)
in a truncated subset of the complete orthonormal set
of hyperangular eigenfunctions �ν (R; �), each multiplied
by a corresponding radial wave function FνE (R) to be
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determined [39]:

ψE (R; �) =
∞∑

ν=0

FνE (R)�ν (R; �). (7)

In order to diagonalize the adiabatic Hamiltonian Eq. (6), our
treatment follows the standard route that expands the chan-
nel function into Wigner D functions, which rotate from the
laboratory frame into a body-frame coordinate system:

�ν (R; �) =
J∑
K

φKν (R; θ, ϕ)DJ
KM (α, β, γ ). (8)

The quantum numbers K and M represent the projection
of �J onto the body-fixed and space-fixed z-axes, respec-
tively. The parity can be written as � = (−1)K , which gives
�̂DJ

KM = (−1)K DJ
KM [40]. As is known from the nuclear and

atomic collisions literature, a given symmetry is called “parity
favored” if � = (−1)J , and is called “parity unfavored” oth-
erwise [41]. In the present system, for the parity favored case,
J − K is even and K takes the values J, J − 2, . . . ,−(J −
2),−J . For the parity unfavored case, J − K is odd, and K
takes the values J − 1, J − 3, . . . ,−(J − 3),−(J − 1). For
our cases J� = 0+, 1+, 1−, or 2−; setting M = 0, the channel
function can be written as

�ν (R; �) = φν (R; θ, ϕ) (J = 0+), (9)

�ν (R; �) = φν (R; θ, ϕ) cos β (J = 1+), (10)

�ν (R; �) = φνc(R; θ, ϕ) sin β cos γ

+ iφνs(R; θ, ϕ) sin β sin γ (J = 1−), (11)

�ν (R; �) = φνc(R; θ, ϕ) sin(2β ) cos γ

+ iφνs(R; θ, ϕ) sin(2β ) sin γ (J = 2−). (12)

Particles 2 and 3 are designated as the ones occupying the
same spin state, whereby the permutation operation P23 corre-
sponds to [39]

ϕ → 2π − ϕ, α → α + π, β → π − β, γ → 2π − γ .

(13)

Acceptable states must be eigenstates of the antisym-
metrization operator A = 1 − P23 with eigenvalue 2, which
implies the boundary conditions obeyed by the adiabatic
eigenfunctions, Eq. (6) giving the following spatial boundary
conditions:

J = 0+ : φν (R; θ, 0) = φν (R; θ, π ) = 0, (14)

J = 1+ :
∂

∂ϕ
φν (R; θ, ϕ)

∣∣∣∣
ϕ=0

= ∂

∂ϕ
φν (R; θ, ϕ)

∣∣∣∣
ϕ=π

= 0,

(15)

J = 1− :
∂

∂ϕ
φνc(R; θ, ϕ)

∣∣∣∣
ϕ=0

= φνc(R; θ, π ) = 0, (16)

φνs(R; θ, 0) = ∂

∂ϕ
φνs(R; θ, ϕ)

∣∣∣∣
ϕ=π

= 0, (17)

J = 2− : φνc(R; θ, 0) = ∂

∂ϕ
φνc(R; θ, ϕ)

∣∣∣∣
ϕ=π

= 0, (18)

∂

∂ϕ
φνs(R; θ, ϕ)

∣∣∣∣
ϕ=0

= φνs(R; θ, π ) = 0. (19)

For the system of three spin-up fermion, after applying
the postsymmetrization operator A = 1 − P12 − P23 − P31 +
P123 + P132, the spatial boundary conditions can be repre-
sented as

J = 0+ : φν (R; θ, 0) = φν (R; θ, π/3) = 0, (20)

J = 1+ :
∂

∂ϕ
φν (R; θ, ϕ)

∣∣∣∣
ϕ=0

= ∂

∂ϕ
φν (R; θ, ϕ)

∣∣∣∣
ϕ=π/3

= 0,

(21)

J = 1− : φνc(R; θ, 0) = ∂

∂ϕ
φνc(R; θ, ϕ)

∣∣∣∣
ϕ=π/3

= 0, (22)

∂

∂ϕ
φνs(R; θ, ϕ)

∣∣∣∣
ϕ=0

= φνs(R; θ, π/3) = 0, (23)

J = 2− :
∂

∂ϕ
φνc(R; θ, ϕ)

∣∣∣∣
ϕ=0

= φνc(R; θ, π/3) = 0, (24)

φνs(R; θ, 0) = ∂

∂ϕ
φνs(R; θ, ϕ)

∣∣∣∣
ϕ=π/3

= 0. (25)

Substitution of ψE (R; �) from Eq. (7) into the Schrödinger
equation (2) leads to a set of one-dimensional coupled hyper-
radial differential equations:

[
− 1

2μ

d2

dR2
+ Uν (R) − E

]
FνE (R)

− 1

2μ

∑
ν ′

[
2Pνν ′ (R)

d

dR
+ Qνν ′ (R)

]
Fν ′E (R) = 0. (26)

In the above expression, E is the total energy and Wν (R) is the
effective adiabatic potential in channel ν:

Wν (R) ≡ Uν (R) − 1

2μ
Qνν (R). (27)

The nonadiabatic coupling matrices Pνν ′ (R) and Qνν ′ (R) are
defined as

Pνν ′ (R) =
∫

d��∗
ν (R; �)

∂

∂R
�ν ′ (R; �), (28)

Qνν ′ (R) =
∫

d��∗
ν (R; �)

∂2

∂R2
�ν ′ (R; �). (29)

The radial Eq. (26) can be solved by R-matrix propaga-
tion [42]. The effective adiabatic potentials are represented
asymptotically by their behavior at (R → ∞), namely,

Wν (R) = le(le + 1)

2μR2
, (30)

where le controls the effective angular momentum barrier of
the three free asymptotic particles in the large hyperradius
limit, R → ∞.
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FIG. 1. The lowest adiabatic potential curves vs hyperradius for
several different s-wave scattering lengths (as) in the van der Waals
length unit rvdW, for the system (↓↑↑) with J� = 1−. As |as| gets
larger, the potential curve should approach the red dotted line whose
value equals the coefficient of 1/(2μR2) in the adiabatic potential
energy curve.

III. RESULTS

A. s-wave universal properties in the three-body potential

The adiabatic equation (6) is solved for the effective adi-
abatic potential energy curves for various scattering lengths.
For example, Fig. 1 presents the solutions of Eq. (6) and
demonstrates that 2μR2Wν (R) is a constant throughout the
range from R = 100 rvdW to at least R = 500 rvdW. The
quantity rvdW is the van der Waals length and is defined as
rvdW ≡ 1

2 (2μ2bC6/h̄2)1/4. The energy scale in our calcula-
tions is the van der Waals energy unit, defined as EvdW =
h̄2/(2μ2br2

vdW). In this regime, the adiabatic potential has a
stable asymptotic coefficient of 1/(2μR2), represented here
either as le(le + 1) for repulsive potentials or else as s2

0 −
1/4 with an imaginary value of s0 for attractive potentials.
Our results are also compared to the results of Werner and
Castin [6] and of Blume et al. [7], who treated the few-fermion
problem in an isotropic harmonic trap at the unitary limit.

As Table I demonstrates, our results agree well with those
previous results, even though we used a different two-body
model interaction, namely, the Lennard-Jones potential; ad-
justment of the parameter λn allows us to take the limit of
infinite s-wave scattering length. This confirms the universal
nature of these properties. Our study next explores a differ-
ent situation, where the interaction between the two spin-up
particles is taken to the p-wave unitary limit for different
symmetries J�.

B. p-wave universality for a system with two spin-up fermions
and one spin-down fermion

1. Universal p-wave interaction between same-spin fermions only

In Fig. 2 the interaction between spin-up and spin-down
particles has been fixed at the s-wave unitarity (we have
seen numerically that this implies a p-wave scattering vol-
ume equal to Vp = −1.974 r3

vdW at the first s-wave pole of
the Lennard-Jones potential), and the interaction between
fermions in the same spin state has been fixed at the p-wave
unitary limit with total symmetry J� = 0+, 1+, 1−, and 2−.
One possibly surprising result is our finding that many of
the asymptotic s-wave unitary potentials remain unchanged
when the p-wave interaction is tuned to infinity, but with the
emergence of additional potentials at the p-wave unitarity,
having values of le that did not exist for the pure s-wave
case. In Figs. 2(a) and 2(c) the additional potential curves
associated with the p-wave unitary channels (solid curve for
J� = 0+, and solid and dash-dot curves for J� = 1−) are
obtained for in this situation. The term p-wave unitary channel
means that when the p-wave scattering volume between one
or more pairs of particles is increased to infinity, a channel
emerges that has a value of le different from the usual nonin-
teracting values of le, which is the hallmark of Efimov-related
physics. Despite the additional potentials just described, we
still see the emergence of s-wave unitary channels where
le(le + 1), i.e., the coefficients of 1/(2μR2) in the asymp-
totic s-wave potentials, are close to the results of Werner
and Castin and of Blume et al. Similarly, s-wave unitary
channels are defined to be those that have le modified from
their noninteracting values, when the s-wave scattering length
between one or more pairs of particles increases to infin-
ity. The terminology NI asymptotically means that a channel

TABLE I. Comparison of our present results with those obtained by Werner and Castin [6] and by Blume et al. [7] for two symmetries
J� = 0+ and J� = 1− in the three-fermion system (↓↑↑). le is the effective angular momentum, and le(le + 1) is the coefficient of 1/(2μR2)
[see Eq. (30)]. The “first s-wave,” “second s-wave,” and “third s-wave” are represented as the first s-wave unitary limit, the second s-wave
unitary limit, and the third s-wave unitary channel, respectively. The value of Eνn represents the total relative energy, which is related to the le

value through Eνn = (l (ν )
e + 2n + 3)h̄ω. E00 is the (relative) ground state of the Fermi system of three atoms in an isotropic harmonic trap, E10

and E20 are the first and second excited energy levels, respectively.

J� = 0+ J� = 1−

Present Ref. [7] Ref. [6] Present Ref. [7] Ref. [6]

First s-wave (l (ν )
e ) 1.666 1.682 1.666 1.272 1.275 1.272

E00/(h̄ω) 4.666 4.682 4.666 4.272 4.275 4.272
Second s-wave (l (ν )

e ) 4.628 4.637 4.627 3.861 3.868 3.858
E10/(h̄ω) 7.628 7.637 7.627 6.861 6.868 6.858
Third s-wave (l (ν )

e ) 6.615 6.628 6.614 5.215 5.229 5.216
E20/(h̄ω) 9.615 9.628 9.614 8.215 8.229 8.216
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FIG. 2. Shown are the adiabatic potential curves for the first to sixth channels vs hyperradius for the (↓↑↑) system. The interaction between
the two fermions in the same spin state has been set at the p-wave unitary limit (Vp → ∞), and the interactions between fermions in different
spin states have also been set at the s-wave unitary limit (as → ∞), for the various symmetries J�. (a), (b) The solid (blue) curve corresponds
to the p-wave unitary channel, and the coefficient of 1/(2μR2) is approximately 2. (c) The solid (blue) curve and dash-dot (green) curve show
p-wave universal property, and their coefficients of 1/(2μR2) are computed to have the values ≈0.02 and ≈6, respectively. (d) The lowest
adiabatic potential curve (solid curve) represents the p-wave unitary channel, and the asymptotic 1/(2μR2) coefficient is calculated to have the
value le(le + 1) ≈ 6.

has the same le value as the noninteracting (NI) channel at
asymptotic hyperradii. According to our numerical results, the
adiabatic three-body potentials of the additional p-wave uni-
tary channels asymptotically approach constant coefficients of
1/(2μR2). For the lowest such p-wave unitary channels, the
coefficient le(le + 1) is close to the value 2.00 for the sym-
metry J� = 0+ and approaches the values 0.00 and 6.00 for
the two p-wave unitary channels in the symmetry J� = 1−.
From our calculations, additional p-wave unitary channels are
predicted to occur in the first channel for J� = 0+, and in
the first and third channels for J� = 1−. Unlike the s-wave
unitary channels, there are apparently only two p-wave uni-
tary channels, rather than an infinity of such channels with
modified centrifugal potentials. In Figs. 2(b) and 2(d) an-
gular momentum selection rules prevent the existence of an
s-wave for either Jacobi vector, and therefore there are no
s-wave unitary channels (i.e., with modified le) for those parity
unfavored symmetries. However, we still find one p-wave

unitary channel in each of these two parity unfavored cases
1+ and 2−. The coefficients of 1/(2μR2) are extremely stable
asymptotically, approaching values equal to 2.00 and 6.00, for
total angular momenta and parities J� = 1+ and J� = 2−,
respectively.

2. Universal p-wave interaction between opposite
spin fermions only

Figure 3 shows potential curves relevant for four dif-
ferent symmetries in three-body systems relevant to the
two-component Fermi gas, at the p-wave unitary limit (Vp →
∞ and as = 1.987rvdW, at the first p-wave pole of the
Lennard-Jones potential) between two fermions in different
spin states. For each of these four symmetries, the p-wave
interaction between the fermions in identical spin states has
been chosen to be comparatively weak, namely, set to Vp =
−2 r3

vdW. In Figs. 3(a) and 3(b) a single p-wave unitary
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FIG. 3. The adiabatic potential curves for the first to sixth channels vs hyperradius for the two-component three-fermion system (↓↑↑),
with the interaction between fermions in different spin states set at the p-wave unitary limit (Vp → ∞) and the interaction between the same
spin state fermions set at a weak value with p-wave scattering volume close to Vp = −2 r3

vdW for several symmetries J�. (a), (b) The solid (blue)
curve corresponds to the p-wave unitary channel, and the coefficient of 1/(2μR2) is approximately 2. (c) The solid (blue) curve and dashed
(orange) curve exhibit the p-wave universal property, and their asymptotic coefficients of 1/(2μR2) are computed to have the values ≈0 and
≈6, respectively. (d) The lowest adiabatic potential curve (solid curve) represents the p-wave unitary channel, and the asymptotic 1/(2μR2)
coefficient is calculated to have the value ≈6.

channel has been found for these symmetries 0+ and 1+,
namely, a coefficient of 1/(2μR2) approaching 2.01 asymptot-
ically for each of these two distinct symmetry cases, J� = 0+
and 1+, respectively. Figure 3(c) considers the symmetry 1−,
where two p-wave unitary potential curves (or channels) are
observed. The coefficients of 1/(2μR2) are very close to the
results obtained for the case considered in Sec. III B 1, where
the p-wave interaction between like spin fermions was set
to unitarity for the symmetry J� = 1− [see Fig. 2(c)]. The
values of the asymptotic centrifugal coefficients are approx-
imately ≈0.00 and ≈6.01 for the first and second adiabatic
potential curves, respectively. These values are the same (to
within our numerical accuracy) as the values of le(le + 1)
for these two symmetries in Sec. III B 1. In Fig. 3(d) the
p-wave unitary channel achieves a stable asymptotic behavior,
and the coefficient of 1/(2μR2) is found to be close to 6.00
asymptotically.

3. Universal p-wave interaction between same spin fermions
and opposite spin fermions

In Fig. 4 the fermion interactions in both the same and dif-
ferent spin states are set at the p-wave unitary limit (Vp → ∞
and as = 1.987 rvdW, for the first p-wave pole of the Lennard-
Jones potential) with multiple symmetries J� = 0+, 1+, 1−,
and 2−. In this situation, there arises a combination of the
above two cases. The p-wave unitary channels exhibit degen-
eracies in these four symmetries. In Figs. 4(a) and 4(b) two
p-wave unitary channels emerge with the symmetry J� = 0+
and 1+, with their asymptotic coefficient of 1/(2μR2) close to
2.00, implying that the le values are close to 1.00. In Fig. 4(c)
the p-wave unitary channels are doubly degenerate and the
1/(2μR2) coefficients are found to be approximately 0.01 and
6.06. In Fig. 4(d) there are degenerate p-wave unitary chan-
nels whose coefficients of 1/(2μR2) are found numerically to
equal 6.01.
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FIG. 4. The adiabatic potential curves for the first to sixth channels vs hyperradius for the fermions in the same and different spin state both
at the p-wave unitary limit (Vp → ∞) for the various symmetries J�. (a), (b) The solid (blue) and dashed (orange) curve corresponds to the
p-wave degenerate unitary channel, and the coefficient of 1/(2μR2) is approximately 2. (c) The solid (blue) curve and dashed (orange) curves
show the first degenerate p-wave universal property, and their coefficients of 1/(2μR2) are computed to have the values ≈0.01. The dash-dotted
(green) curve and dotted (red) curve represent the second degenerate p-wave unitary channels with coefficients of 1/(2μR2) close to 6. (d) The
two lowest adiabatic potential curves (solid and dashed curves) represent the degenerate p-wave unitary channels, and the 1/(2μR2) coefficient
is calculated to have the value ≈6.

C. p-wave universality with three spin-polarized fermions

Figure 5 shows our three-body calculation for a single-
component Fermi gas at the p-wave unitarity limit. In
Figs. 5(a) and 5(b) the coefficient of 1/(2μR2) of the lowest
adiabatic potential curve (blue curve) is close to the integer
2 in the two symmetries J� = 0+ and 1+. In Fig. 5(c) one
can see two stable p-wave universal adiabatic potential curves
(blue and orange curves) with total orbital angular momen-
tum J� = 1−, whose coefficients of 1/(2μR2) in the p-wave
unitary channels are close to the integer values 0 and 6. In
Fig. 5(d) the p-wave unitary channel shows a stable asymp-
totic coefficient of 1/(2μR2) equal to 6, for the symmetry
J� = 2−.

According to the above results, the p-wave unitary channel
is ubiquitous in the three-body adiabatic potential curves, and
apparently its existence would not vary for different spin state

cases. This means that three fermions in two different spin
states and three identical spin fermions both have p-wave
unitary channels and behavior. The p-wave unitary channels
are shown to have very stable asymptotic effective centrifu-
gal potentials, in all cases with a repulsive (or vanishing)
coefficient. The coefficients of R−2 are very close for the
three-body systems with all fermions in the same spin state
(↑↑↑), and for the case of two identical fermions and a distin-
guishable particle (↑↑↓) with total orbital angular momenta
J� = 0+, 1+, 1−, and 2− at the p-wave unitary limit.

D. On the nonexistence of a p-wave Efimov effect

In Figs. 3(a), 3(b), and 3(c) our results demonstrate that
the p-wave Efimov effect cannot be observed in these sym-
metries. These results disagree with the results suggested
by Braaten et al. [33]. It should be pointed out that our
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FIG. 5. The adiabatic potential curves for the first to sixth channels vs hyperradius for the single-component three-fermion system (↑↑↑)
with their two-body interactions set at the p-wave unitary limit (Vp → ∞) for the various symmetries J�. (a), (b) The solid (blue) curve
corresponds to the p-wave unitary channel, and the coefficient of 1/(2μR2) is approximately 2. (c) The solid (blue) and the dashed (orange)
curve show the p-wave universal property, with asymptotic coefficients of 1/(2μR2) computed here to have the values ≈0.01 and ≈6,
respectively. (d) The lowest adiabatic potential curve (solid curve) represents the p-wave unitary channel, and the 1/(2μR2) coefficient is
calculated to have the value ≈6.

study uses a different two-body interaction potential, and that
these results can be affected by the p-wave effective range in
any particular system. The two-body system has a nonzero
but short-range potential, whereby the p-wave phase shift,
scattering volume, and effective range can be written at k → 0
as [43]

k3 cot δ1(k) → − 1

Vp
+ 1

2
rpk2 + O(k4), (31)

where δ1 is the p-wave phase shift, Vp is the p-wave scat-
tering volume, and rp is the p-wave “effective range.” The
units of the p-wave scattering volume and p-wave effec-
tive range are (length)3 and 1/(length), respectively. When
the p-wave scattering volume approaches infinity, the p-
wave effective range would be closed to rp = −1.7 r−1

vdW
in the van der Waals tail [44]. Surprisingly, if we would
utilize the Born-Oppenheimer approximation to our adia-
batic potential curves, i.e., incorrectly neglecting the diagonal
elements of the Q matrix, such a treatment would erro-

neously seem to imply the existence of a p-wave Efimov
effect in the lowest adiabatic potential curve with J� = 1−
symmetry.

The nonexistence of a true Efimov effect, which occurs
whenever the centrifugal coefficient is more negative than
−1/4, is by now well documented, but in different theoretical
treatments the reason for that nonexistence can look quite
different. In effective field theory treatments, for instance,
it was proven that a three-body wave function that initially
appears to support an Efimov effect is in fact incorrect and
would have negative probabilities [34]. In the hyperspherical
picture, on the other hand, it is crucial to look at the asymp-
totic potential curves that include the diagonal Q elements.
We have observed a number of cases where the potential
curves neglecting Q would appear to indicate the presence
of an Efimov effect, but in all cases checked so far involv-
ing p-wave interactions at unitarity and equal mass particles,
once Q is included there is no Efimov effect. Specifically
our calculations show no evidence of any p-wave Efimov
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FIG. 6. Comparison of the first to fourth channel potentials in the Born-Oppenheimer approximation (dashed curves) and in the adiabatic
approximation (solid curves) vs hyperradius in the symmetry J� = 1−. The Qνν (R) diagonal element has been added to the Born-Oppenheimer
potential only beyond R = 10 rvdW in order to see its strength; it does not vanish asymptotically in the p-wave unitary channels faster than 1/R2

and is in fact asymptotically proportional to 1/R2. (a) The spin-up and spin-down fermions close to the p-wave unitary limit and fermions in
the same spin state have a weak interaction that produces a scattering volume equal to Vp = −2 r3

vdW. (b) The fermions in the different spin
states are close to the s-wave unitarity limit, and the fermions in the same spin state have an interaction set at the p-wave unitary limit. (c) Each
pair of the fermions, i.e., both in the same or both in different spin states, have an interaction at the p-wave unitary limit. (d) Each pair out of
the three spin-polarized fermions have an interaction at the p-wave unitarity limit.

effect when Vp goes to infinity, for any combination of spin-
up and spin-down fermions with the following symmetries:
J� = 0+, 1+, 1−, and 2−. Similar results are found for a
three-body system having two spin-up fermions interacting at
the p-wave unitary limit and the opposite spin fermions near
s-wave unitarity in the symmetry J� = 1− [see Fig. 2(c)].
The Born-Oppenheimer potential (neglecting Q) shows (in-
correctly) a p-wave Efimov effect since the lowest three-body
potential curve would then be asymptotically attractive with
the coefficient of 1/(2μR2) close to −1.06. However, the
full adiabatic potential curve that includes the added diagonal
Qνν (R) matrix element does not exhibit any evidence of a p-
wave Efimov effect, and it is the adiabatic potential curve that
matters.

Moreover, the same issue discussed above arises for three
spin-polarized fermions. Figure 5(c) demonstrates that the
p-wave Efimov effect would incorrectly seem to arise within
the strict Born-Oppenheimer approximation that neglects Q.
However, our results show consistently that no p-wave Efimov
effect occurs in the true adiabatic potential curves that include
the diagonal elements of Q.

E. Crucial role of the diagonal Qνν(R) adiabatic correction
and universal behavior at the p-wave unitary limit

The results shown in Fig. 6 demonstrate that the diago-
nal adiabatic correction elements Qνν (R) play a key role in
determining the physically relevant effective adiabatic poten-
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FIG. 7. Comparison of the p-wave unitary trimer channels near the first to third p-wave resonances for the two-body Lennard-Jones
potential and for the first p-wave pole of the Gaussian potential with different characteristic lengths. This case is for the two-component
fermionic trimer, where the different fermions in different spin states interact at the s-wave unitary limit and where the fermions in the same
spin states interact at the p-wave unitarity, with overall trimer symmetry J� = 1−. The dashed curves are the Born-Oppenheimer potentials
[without Qνν (R)], and the solid curves are the adiabatic potentials [with Qνν (R)], which have the diagonal elements of the Qνν (R) matrix added
to the Born-Oppenheimer curves beyond R = 10 rvdW only. (a) The first p-wave unitary channel with different p-wave resonated positions and
different two-body potential. (b) The second p-wave unitary channel for different p-wave poles and for different two-body potentials.

tial, asymptotically as well as at finite hyperradii. According
to our calculations, the Qνν (R) matrix elements are pro-
portional to 1/R2 in the p-wave unitary channels but are
proportional to the 1/R3 in the s-wave unitary channels or
the NI asymptotic channels. Thus the Born-Oppenheimer po-
tentials without the diagonal correction included would seem
to imply the existence of an Efimov effect with a negative
coefficient of 1/R2 asymptotically. The Qνν (R) qualitatively
changes this in the more physically relevant adiabatic poten-
tials, since in some cases they can change the coefficients of
1/(2μR2). The p-wave Efimov effect is in fact destroyed once
the Qνν (R) matrix correction is added onto the lowest Born-
Oppenheimer potential, because it causes the lowest adiabatic
potential curve either to be repulsive asymptotically or else to
have a near-zero coefficient of 1/R2.

Figure 6(a) considers the case where different-component
fermions interact at the p-wave unitary limit, whereas the
fermions in the same spin state experience a weak p-wave
interaction, for the symmetry J� = 1−. The diagonal adi-
abatic correction Qνν (R) stays very stable in proportion to
1/R2, while it varies asymptotically as 1/R3 for the asymp-
totic channels that retain a noninteracting value of leff. Using
different poles of the Lennard-Jones potential (i.e., two-body
potentials supporting different numbers of bound states) and
different characteristic lengths of a two-body Gaussian in-
teraction potential, the Born-Oppenheimer potential curves
(dashed line) have been computed in a separate calculation.
While the Born-Oppenheimer potentials asymptotically are
found to differ depending on the two-body potential utilized,
the adiabatic potential curves (solid line) are found to agree
and to have a universal coefficient of 1/R2.

The case of Fig. 6(b), for two-component fermions, the
interaction between different spins is set at s-wave unitarity
while between same spins it is set at p-wave unitarity. From

our calculation, Qνν (R) is proportional to 1/R2 in the p-wave
unitary channels at large R and varies asymptotically as 1/R3

in the s-wave unitary channels or in the channels having
noninteracting asymptotics. In Fig. 6(c) a pair of fermions in
the same spin state has an interaction at the p-wave unitarity
limit, and each pair in different spin states also interacts at the
p-wave unitarity limit. In this situation, we find that there are
doubly degenerate p-wave unitary channels asymptotically,
and the diagonal Qνν (R) matrix is also proportional to 1/R2

in the first and second degenerate p-wave unitary channels
(where the le values are corresponding 0 and 2) and has 1/R3

with hyperradius in the NI asymptotic channels. Figure 6(d)
considers three equal spin fermions at the p-wave unitary limit
with J� = 1− symmetry. The asymptotic coefficient of 1/R2

is found to be negative for the Born-Oppenheimer potential
in the p-wave unitary channel, but once the diagonal adi-
abatic correction Qνν (R) is included, that coefficient in the
lowest three-body channel is very close to zero, and thus
there is no Efimov effect for this symmetry. In this case,
the Qνν (R) has a ∝ 1/R2 dependence on the hyperradius,
whereas it decays faster (as 1/R3) in all of the NI asymptotic
channels.

These four figures show the p-wave universal behavior in a
number of different cases, i.e., with the fermions in different
spin states or with the fermions all in the same spin states, in
the symmetry J� = 1−. Similarly, for other cases from Fig. 2
to Fig. 5, the Qνν (R) is also proportional to 1/R2 in the p-wave
unitary channels, and they again have an asymptotic depen-
dence proportional to 1/R3 in the s-wave unitary channels
and in the channels with noninteracting character at infinity.
Figure 7 demonstrates universality in the following sense:
Using different two-body p-wave poles (i.e., with different
numbers of two-body bound states) for the Lennard-Jones
potential and also for the first p-wave pole with different
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FIG. 8. Born-Oppenheimer and adiabatic potential curves from channels 1–30, with the two-component fermionic interaction approaching
s-wave unitarity and the two spin-up fermions having a scattering volume equal to Vp = −1000 r3

vdW for the total trimer symmetry J� = 1−.
(a) The Born-Oppenheimer potential curves show a series of avoided crossings near the two-body shape resonance Eres = 0.0012 EvdW. The two
dotted curves show the purely centrifugal curves (that approximate the true diabatic curves) of the form Eres + l ′(l ′ + 1)/(2μR2) with l ′ = 0
and 2, respectively. (b) The Born-Oppenheimer potential curves (dashed curves) and adiabatic potential curves (solid curves) are compared.

characteristic lengths in a two-body Gaussian potential, we
obtain similar adiabatic potential curves, but different Born-
Oppenheimer potentials.

The Gaussian potential can be written as

v(r) = h̄2

μ2br2
0

α exp
( − r2/r2

0

)
, (32)

where μ2b is two-body reduced mass and r0 is the characteris-
tic length, with choices of either r0 = 1 rvdW or r0 = 5 rvdW

in this case. By adjusting α, we can get the potential pa-
rameters characterizing the desired first s-wave and p-wave
resonant poles to use in calculations of the three-body system.
In this case, a pair of equal-spin fermions interacts at the
p-wave unitary limit and a pair of fermions in different spin
states interacts very close to the s-wave unitary limit, for
a trimer system with total orbital angular momentum J� =
1−. Figures 7(a) and 7(b) show the first and second p-wave
unitary channels, respectively. In these figures, the Born-
Oppenheimer potential curves exhibit different coefficients
of 1/(2μR2) asymptotically for the various p-wave poles of
Lennard-Jones potential or for different characteristic lengths
of the Gaussian potential. On the other hand, in Fig. 7(a) the
p-wave Efimov phenomenon would initially seem to arise if
only the Born-Oppenheimer approximation were utilized for
these different two-body potentials or varied p-wave poles of
the Lennard-Jones potential. However, the adiabatic poten-
tial curves would be close together at R → ∞ [also in the
Fig. 7(b) case] and the p-wave Efimov effect would vanish
when adding the adiabatic correction Qνν (R) diagonal ele-
ment. Hence, according to our calculation, the p-wave unitary
channels have universal properties in the three-body system,
but no Efimov effect exists for any p-wave universal channels
with equal mass trimer consisting of one component or two
components of internal spin.

F. Analysis of the p-wave unitary channels
and the quasibound state

When a quasibound state is present, as in Fig. 8, the
Born-Oppenheimer potentials show an infinite set of avoided
crossings near the resonance energy. An approximate diabatic
potential in this case differs from Eq. (30), and instead the po-
tential takes the following form through those crossings [16]:

W (R) = Eres + l ′(l ′ + 1)/(2μR2), (33)

where Eres corresponds to the two-body shape resonance, i.e.,
a quasibound state energy, and l ′ is the two-body angular
momentum of the third atom with respect to the dimer. Fig-
ure 8 treats the case where the fermions in different spin states
are near an s-wave Feshbach resonance and the interaction
between two spin-up fermions has Vp = −1000 r3

vdW.
In Fig. 8(a) the Born-Oppenheimer potential curves have

an infinite series of avoided crossings because of the two-body
p-wave resonance energy. The two dotted purely centrifugal
curves that approximate the diabatic potentials are described
by the above equation; the two-body p-wave quasibound state
energy in this case is Eres = 0.0012 EvdW. This J� = 1− sym-
metry allows two values of l ′, namely, 0 and 2. When the
p-wave scattering volume grows to larger negative values and
close to divergence, the two-body p-wave quasibound state
energy gets smaller and closer to vanishing. Finally, there are
no avoided crossings in the adiabatic potential curves Eres →
0, and the second term of the right-hand side of Eq. (33)
remains applicable. Therefore, there are two p-wave unitary
channels in this case because the symmetry allows two l ′
values. The two p-wave unitary channels can be formed as

0

2μR2
,

6

2μR2
(34)
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TABLE II. Comparison of the le values [see Eq. (30)] from the first to ninth channels with the different symmetries J�. le is the effective
angular momentum which controls the barrier of the three free asymptotic particles in the large hyperradius limit (R → ∞). The bold font
approximately integer value of le and the half-integer value of le represent the p-wave unitary channel and the noninteracting (NI) asymptotic
channels, respectively. The other values (which may approximate irrational values of le, as arise in the Efimov effect) represent s-wave unitary
channels. The last column is the lowest NI value of le. In (a) the different-spin fermion interaction is set close to the s-wave unitary limit,
and the interaction between two equal-spin fermions is set close to the p-wave unitary limit. In (b) the different-spin fermions interact at
the p-wave unitary limit for the scattering volume, and the two equal-spin fermions have a comparatively weak p-wave interaction equal to
Vp = −2 r3

vdW. In (c) the interaction between both the different spin and the two same-spin fermions occurs at the p-wave unitary limit. In (d)
the three spin-polarized fermions all interact at the p-wave unitary limit.

J� le le (NI)

0+ 1.000 1.666 4.628 6.615 7.500 8.332 9.500 10.563 11.500 3.5
1+ 1.000 3.500 5.500 7.500 7.500 9.500 9.500 11.500 11.500 3.5
1− 0.021 1.272 2.000 3.858 4.500 5.216 6.500 6.500 7.5553 2.5
2− 2.000 4.500 6.500 6.500 8.500 8.500 8.500 10.500 10.500 4.5

(a) ↑↓ at s-wave unitary and ↑↑ at p-wave unitary limit
J� le le (NI)
0+ 1.004 3.500 5.500 7.500 7.500 9.500 9.500 11.500 11.500 3.5
1+ 1.000 3.500 5.500 7.500 7.500 9.500 9.500 11.500 11.500 3.5
1− 0.002 2.001 2.500 4.500 4.500 6.500 6.500 6.500 8.500 2.5
2− 2.000 4.500 6.500 6.500 8.500 8.500 8.500 10.500 10.500 4.5

(b) ↑↓ at p-wave unitary limit
J� le le (NI)
0+ 1.000 1.000 3.500 5.500 7.500 7.500 9.500 9.500 11.500 3.5
1+ 1.000 1.000 3.500 5.500 7.500 7.500 9.500 9.500 11.500 3.5
1− 0.008 0.015 2.011 2.013 2.500 4.500 4.500 6.500 6.500 2.5
2− 2.002 2.002 4.500 6.500 6.500 8.500 8.500 8.500 10.500 4.5

(c) ↓↑↑ all at p-wave unitary limit
J� le le (NI)
0+ 1.000 7.500 11.500 13.500 15.500 17.500 19.500 19.500 21.500 7.5
1+ 1.000 3.500 7.500 9.500 11.500 13.500 15.500 15.500 17.500 3.5
1− 0.011 1.998 4.500 6.500 8.500 10.500 10.500 12.500 12.500 4.5
2− 2.000 6.500 8.500 10.500 12.500 12.500 14.500 14.500 16.500 6.5

(d) ↑↑↑ at p-wave unitary limit

for l ′ = 0 and 2, respectively. From this explanation, the p-
wave unitary channels can be determined with the l ′ value and
the coefficient of 1/(2μR2) can be represented as l ′(l ′ + 1).
The allowed values of l ′ can be determined by considering
the total orbital angular momentum J�. According to our
numerical results, all of the p-wave unitary channel poten-
tials are extremely close to the representation of Eq. (33)
with various symmetries. This interpretation can be used to
interpret why there is only one p-wave unitary channel of the
form 2/(2μR2) for the symmetries J� = 0+ and 1+, and why
there is also only one p-wave unitary channel in the symmetry
J� = 2− where the coefficient of 1/(2μR2) is close to 6. This
p-wave universal behavior would not be modified by the spin
state of the Fermi gas, because either three spin-up fermions at
the p-wave unitary limit or two-component fermionic trimer
at p-wave unitarity can also be interpreted by this explanation
that accounts for the p-wave universal behavior in various
symmetries.

In Fig. 8(b) the Born-Oppenheimer potential curves Uν (R)
have several avoided crossings, which cause corresponding
peaks in the adiabatic potential curves Wν (R), as is always
the case at an avoided crossing. The first and third chan-
nels (blue and green curves) are greatly affected by the

diagonal Qνν (R) elements until the hyperradius gets beyond
the avoided crossings. As previously mentioned, the Qνν (R)
diagonal adiabatic correction is proportional to R−2 in the
p-wave unitary channel. Hence there are big differences be-
tween the Born-Oppenheimer and adiabatic potential curves
before and through the avoided crossings. In Fig. 8(b) the
p-wave interaction is not very strong, and there is no p-wave
unitary channel out to infinity since |Vp| is finite and not too
large. Beyond the avoided crossing, the first and third chan-
nel adiabatic potential curves merge with Born-Oppenheimer
potential curves since the Qνν (R) matrix elements are pro-
portional to R−3 and vanish faster than R−2 asymptotically.
Beyond the avoided crossing, the p-wave unitary channel
would change to an s-wave unitary channel or NI asymp-
totic channels because the interaction between two spin-up
fermions is not very strong and cannot form a stable p-wave
unitary channel. If the p-wave scattering volume goes to the
unitary limit, there are no avoided crossings (nor associated
peaks) in the Born-Oppenheimer (adiabatic) potential curves.
The p-wave unitary channel can be clearly identified in the
adiabatic potential curves. The fermionic trimer having three
equal spin states and the trimer of two-component fermions at
the p-wave unitary limit can both be explained similarly.
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G. Further details about the p-wave universality

Table II(a) summarizes our findings for trimers composed
of two-component fermions at the s-wave unitary limit and
with the two spin-up fermions interacting at the p-wave
unitarity for various symmetries J�. Each p-wave unitary
channel occurs as the lowest adiabatic potential curve for that
symmetry, and le [in the coefficient le(le + 1) of 1/(2μR2)]
approaches an integer value (0, 1, or 2). In particular, the s-
wave universal behavior can also be found for the symmetries
J� = 0+ and 1− with the coefficients of 1/(2μR2) very close
to the results determined previously by Werner and Castin
and by Blume et al. In the J� = 1+ and 2− systems, the
s-wave unitary channels do not occur, owing to symmetry. The
p-wave unitary channel appears in the lowest potential curve,
and its le values are close to an integer.

Table II(b) summarizes our results for three fermions in
two different spin states at the p-wave unitary limit and where
the interaction between two equal-spin fermions are com-
paratively weak, with a p-wave scattering volume equal to
Vp = −2 r3

vdW. The p-wave unitary channels are also found
in the lowest continuum adiabatic potential curve for various
other symmetries, and the coefficients le(le + 1) of 1/(2μR2)
are close to an integer value of le which can be interpreted
through Eq. (33). Interestingly, the NI asymptotic channels
are not changed when any pair of fermions interacts at the
p-wave unitary limit. For example, for any noninteracting
three-fermion system, the adiabatic potential curves have only
the half-odd-integer values of le (see Table II(b)). However,
when the Vp → ∞, the p-wave unitary channel emerges at the
lowest three-body continuum channel. The similar situation
can be found in Table II(a) while the Vp is very small, the
adiabatic potential curves shows the s-wave unitary channels
(presumably with an irrational value of le) and noninteracting
asymptotic channels (with half-odd-integer values of le). Nev-
ertheless, while the Vp is tuned to infinity, a p-wave unitary
adiabatic channel potential emerges always for the lowest
continuum three-body channel, and in some cases for a few
of the higher channels.

In Table II(c) the interaction between two different-spin
fermions and that between two equal-spin fermions are both
set at the p-wave unitary limit for various symmetries J�. For
this case, doubly degenerate p-wave unitary channels emerge,
and again, their asymptotic le values are close to integer val-
ues. This case can be seen as a combination of the preceding

two cases; the degenerate le values can also be interpreted by
using Eq. (33) for different symmetries. In Table table:ppp we
show that for three equal spin fermions at the p-wave unitary
limit, the p-wave unitary channels can be interpreted using
Eq. (33), and in the coefficient of 1/(2μR2), le is again found
to be near an integer value. In this case, the p-wave universal
behavior has a pattern similar to the cases discussed above,
where the p-wave unitary channel would reliably occur for
the lowest adiabatic potential curve, but does not change the
coefficient of R−2 in the channel that has a noninteracting
value of le asymptotically.

IV. CONCLUSIONS

This study of the p-wave universality implications for vari-
ous symmetries predicts that either one or two p-wave unitary
channels emerge at unitarity, in multiple scenarios where
the two-body p-wave scattering volume diverges for either a
single-component or a two-component fermionic trimer. The
diagonal adiabatic correction matrix element Qνν (R) plays a
key role in determining the most physically relevant adiabatic
potential curves; in the end the p-wave Efimov effect (which
would require a complex value of le) does not occur for any
of the symmetries studied: namely J� = 0+, 1+, 1−, and 2−.
The p-wave universality in the three-body potential curves
can be used [Eq. (30) or Eq. (33)] to interpret these findings.
Our numerical results obtain a stable, constant coefficient
of 1/(2μR2) characterizing the asymptotic channels. Those
values of le are crucial, for instance, in determining threshold
law exponents for inelastic processes such as three-body re-
combination. (Note that the modified Wigner threshold law
for N-body recombination at very low energy depends on
the asymptotic value of le and the wave number k as KN ∝
k6+2le−3N .) The reduction at s-wave or p-wave unitarity of the
asymptotic coefficients of 1/(2μR2) found in this study can
be viewed as examples of the workings of Efimov physics;
but these cases considered here with fermionic equal-mass
particles never produce a coefficient reduction to a negative
value, and hence there is no Efimov effect that would produce
an infinite number of bound states at unitarity.
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