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Gaussian trajectory description of fragmentation in an isolated spinor condensate
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Spin-1 Bose gases quenched to spin degeneracy exhibit fragmentation: the appearance of a condensate in more
than one single-particle state. Due to its highly entangled nature, the dynamics leading to this collective state are
beyond the scope of a Gaussian variational approximation of the many-body wave function. Here, we improve
the performance of the Gaussian variational ansatz by considering dissipation into a fictitious environment,
effectively suppressing entanglement within individual quantum trajectories at the expense of introducing a
classical mixture of states. We find that this quantum trajectory approach captures the dynamical formation of a
fragmented condensate and analyze how much dissipation should be added to the experiment in order to keep
a single realization in a nonfragmented state.
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I. INTRODUCTION

Variational methods are a central tool in theoretical
physics, providing a way to approximate the state of a many-
body system using a number of parameters much smaller
than the full dimension of the Hilbert space. In particular,
time-dependent variational principles (TDVP) allow to probe
out-of-equilibrium dynamics with drastically reduced compu-
tational resources at the expense of restricting the system’s
evolution to a small, physically relevant region of the Hilbert
space [1–3].

A topic of ongoing interest is the evolution of closed quan-
tum systems after a sudden quench in an external parameter
governing the dynamics [4–6]. The early time dynamics fol-
lowing a quench may be described with great accuracy using
a TDVP, as one can usually find a class of variational states
which approximates at least the initial condition and states
in its vicinity [2,3]. In the long-time limit, equilibration can
be proven for a small number of specific cases and asserted
more generally for nonintegrable systems on the basis of the
eigenstate thermalization hypothesis (ETH) [7–11]. While the
exact equilibrium state may deviate significantly from any
variational state, expectation values of local observables are
equivalent to those of a Gibbs distribution of states well suited
to a variational approximation [12–14]. At intermediate times,
however, no such criterion exists to predict the dynamics of a
generic many-body system. Moreover, as the dynamics may
carry the system through regions of the Hilbert space far away
from those well described by the initial variational ansatz, the
applicability of a single variational theory at all times cannot
be guaranteed.

An archetypical variational theory in the context of bosonic
many-body systems is the Hartree-Fock-Bogoliubov (HFB)
approximation, in which quantum fluctuations are included
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as Gaussian corrections to a symmetry-breaking wave func-
tion [2,15]. This approach is predicated on the assumption
of a single macroscopically populated single-particle state,
perturbed only by small excitations. Bose-Einstein condensa-
tion (BEC), the physical phenomenon corresponding to this
assumption, has most famously been observed in dilute atomic
gases cooled near absolute zero [15–17].

In spinor gases, several states of a hyperfine manifold
are accessible at comparable energies, introducing an inter-
nal degree of freedom and associated spin excitations which,
unlike spatial degrees of freedom, are not frozen out by con-
finement [18,19]. When these spin modes are degenerate,
fragmented condensation may occur where all hyperfine states
are macroscopically populated, requiring a multi-condensate
description of the many-body state. This is achieved in the
HFB approximation by combining coupled Gross-Pitaevskii
equations (GPE) for the wave functions to lowest-order fluc-
tuation dynamics through a Gaussian ansatz for all spin
modes. However, as the fragmented condensate corresponds
to a highly entangled many-body state, an approximation
by a single Gaussian state invariably includes large fluctua-
tions [20,21], invalidating the premise of an approximately
coherent state. In the present work, we extend the HFB ap-
proximation to describe this fragmentation of the condensate,
a phenomenon originally beyond the scope of a Gaussian
ansatz. Taking inspiration from the study of open quantum
systems, this will be achieved by considering a fictitious en-
vironment into which the spinor gas dissipates. The ensuing
classical uncertainty leads to a decomposition of the single
squeezed Gaussian state into a classical mixture of states with
small fluctuations. Through this procedure, a more faithful
representation of the actual state is formed, capturing the
dynamical formation of a fragmented condensate.

The paper is structured as follows: We introduce the single-
mode spin-1 gas in Sec. II, followed by a discussion of
spin mixing dynamics in Sec. III. In Sec. IV, we introduce
the Gaussian trajectory approach, employing it in Sec. V to
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describe the formation of a fragmented condensate. In Sec. VI,
we turn to a dissipative spinor gas and estimate the optimal
dissipation rate to observe a single nonfragmented state in ex-
periments. We summarize our results in Sec. VII and provide
an outlook for future research.

II. THE SINGLE-MODE SPIN-1 GAS

Owing to their internal degree of freedom, gases of
spin-1 bosons display rich spin dynamics, including the
formation of magnetic domains [22–24], fragmented conden-
sation [25–27], and topological defects [28,29]. In contrast to
the scalar Bose field ψ̂ (r), interactions of the three-component
field �̂ = (ψ̂+ ψ̂0 ψ̂−)T occur through two separate interac-
tion channels, corresponding to the total angular momentum S
of the associated scattering process. Spin-independent density
interactions are characterized by S = 0, whereas processes
of S = 2 comprise interactions in which spin is exchanged
among the colliding particles. For dilute gases, both are ap-
proximated as contact interactions with interaction strength
gS = 4π h̄2aS/m, where aS is the s-wave scattering length of
the corresponding channel. The Hamiltonian governing the
spin-1 gas is given by [18,19]

Ĥ =
∫

dr
[
�̂†

(−h̄2∇2

2M
+ q f 2

z

)
�̂ + c0

2
n̂2 + c2

2
Ŝ2

]
, (1)

where n̂ = �̂†�̂ is the density operator and Ŝ = �̂†f�̂ the
total spin operator, with f the vector of spin-1 matrices. The
quadratic Zeeman splitting q induces a shift in the energy
levels of the ψ̂± states as a consequence of a magnetic field
applied in the z direction. The spin-independent and spin-
dependent interaction coefficients are given by c0 = (g0 +
2g2)/3 and c2 = (g2 − g0)/3, respectively. Crucially, the sign
of c2 determines the ferromagnetic (c2 < 0) or antiferromag-
netic (c2 > 0) nature of interactions. We limit our discussion
to the antiferromagnetic case.

As the scattering lengths a0 and a2 are typically of
comparable magnitude [19,30], the interaction strengths
satisfy |c2| � c0 and the dynamics are dominated by spin-
independent interactions. A perturbational consideration of
spin-dependent interactions then leads to the so-called single-
mode approximation (SMA), in which all hyperfine states are
assumed to occupy a shared spatial wave function [31–34].
Within the SMA, the field operators are factorized as ψ̂m(r) =
χ (r)âm, where âm(t ) creates a particle of spin m at time
t . Both the spatial wave function and the spin populations
are normalized through

∫
dr|χ (r)|2 = 1 and

∑
m〈â†

mâm〉 =
N . Decoupled from the spatial dynamics, the three mode spin
system is then governed by the Hamiltonian

ĤS = q(â†
+â+ + â†

−â−) + U

2
Ŝ2, (2)

where the interaction constant U = c2
∫ |χ (r)|4dr depends

on the spatial density profile. While the SMA is unable to
capture the formation of spatial spin structures [35], it re-
mains a valid approximation for small condensates of low
magnetization in tight confinement, where domain formation
is suppressed [19,32,36–38]. The single-mode approximation
is illustrated in Fig. 1 along with the scattering processes

q q
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|+〉
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0
0

+

â†
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†
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â†
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FIG. 1. The spin-1 Bose gas reduced to a three-mode spin sys-
tem in its single-spatial-mode approximation (SMA). The illustrated
scattering processes enable the creation and annihilation of spin pairs
out of two spin zero particles.

emblematic of the particles’ spin nature. Through the last two
terms in

Ŝ2 = (â†
+â†

+â+â+ + â†
−â†

−â−â− − 2â†
+â†

−â+â− + 2â†
+â†

0â+â0

+ 2â†
−â†

0â−â0 + 2â†
0â†

0â+â− + 2â†
+â†

−â0â0), (3)

the creation and annihilation of |+〉|−〉 spin pairs enable
a redistribution of particles among spin modes, conserving
the total particle number N and angular momentum 〈Ŝz〉 =
〈â†

+â+ − â†
−â−〉 along the z axis. At 〈Ŝz〉 = 0, these conser-

vation laws restrict the evolution of the system to a subspace
of dimension N/2 + 1, allowing for an exact solution of the
many-body Schrödinger equation [31,39], detailed in Ap-
pendix A. As we will restrict our discussion to 〈Ŝz〉 = 0,
the fraction of atoms in the |±〉 modes remains equal at all
times and will be denoted as the (fractional) pair number
np = 〈â†

±â±〉/N . This quantity takes on values in the range
[0, 1/2] and will be the main observable of interest for the
remainder of this paper.

Both the ground state and dynamical behavior of the spin-1
gas exhibit interesting properties as a function of the dimen-
sionless parameter q/U . Figure 2(a) shows the pair number
in the ground state of a gas for different values of q/U .
For q = 0, the three single-particle orbitals are degenerate
and equally populated, n̄p = 1/3. As the Zeeman splitting
increases, the occupation of the |±〉 modes is suppressed and
most particles condense in the |0〉 mode. The scaling at high
q/U can be derived in a Bogoliubov approximation of small
spin excitations on top of a |0〉 condensate, as detailed in
Appendix B. At lower q/U , both the dynamical and ground
state predictions of Bogoliubov theory become inaccurate due
to a non-negligible occupation of the |±〉 modes.

III. SPIN MIXING DYNAMICS

A sudden quench in the Zeeman splitting abruptly changes
the ground state of the gas, allowing to probe the out-of-
equilibrium dynamics as it evolves toward its new steady
state. We consider the dynamics of a gas prepared in a co-
herent state |0〉

⊗
N (i.e., the ground state for q/U → ∞),

quenched to a finite value of q/U . Analogously to the ground
state, the ensuing spin mixing dynamics can be categorized
into two regimes, separated by a continuous crossover. For
q/U � 1, the dynamics is dominated by the quadratic Zee-
man contribution to the Hamiltonian (2). The time evolution is
therefore close to linear and the number of spin pairs exhibits
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FIG. 2. Ground state and dynamical phase diagram for an anti-
ferromagnetic spin-1 gas of N = 400 and 〈Ŝz〉 = 0. (a) The mean
number of spin pairs in the ground state and the nonequilibrium
steady state reached through a quench from qi = ∞ to qf = q,
both calculated with the exact many-body Schrödinger equation. The
shaded region around the latter represents the residual oscillation
amplitude. Grey dashed lines indicate the corresponding Bogoli-
ubov predictions. [(b)–(c)] Typical dynamics of spin populations for
quenches to values of q/U in two distinct regimes.

persistent small amplitude coherent oscillations [24,38,40–
43], illustrated in Fig. 2(c). As shown in the figure, the early
time dynamics in this regime are adequately captured by Bo-
goliubov theory. On the other hand, for q/U � 1, interactions
dominate the dynamics and the pair number relaxes rapidly
to its steady state, shown in Fig. 2(b). For negligible q/U ,
the steady state corresponds to a fragmented condensate with
n̄p = 1/4, reached on a timescale t̃ = h̄/(U

√
2N ) [31,38].

Different from the ground state configuration n̄p = 1/3, this
value corresponds to the equilibrium expectation value in a
generalized Gibbs ensemble (GGE) which accounts for the
conservation of Ŝz [38]. The dashed line in Fig. 2(a) indicates
the mean pair number in the steady state across the q/U
parameter range, while the shaded region around it represents
the amplitude of persistent oscillations.

As the Bogoliubov approximation breaks down when
multiple spin modes become macroscopically occupied, we
employ a more general Gaussian ansatz in which all three
fields âm are described through their first and second mo-
ments. This comes down to an expansion

âm = φm + δ̂m, (4)

decomposing the fields into a condensate mode φm = 〈âm〉
and fluctuations of zero mean, whose Gaussian nature is
reflected in the Wick decomposition of higher order mo-
ments into products of quadratic correlations 〈δ̂(†)

m δ̂n〉. Coupled

0 1 2 3 4 5

t/t̃

0.0

0.1

0.2

0.3

n
p

Exact GPE HFB

FIG. 3. Gaussian HFB dynamics at q/U = 10 for a gas of N =
400 atoms and seeded initial condition Nseed = 1. The exact solution
and a mean field prediction are shown for comparison.

Gross-Pitaevskii equations for the fields φm and Heisenberg
equations of motion for the quadratic correlations then form a
closed system known as the Hartree-Fock-Bogoliubov (HFB)
approximation [2,44], detailed in Appendix C. While in prin-
ciple suited to describe macroscopic occupation of all modes,
the creation of spin pairs out of a coherent |0〉

⊗
N initial state

results only in a growth of fluctuations, leaving the φm modes
unoccupied. The HFB theory therefore coincides with the
Bogoliubov predictions in Figs. 2(b) and 2(c). This can be
partially resolved by considering coherently seeded dynam-
ics [43], where a small number of atoms are prepared as Nseed

spin pairs in the φ± modes. As shown in Fig. 3, this activation
of the coupled GPE’s causes a deviation from the oscillations
predicted by Bogoliubov theory, but still fails to reproduce
relaxation to the fragmented state.

The fundamental limitation of the Gaussian theory lies
in the growth of fluctuations, which over time exceed the
occupation of the mean field modes. As the expansion (4) is
predicated on a limited depletion 〈δ̂†

mδ̂m〉 � |φm|2, a Gaussian
state dominated by fluctuations can no longer be expected
to form an accurate representation of the actual state of the
system. For comparison, we include in Fig. 3 also a mean field
approximation which considers only the coupled GPE’s, thus
requiring a seeded initial condition to produce spin mixing
dynamics. Mean field theory captures the creation of spin
pairs at early times, but, like Bogoliubov theory, is limited to
coherent oscillations [33,45].

IV. A GAUSSIAN TRAJECTORY APPROACH

The growth of fluctuations in the Gaussian approxima-
tion is a consequence of growing entanglement during the
formation of a fragmented condensate. To overcome the
entanglement hampering the Gaussian theory, we take inspi-
ration from equilibrium statistical mechanics. There, actual
eigenstates may be highly entangled, but the expectation val-
ues of local operators are equivalent to those of a mixed state
of which the density matrix obeys a Gibbs distribution ρ ∝
e−βĤ , which can be approximated as a mixture of minimally
entangled states [46]. To find an approximate representation of
a single entangled nonequilibrium state as a classical mixture
of weakly entangled states, we resort to the quantum trajectory
framework [47,48]. This method for the description of open
quantum systems samples the time evolution of a density
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matrix through stochastic realisations of a single quantum
state, known as unravelings of the underlying master equa-
tion [49]. In the context of open quantum systems, the
stochastic nature and the ensuing classical uncertainty derive
from the coupling to an environment, which continuously
performs measurements on the system. In our case, classical
uncertainty is artificially introduced to approximate the entan-
gled, yet pure, many-body state.

Considering single-particle losses (
̂m = √
γ âm) under

heterodyne unraveling of the Lindblad master equation, the
time evolution of an expectation value in a single trajectory is
given by [49]

d〈Ô〉 = −i〈[Ô, ĤS]〉dt

− γ

2

∑
m

(〈{â†
mâm, Ô}〉 − 2〈â†

mÔâm〉)dt

+ √
γ

∑
m

(〈
â†

m(Ô − 〈Ô〉)
〉
dZm + c.c.

)
. (5)

Here, the Hamiltonian evolution is supplemented with a de-
terministic (∝ γ dt) and stochastic (∝ √

γ dZm) dissipation
term, where the latter contains uncorrelated complex Wiener
processes satisfying 〈dZ∗

mdZn〉 = δm,ndt . Referring to Ap-
pendix C for the full equations, the effect of dissipation on the
time evolution of the Gaussian moments can be summarized
as

d

dt
〈|φm|2〉 ∼ −γ |φm|2 + γ

∑
n

|〈δ̂(†)
m δ̂n〉|2, (6)

d

dt
〈δ̂†

mδ̂m〉 ∼ −γ 〈δ̂†
mδ̂m〉 − γ

∑
n

|〈δ̂(†)
m δ̂n〉|2, (7)

where the former result requires the application of Itō’s
lemma. Comparing the last terms in (6) and (7) shows that
the predominant part of the deterministic decrease in fluc-
tuations is on average compensated by a stochastic growth
of the condensate modes. The net result of adding dissipa-
tion is thus an effective conversion of quantum into classical
fluctuations, hereby converting quantum superpositions into
classical uncertainty while approximately conserving the total
amount of fluctuations [50]. The reduction of fluctuations at
the expense of introducing a classical mixture allows one to
form a composite Gaussian approximation of a single highly
non-Gaussian many-body state. This method was recently
implemented to describe chaotic dynamics in a four-site
Bose-Hubbard chain, where a similar growth of entanglement
hinders a variational description in terms of a single Gaussian
state [50]. As illustrated in Fig. 4, each state constituting the
mixture corresponds to a single quantum trajectory and is
captured by the Gaussian HFB theory due to the suppressed
amplitude of fluctuations.

In the case of open systems, the inferred mixed state cor-
responds to the actual density matrix of the system. For the
present purpose of describing a closed system, dissipation
into a fictitious environment is an artificial construction to
obtain an approximate representation of a single highly entan-
gled state as a classical mixture of weakly entangled states.
Consequently, the rate γ is no property of the actual system
and cannot be based on physical considerations. We therefore
allow the isolated system to evolve undisturbed according

FIG. 4. Depiction of the Gaussian trajectory approach to quench
dynamics. While a single variational state consisting of a mean field
mode φm and Gaussian fluctuations δ̂m cannot capture the highly
non-Gaussian final state, a classical mixture of variational states with
small fluctuations produces a more accurate representation.

to its Hamiltonian (2) until the total number of fluctua-
tions � = ∑

m〈δ̂†
mδ̂m〉 reaches an upper critical value �c. The

Hamiltonian evolution is then halted and the system at instan-
taneous time evolved according to the dissipative part of the
dynamics [the second and third lines in (5)] until fluctuations
are suppressed below �s = �c/2. The main advantage of this
two-step procedure is that the dissipation evolves adaptively
during the time evolution of the system, according to the
growth of fluctuations at any given time. This allows to retain
a Hamiltonian time evolution minimally affected by the artifi-
cial dissipation. As seen from the first terms in (6) and (7), the
added dissipation breaks the conservation of particle number
and angular momentum 〈Ŝz〉. In the proposed scheme, this
deviation is corrected by a rescaling of the amplitudes |φm| to
enforce |φ+| = |φ−| and

∑
m(|φm|2 + 〈δ̂†

mδ̂m〉) = N following
each dissipation step, projecting the evolved state back onto
the variational manifold before Hamiltonian time evolution
resumes.

V. DYNAMICS OF FRAGMENTATION

Figure 5(a) shows the evolution of the number of spin pairs
after an instantaneous quench of a coherent |0〉

⊗
N state into

the interaction-dominated regime q/U = 0, where both the
exact solution and experimental results [38] reveal a rapid
relaxation to the fragmented state. While the HFB approx-
imation (black dashed line) accurately predicts the onset of
spin mixing, it fails to reproduce the eventual relaxation,
instead predicting perpetual oscillations of the pair number.
For comparison, we show in grey the same HFB result for an
infinitesimal seeding Nseed = 10−2, demonstrating the sensi-
tivity of the HFB result to the initial conditions of the gas.
The Gaussian trajectory method eliminates this instability
as the introduction of classical mixedness provides a natu-
ral ensemble average. Both the early growth of spin pairs
and the eventual final state appear robust with respect to the
chosen value of �c, its effect being most pronounced where
the pair number reaches its maximum. In this intermediate
regime, we find that a value of �c ≈ 15 best replicates the
exact result when fluctuations are suppressed to �s = �c/2
in each dissipation step. For this simulation, the exact result
is indistinguishable from a truncated Wigner approximation
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FIG. 5. Rapid relaxation of the pair number in the interaction-
dominated regime (q/U = 0), showing the improvement of the
variational description due to the added dissipation. Results are
shown for a gas of N = 200 atoms initiated in the |0〉⊗

N coherent
state with (a) Nseed = 0 and (b) 3.4. The grey dashed line in (a) rep-
resents the HFB result for Nseed = 10−2, illustrating its sensitivity
to initial conditions. Gaussian trajectory and TWA results represent
the average over 104 realisations. Experimental data were taken
from [38,43].

(TWA) [51–53], which approximately includes quantum fluc-
tuations in the mean field equations through a stochastic
sampling of initial conditions in accordance with the Wigner
distribution of the coherent state. The same quench scenario
is shown in Fig. 5(b) for a coherently seeded initial state,
where about 3.4% of the atoms are prepared as spin pairs,
activating the coupled mean field equations in HFB theory.
The seeded time evolution is marked by a longer persistence
of oscillations, captured by the HFB approximation at early
times. At intermediate times, the TWA prediction slightly
underestimates the damping rate of oscillations. We find the
Gaussian trajectory result optimally replicates the relaxation
dynamics for �c � 1. Below this value, the result is inde-
pendent on �c, while a larger �c causes an overestimation of
the oscillation amplitude. In the optimal regime, the Gaussian
trajectory approach slightly outperforms the TWA prediction.

Our initial objective motivating the introduction of quan-
tum trajectories was to obtain an approximate representation
of a single, highly entangled state as a classical mixture of
weakly entangled states. A hallmark of entanglement in a pure
many-body state is inseparability, meaning that the reduced
state of a constituent subsystem cannot be represented by

0.2
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0.6

0.8

1.0

T
r[

ρ
2 1
]

3/8

(a)
Exact

Trajectory average

Individual trajectory

0 1 2 3 4 5

t/t̃

0.0

0.1

γ
e
f

f
/U

(b)

FIG. 6. Growth of entanglement during the dynamics of
Fig. 5(a). (a) Evolution of the single-particle reduced density matrix’s
purity. The sudden jumps in the purity of individual trajectories
correspond to instantaneous dissipation steps. To emphasize the sup-
pression of fluctuations, the result is shown for �s = �c/10, leading
to an optimal critical value of �c = 20. (b) Effective dissipation rate
γeff inferred from the Gaussian trajectory result.

a pure state [20]. This is also the case for the spin-1 gas,
for which the single-particle reduced density matrix ρ

(n,m)
1 =

〈â†
nâm〉/N is given by diag(np, 1 − 2np, np) due to the sym-

metries of the Hamiltonian (see Appendix A). Fragmentation
of the condensate at high np is reflected precisely in the di-
agonal nature of the reduced density matrix, which at high np

describes a macroscopic occupation of the individual single-
particle orbitals rather a single condensate in a superposition
of all three [27].

The mixedness of ρ1, measured by the purity Tr[ρ2
1 ], serves

as a measure of entanglement in the many-body state. Fig-
ure 6(a) shows the evolution of the purity of ρ1 during a
quench into the fragmented state. The steady state value 3/8
reproduced by the trajectory average corresponds to the frag-
mented condensate with relative populations (1/4, 1/2, 1/4).
By contrast, the suppression of Gaussian fluctuations within a
single trajectory enhances the purity, evidencing the reduction
of entanglement. Note that the Gaussian trajectory average
corresponds to an actual mixture of variational states. The
mixedness of the reduced density matrix is affected by this
classical uncertainty and is therefore no direct measure of
entanglement. The agreement between the purity in the tra-
jectory average and exact solution testifies to the conservation
of total (classical and quantum) fluctuations by the trajectory
approach, as illustrated in Fig. 4. For the exact solution as well
as within a single variational trajectory, the reduced density
matrix’s purity does qualify as an indication for entanglement,
as both always correspond to a pure many-body state [20,54].

The generation of entanglement during the formation of
the fragmented condensate is also witnessed in the dissipation
rate of the Gaussian trajectory approach. Since the adaptive
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FIG. 7. Long-time simulation of the relaxation pictured in
Fig. 5(a), showing the effect of 〈Ŝz〉 conservation within single
trajectories.

dissipation procedure described in Sec. IV suppresses fluctua-
tions below an upper critical value �c, the required dissipation
strength to do so may vary throughout a single trajectory, as
the generation of entanglement does not necessarily occur at
a constant rate. To illustrate this, we show in Fig. 6(b) the
average effective dissipation rate throughout the dynamics
of Fig. 5(a). The effective dissipation rate γeff is derived by
relating the number Nγ of instantaneous dissipation steps of
numerical size γ dt ′ to the time �t of the free Hamiltonian
evolution preceding it:

γeff = Nγ γ dt ′/�t . (8)

At early times, fluctuations grow rapidly and a high dissipa-
tion rate is required to suppress the generated entanglement
through frequent stochastic jumps. At late times the procedure
evolves towards a lower dissipation rate as entanglement satu-
rates in the fragmented state. Due to the variable generation of
entanglement, a constant continuous dissipation rate does not
capture the fragmentation dynamics as well as the two-step
method with explicitly constrained fluctuations.

As mentioned in Sec. II, the steady state pair number np =
1/4 in the fragmented condensate is a consequence of 〈Ŝz〉
conservation which inhibits the system from reaching thermal
equilibrium [38]. In the trajectory simulation of the isolated
gas, this conservation law is fixed by restoring |φ+| = |φ−|
after each stochastic dissipation step. To study the role of
〈Ŝz〉 conservation in more detail, we repeat the simulation of
Fig. 5(a), loosening the conservation law on 〈Ŝz〉 by omitting
the above mentioned projection step. While 〈Ŝz〉 = 0 remains
true on average, stochastic realizations may deviate from this
strict conservation law. As shown in Fig. 7, the correct steady
state value np = 1/4 is recovered only when 〈Ŝz〉 is conserved
at the level of individual trajectories. The breaking of 〈Ŝz〉
conservation within trajectories causes the pair number to
converge towards the equilibrium value np = 1/3. Hence, to
correctly infer the dynamics of an isolated system using artifi-
cial dissipation, all symmetries of the Hamiltonian should be
reflected within each individual trajectory.

VI. DISSIPATIVE DYNAMICS

Having shown how the fragmented condensate can be rep-
resented as a mixture of variational states, we may now ask
whether such a single trajectory can be observed experimen-

0.0

0.1

0.2

0.3

n
p

(a)

γ/U = 0.02

γ/U = 20

γ/U = 50

0 2 4 6 8

t/t̃

0.0

0.5

1.0

T
r[

ρ
2 1
]

γ/U = 0.02

γ/U = 0.2

γ/U = 2

10−1 100 101

γ/(U
√

N)

0.0

0.1

0.2

0.3

0.4

n̄
p

0.7

0.8

0.9

1.0

m
in

(T
r[

ρ
2 1
])

N = 100

N = 200

N = 400

(b)

(c)

FIG. 8. Time evolution of a dissipative spin-1 gas with initial
N = 400 quenched to q/U = 0, for different values of the dissipation
rate γ /U . (a) Relaxation of the pair number due to spin mixing
dynamics. (b) Average purity of individual trajectories. (c) Final pair
fraction and minimal purity of an average trajectory as a function of
γ /(U

√
N ), indicating a window where a nonfragmented state may

be observed.

tally and how much the system should be disturbed to do
so. To quantify this question, we simulate in Fig. 8 the time
evolution of an actual open system, dissipating into its envi-
ronment after being quenched to spin degeneracy (q/U = 0).
This is achieved by including all dissipation terms in the time
evolution of the Gaussian observables and omitting the pro-
jection steps which previously fixed the total particle number
and angular momentum 〈Ŝz〉. As seen from Fig. 8(a), spin
mixing dynamics eventually relax for any nonzero dissipation
rate. At low γ /U , the internal dynamics are weakly affected
by atom losses and the condensate evolves to a steady state
characterized by n̄p = 1/3. At high γ /U , rapid dissipation of
atoms in the |0〉 state inhibits the interactions responsible for
spin mixing, resulting in a lower n̄p.

Since the aim of adding particle losses is merely a defrag-
mentation of the condensate, the dissipation strength should
be weak enough to avoid significant depletion of the gas
over experimentally relevant timescales (of the order t̃). On
the other hand, the dissipation strength should be sufficiently
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strong to suppress Gaussian fluctuations in order to recover a
trajectory with high condensate purity. Figure 8(b) illustrates
this consideration by showing the average purity of a single
trajectory for several values of γ /U . To quantify the compro-
mise between particle losses and single trajectory purity, we
plot in Fig. 8(c) the final fraction of pairs n̄p together with the
minimal purity during an average trajectory, for three different
initial atom numbers. The pair number curves for different
atom numbers coincide after scaling the x axis with 1/

√
N and

show a sharp transition at γ /U ≈ √
N , where the dissipation

rate of |0〉 atoms becomes comparable to the rate at which
spin pairs are created. The minimal purity, on the other hand,
increases smoothly with the dissipation rate and coincides
for different N after a rescaling of the x axis with

√
Nγ /U

(not shown). Our results thus indicate that a window of high
purity and weakly affected pair fraction exists within the range
1/

√
N � γ /U <

√
N , which grows with increasing particle

number. Note that our Gaussian trajectory calculations are not
reliable in the regime of small γ /U with large fluctuations.

Finally, it is worth pointing out that the evaluation of en-
tanglement within a single trajectory of a dissipative system
is possible only in a quantum trajectory approach which ex-
plicitly includes quantum fluctuations. By contrast, the TWA
only provides access to the combined inter- and intratrajec-
tory variance of observables by inferring the density matrix
through an average of realisations [49].

VII. CONCLUSION AND OUTLOOK

We have shown how the range of applicability of a Gaus-
sian variational ansatz for the description of a quenched spinor
gas in isolation can be extended to capture relaxation to a
fragmented steady state. In a quantum trajectory approach,
the introduction of dissipation into a fictitious environment
leads to the effective conversion of quantum fluctuations into
classical mixedness of the many-body state, overcoming the
incapacity of a single squeezed state to describe the highly
entangled fragmented condensate. By simulating an actual
open system, we have provided an indication for the strength
of dissipation needed to observe a nonfragmented state in
experiments.

Beyond the exactly solvable single-mode model presented
here, the method of approximating nonequilibrium states as
a classical mixture of Gaussian states provides a new out-
look on the study of spatially resolved Bose gases, where
recent experiments have uncovered rich physics in the ther-
malization process, including domain formation [23,55] and
the emergence of universal prethermal steady states [55,56].
While approximate solutions provided by TWA simulations
are suitable to describe the dynamics at early and intermediate
times [57,58], they are incapable of capturing full thermal-
ization because of the unavoidable ultraviolet catastrophe in
classical field theories. In particular, the TWA fails to describe
the dynamics of lowly occupied modes, such as those in the
exponential tail of a thermal momentum distribution [59].
By contrast, a Gaussian variational theory does not suffer
from this limitation. The extension to kinetic thermalization
in multimode systems is therefore a natural next challenge for
the Gaussian trajectory approach and will be the subject of
future work.
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APPENDIX A: EXACT SOLUTION

Conservation of particle number and angular momentum
〈Ŝz〉 restrict the evolution of the three-mode system to an
N/2 + 1 dimensional subspace spanned by the basis of pair
number states |Np〉 = |Np, N − 2Np, Np〉, a subset of the Fock
states |n+, n0, n−〉, characterized by a well-defined number
of particles occupying each mode. Within this subspace, the
evolution of an arbitrary state |ψ〉 can be computed through
the many-body Schrödinger equation

i∂t 〈n|ψ〉 =
N/2∑
m=0

〈n|ĤS|m〉〈m|ψ〉, (A1)

where the matrix elements Hnm = 〈n|ĤS|m〉 are given by [39]

Hnm = m[2q + U (2(N − 2m) − 1)]δn,m

+ Um
√

(N − 2m + 1)(N − 2m + 2)δn,m−1

+ U (m + 1)
√

(N − 2m)(N − 2m − 1)δn,m+1. (A2)

The tridiagonal shape of the Hamiltonian is a consequence of
the processes pictured in Fig. 1, through which one spin pair
at a time is created or annihilated. The many-body system
is therefore equivalent to a single particle on a chain with
nearest-neighbour hopping amplitudes, as illustrated in Fig. 9.

Note that the basis of pair number states does not span
the entire Hilbert space of a spin-1 gas with 〈Ŝz〉 = 0, since
states such as |ψ〉 = (|N, 0, 0〉 + |0, 0, N〉)/

√
2 (in the Fock

basis) cannot be represented as a superposition of pair num-
ber states. This poses no restriction on our discussion of the
dynamics since all initial conditions correspond to coherent
states [20,21,60], expressible as a superposition of pair num-
ber states through

|Ñp,�〉coh = e− Ñp
2

N/2∑
np=0

√
Ñp

np

einp�

√
np!

|np〉. (A3)

Here, Ñp is the mean pair number and � = θ+ + θ− − 2θ0 the
relative phase of the coherent spin components, taken to be
� = 0 throughout the manuscript. Since the matrix elements
Hnm connect pair number states only to other pair number
states, the time evolution remains restricted to the subspace

. . . . . .

Np = 0 i − 1 i i + 1 N/2

〈i|H|i − 1〉 〈i|H|i + 1〉

FIG. 9. Single-particle hopping Hamiltonian to which the many-
body system is mapped due to its conservation laws.
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spanned by pair number states. The diagonal nature of the
single-particle reduced density matrix ρ

(n,m)
1 = 〈â†

nâm〉/N is
a direct consequence of this restriction. For any state |ψ〉
in the described subspace, â†

nâm �=n|ψ〉 is a superposition of
strictly non pair number states, rendering 〈ψ |â†

nâm �=n|ψ〉 = 0
due to the orthogonality of Fock states. The reduced density
matrix therefore simplifies to ρ1 = diag(np, 1 − 2np, np). To
obtain the correct ground state in Fig. 2(a) of the main text,
it too should be expressible as a superposition of pair number
states. This was shown to be true at q/U = 0 [31]. In the high
q/U regime, our results agree with the Bogoliubov prediction
detailed in Appendix B and a continuum approximation of the
many-body Schrödinger equation [34].

APPENDIX B: BOGOLIUBOV EXPANSION

The observed scaling of the pair number in the ground
state and steady state at high q/U can be derived by consid-
ering small spin excitations in a macroscopically occupied |0〉
condensate. The approximation (â+, â0, â−) ≈ (δ̂+,

√
N, δ̂−)

and expansion of the Hamiltonian up to quadratic order in
fluctuation operators δ̂m lead to a Bogoliubov Hamiltonian,
diagonalized by a transformation δ̂± = ub̂± + v∗b̂†

∓ [15,38].
Here, we introduced the coefficients

u, v = ±
√

q + UN

2ε
± 1

2
, (B1)

where ε = √
q(q + 2UN ) is the dispersion of the noninter-

acting quasiparticles. The occupation of these Bogoliubov
excitations is related to the number of spin pairs in the atomic
basis through

〈δ̂†
±δ̂±〉 = v2 + u2〈b̂†

±b̂±〉 + v2〈b̂†
∓b̂∓〉 + uv(〈b̂+b̂−〉

+ 〈b̂†
+b̂†

−〉). (B2)

The ground state corresponds to the Bogoliubov vacuum
and thus contains np = |v|2/N spin pairs, which scales
as (q/U )−1/2 in the regime q/UN � 1 � q/U . The same
scaling was found in a continuum approximation of the many-
body Schrödinger equation [34]. Conversely, the mean pair
number following an instantaneous quench out of a |0〉 co-
herent state can be determined by considering that at t = 0
no pairs have been created, 〈δ̂†

±δ̂±〉 = 〈δ̂+δ̂−〉 = 0. The cor-
responding occupation of Bogoliubov excitations 〈b̂†

±b̂±〉 =
v2 is a constant of motion, while the anomalous correlation
〈b̂+b̂−〉 trivially rotates under time evolution and cancels out
when taking time averages [61]. The average pair number at
late times is therefore given by np = (u2 + v2 + 1)v2/N , scal-
ing as (q/U )−1 in the regime q/UN � 1 � q/U . Predictions
of Bogoliubov theory become inaccurate in the ground state
and dynamics at low q/U [38] or coherently seeded dynamics
at high q/U [43], owing to the no longer negligible occupation
of the |±〉 modes.

APPENDIX C: GAUSSIAN TRAJECTORY THEORY

Employing a Gaussian ansatz for the field operators âm ≡ φm + δ̂m (m = −, 0,+), the many-body dynamics contained in
the Hamiltonian (2) are reduced to a closed system governing the evolution of the first moments φm = 〈âm〉 and all quadratic
correlations of the fluctuations operators δ̂m, satisfying 〈δ̂m〉 = 0. We denote these second central moments as

n+ = 〈δ̂†
+δ̂+〉, c+ = 〈δ̂+δ̂+〉, b+ = 〈δ̂0δ̂+〉, d+ = 〈δ̂†

0 δ̂+〉,
n0 = 〈δ̂†

0 δ̂0〉, c0 = 〈δ̂0δ̂0〉, b1 = 〈δ̂+δ̂−〉, d1 = 〈δ̂†
+δ̂−〉,

n− = 〈δ̂†
−δ̂−〉, c− = 〈δ̂−δ̂−〉, b− = 〈δ̂0δ̂−〉, d− = 〈δ̂†

0 δ̂−〉. (C1)

The Gaussian nature of fluctuations is reflected in the application of Wick’s theorem to all higher order moments,

〈âb̂ĉd̂〉 = 〈âb̂〉〈ĉd̂〉 + 〈âĉ〉〈b̂d̂〉 + 〈âd̂〉〈b̂ĉ〉, (C2)

〈âb̂ĉ〉 = 〈âb̂ĉd̂ ê〉 = · · · = 0. (C3)

This ansatz on the statistics closes the dynamics at the Gaussian level, restricting our description of the system to a small region
of the full Hilbert space [20,49]. To make the calculations tractable, the Hamiltonian is expanded in orders of fluctuations.
Contributions of first and third order can be omitted as their effect vanishes under the Gaussian ansatz, leading to

ĤS ≈ E0 + Ĥ2 + Ĥ4, (C4)

where

E0 = q

|U | (|φ+|2 + |φ−|2) + σ

2
(|φ+|4 + |φ−|4 − 2|φ+|2|φ−|2 + 2|φ+|2|φ0|2 + 2|φ−|2|φ0|2 + 2φ∗

+φ∗
−φ0φ0 + 2φ∗

0φ∗
0φ+φ−),

(C5)

Ĥ2 = q

|U | (δ̂†
+δ̂+ + δ̂

†
−δ̂−) + σ

2
(φ∗

+φ∗
+δ̂+δ̂+ + φ+φ+δ̂

†
+δ̂

†
+ + 4|φ+|2δ̂†

+δ̂+) + σ

2
(φ∗

−φ∗
−δ̂−δ̂− + φ−φ−δ̂

†
−δ̂

†
− + 4|φ−|2δ̂†

−δ̂−)

− σ (|φ+|2δ̂†
−δ̂− + |φ−|2δ̂†

+δ̂+ + φ∗
+φ∗

−δ̂+δ̂− + φ+φ−δ̂
†
+δ̂

†
− + φ∗

+φ−δ̂
†
−δ̂+ + φ∗

−φ+δ̂
†
+δ̂−) + σ (|φ+|2δ̂†

0 δ̂0 + |φ0|2δ̂†
+δ̂+

+ φ∗
+φ∗

0 δ̂+δ̂0 + δ̂
†
+δ̂

†
0φ+φ0 + φ∗

+φ0δ̂
†
0 δ̂+ + φ∗

0φ+δ̂
†
+δ̂0) + σ (|φ−|2δ̂†

0 δ̂0 + |φ0|2δ̂†
−δ̂− + φ∗

−φ∗
0 δ̂−δ̂0 + δ̂

†
−δ̂

†
0φ−φ0 + φ∗

−φ0δ̂
†
0 δ̂−
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+ φ∗
0φ−δ̂

†
−δ̂0) + σ (φ∗

0φ∗
0 δ̂+δ̂− + δ̂

†
0 δ̂

†
0φ+φ− + 2φ∗

0φ+δ̂
†
0 δ̂− + 2φ∗

0φ−δ̂
†
0 δ̂+) + σ (φ∗

+φ∗
−δ̂0δ̂0 + φ0φ0δ̂

†
+δ̂

†
− + 2φ∗

+φ0δ̂
†
−δ̂0

+ 2φ∗
−φ0δ̂

†
+δ̂0), (C6)

Ĥ4 = σ

2
(δ̂†

+δ̂
†
+δ̂+δ̂+ + δ̂

†
−δ̂

†
−δ̂−δ̂− − 2δ̂

†
+δ̂

†
−δ̂+δ̂− + 2δ̂

†
+δ̂

†
0 δ̂+δ̂0 + 2δ̂

†
−δ̂

†
0 δ̂−δ̂0 + 2δ̂

†
0 δ̂

†
0 δ̂+δ̂− + 2δ̂

†
+δ̂

†
−δ̂0δ̂0). (C7)

The evolution of an observable under heterodyne unraveling (5) can be rewritten as

d〈Ô〉 = −i〈[Ô, ĤS]〉dt + D(〈Ô〉), (C8)

where the dissipator D contains all effects of dissipation. As the first moments φm of the operators âm were explicitly substituted
in the expanded Hamiltonian, the above commutator can no longer be used to find their time evolution. Instead, the time
evolution of these classical wave functions is equivalently found by treating φm and φ∗

m as canonical variables of a classical
Hamiltonian [44], resulting in

dφm = −i

〈
∂ (E0 + Ĥ2)

∂φ∗
m

〉
dt + D(φm). (C9)

For the second moments, Eq. (C8) reduces to

d〈δ̂(†)
m δ̂n〉 = −i〈[δ̂(†)

m δ̂n, (Ĥ2 + Ĥ4)]〉dt + D(〈δ̂(†)
m δ̂n〉), (C10)

1. Hamiltonian evolution

For the mean field modes φm = 〈âm〉, one finds the Hamiltonian part of (C9) as〈
∂ (E0 + Ĥ2)

∂φ∗+

〉
= qφ+ + U [(|φ0|2 + |φ+|2 − |φ−|2)φ+ + φ∗

−φ0φ0]

+ U [(n0 + 2n+ − n−)φ+ + φ∗
0 b+ + φ0d+ + φ∗

−c0 + 2φ0d∗
− + φ∗

+c+ − φ∗
−b1 − φ−d∗

1 ], (C11)

〈
∂ (E0 + Ĥ2)

∂φ∗
0

〉
= U [(|φ+|2 + |φ−|2)φ0 + 2φ∗

0φ+φ−]

+ U [(n+ + n−)φ0 + φ∗
+b+ + φ∗

−b− + φ+d∗
+ + φ−d∗

− + 2φ∗
0 b1 + 2φ+d− + 2φ−d+], (C12)

〈
∂ (E0 + Ĥ2)

∂φ∗−

〉
= qφ− + U [(|φ0|2 + |φ−|2 − |φ+|2)φ− + φ∗

+φ0φ0]

+ U [(n0 + 2n− − n+)φ− + φ∗
0 b− + φ0d− + φ∗

+c0 + 2φ0d∗
+ + φ∗

−c− − φ∗
+b1 − φ+d1], (C13)

where the first and second lines denote the contributions of E0 and Ĥ2, respectively. The evolution of the quadratic moments (C1)
under Ĥ2 is given by

〈[n̂+, Ĥ2]〉 = 2UiIm{(φ∗
0φ+ + 2φ∗

−φ0)d∗
+ − φ∗

−φ+d1 + φ+φ0b∗
+ + φ+φ+c∗

+ + (φ0φ0 − φ+φ−)b∗
1}, (C14)

〈[n̂0, Ĥ2]〉 = 2UiIm{(φ0φ
∗
+ + 2φ∗

0φ−)d+ + (φ0φ
∗
− + 2φ∗

0φ+)d− + 2φ+φ−c∗
0 + φ0φ+b∗

+ + φ0φ−b∗
−}, (C15)

〈[n̂−, Ĥ2]〉 = 2UiIm{(φ∗
0φ− + 2φ∗

+φ0)d∗
− − φ∗

+φ−d∗
1 + φ−φ0b∗

− + φ−φ−c∗
− + (φ0φ0 − φ−φ+)b∗

1}, (C16)

〈[ĉ+, Ĥ2]〉 = 2[q + U (|φ0|2 + 2|φ+|2 − |φ−|2)]c+ + 2U [(φ∗
0φ+ + 2φ∗

−φ0)b+ − φ∗
−φ+b1 + φ+φ0d+ + φ+φ+(n+ + 1/2)

+ (φ0φ0 − φ+φ−)d∗
1 ], (C17)

〈[ĉ0, Ĥ2]〉 = 2U [|φ+|2 + |φ−|2]c0 + 2U [(φ0φ
∗
+ + φ∗

0φ−)b+ + (φ0φ
∗
− + 2φ∗

0φ+)b− + 2φ+φ−(2n0 + 1) + φ0φ+d∗
+ + φ0φ−d∗

−],

(C18)

〈[ĉ−, Ĥ2]〉 = 2[q + U (|φ0|2 + 2|φ−|2 − |φ+|2)]c− + 2U [(φ∗
0φ− + 2φ∗

+φ0)b− − φ∗
+φ−b1 + φ−φ0d− + φ−φ−(n− + 1/2)

+ (φ0φ0 − φ+φ−)d1], (C19)

〈[b̂+, Ĥ2]〉 = [q + U (|φ0|2 + 3|φ+|2)]b+ + U [(φ0φ
∗
+ + 2φ∗

0φ−)c+ + (φ0φ
∗
− + 2φ∗

0φ+)b1 + 2φ+φ−d+ + φ0φ−d∗
1

+ (φ∗
0φ+ + 2φ∗

−φ0)c0 − φ∗
−φ+b− + φ+φ0(n0 + n+ + 1) + φ+φ+d∗

+ + (φ0φ0 − φ+φ−)d∗
−], (C20)

〈[b̂1, Ĥ2]〉 = [2q + U (2|φ0|2 + |φ+|2 + |φ−|2)]b1 + U [(φ∗
0φ+ + 2φ∗

−φ0)b− + (φ∗
0φ− + 2φ∗

+φ0)b+ − φ∗
+φ−c+ − φ∗

−φ+c−
+φ0φ+d− + φ0φ−d+ + φ+φ+d1 + φ−φ−d∗

1 + (φ0φ0 − φ+φ−)(n+ + n− + 1)], (C21)
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〈[b̂−, Ĥ2]〉 = [q + U (|φ0|2 + 3|φ−|2)]b− + U [(φ0φ
∗
− + 2φ∗

0φ+)c− + (φ0φ
∗
+ + 2φ∗

0φ−)b1 + 2φ+φ−d− + φ0φ+d1

+ (φ∗
0φ− + 2φ∗

+φ0)c0 − φ∗
+φ−b+ + φ−φ0(n0 + n− + 1) + φ−φ−d∗

− + (φ0φ0 − φ+φ−)d∗
+], (C22)

〈[d̂+, Ĥ2]〉 = [q + U (|φ0|2 + |φ+|2 − 2|φ−|2)]d+ + U [(φ∗
0φ+ + 2φ∗

−φ0)n0 − φ∗
−φ+d− + φ+φ0c∗

0 + φ+φ+b∗
+

+ (φ0φ0 − φ+φ−)b∗
−] − U [(φ∗

0φ+ + 2φ0φ
∗
−)n+ + (φ∗

0φ− + 2φ0φ
∗
+)d∗

1 + 2φ∗
+φ∗

−b+ + φ∗
0φ∗

+c+ + φ∗
0φ∗

−b1], (C23)

〈[d̂1, Ĥ2]〉 = U [3(|φ−|2 − |φ+|2)d1 + (φ∗
0φ− + 2φ∗

+φ0)d∗
+ + φ∗

+φ−(n− − n+) + φ−φ0b∗
+ + φ−φ−b∗

1 + (φ0φ0 − φ+φ−)c∗
+

− (φ0φ
∗
+ + 2φ−φ∗

0 )d− − φ∗
+φ∗

0 b− − φ∗
+φ∗

+b1 − (φ∗
0φ∗

0 − φ∗
+φ∗

−)c−], (C24)

〈[d̂−, Ĥ2]〉 = [q + U (|φ0|2 + |φ−|2 − 2|φ+|2)]d− + U [(φ∗
0φ− + 2φ∗

+φ0)n0 − φ∗
+φ−d+ + φ−φ0c∗

0 + φ−φ−b∗
−

+ (φ0φ0 − φ+φ−)b∗
+]− U [(φ∗

0φ− + 2φ0φ
∗
+)n− + (φ∗

0φ+ + 2φ0φ
∗
−)d1+ 2φ∗

+φ∗
−b−+ φ∗

0φ∗
−c− + φ∗

0φ∗
+b1]. (C25)

The Wick-contracted correction to their time evolution coming from Ĥ4 is given by

〈[n̂+, Ĥ4]〉 = 2UiIm{b∗
1c0 + 2d∗

+d∗
−}, (C26)

〈[n̂0, Ĥ4]〉 = 2UiIm2c∗
0b1 + 4d+d−, (C27)

〈[n̂−, Ĥ4]〉 = 2UiIm{b∗
1c0 + 2d∗

−d∗
+}, (C28)

〈[ĉ+, Ĥ4]〉 = Uc+ + 2U [3n+c+ − 2d∗
1 b1 − n−c+ + n0c+ + 2d+b+ + d∗

1 c0 + 2d∗
−b+], (C29)

〈[ĉ0, Ĥ4]〉 = 2U [n+c0 + 2d∗
+b+ + n−c0 + 2d∗

−b− + 2n0b1 + 2d+b− + 2d−b+ + b1], (C30)

〈[ĉ−, Ĥ4]〉 = Uc− + 2U [3n−c− − 2d1b1 − n+c− + n0c− + 2d−b− + d1c0 + 2d∗
+b−], (C31)

〈[b̂+, Ĥ4]〉 = U [4n+b+ + 2d∗
+c+ + 4d+b1 + 2d−c+ + 2n0b+ + d+c0 + 3d∗

−c0 + b+], (C32)

〈[b̂1, Ĥ4]〉 = U [−b1 + c0 + 2n0b1 + 2d+b− + 2d−b+ + n−c0 + 2d∗
−b− + n+c0 + 2d∗

+b+], (C33)

〈[b̂−, Ĥ4]〉 = U [4n−b− + 2d∗
−c− + 4d−b1 + 2d+c− + 2n0b− + d−c0 + 3d∗

+c0 + b−], (C34)

〈[d̂+, Ĥ4]〉 = U [2n0d+ + c∗
0b+ + 2n0d∗

− + b∗
−c0 − 2b∗

−b1 − 2d+n− − 2d−d∗
1 − 2b∗

1b+ − 2d∗
+d∗

1 − 2n+d∗
−], (C35)

〈[d̂1, Ĥ4]〉 = U [2b∗
1c− + 4n−d1 − 2c∗

+b1 − 4n+d1 + c∗
+c0 + 2d∗

+d∗
+ − c∗

0c− − 2d−d−], (C36)

〈[d̂−, Ĥ4]〉 = U [2n0d− + c∗
0b− + 2n0d∗

+ + b∗
+c0 − 2b∗

+b1 − 2d−n+ − 2d+d1 − 2b∗
1b− − 2d∗

−d1 − 2n−d∗
+]. (C37)

Being of fourth order in fluctuation operators, this contribution of Ĥ4 to the dynamics is negligible in the trajectory description, as
fluctuations are suppressed by construction. However, their effect is significant in the unaltered HFB theory, where fluctuations
eventually dominate the dynamics.

2. Dissipation

Referring to Eq. (5) in the main text, the dissipator is given by

D(〈Ô〉) = −γ

2

∑
m

(〈{â†
mâm, Ô}〉 − 2〈â†

mÔâm〉)dt + √
γ

∑
m

(〈â†
m(Ô − 〈Ô〉)〉dZm + c.c.). (C38)

For the first moments φm = 〈âm〉, one finds

D(φ+) = −γ

2
φ+dt + √

γ (n+dZ+ + c+dZ∗
+ + d+dZ0 + b+dZ∗

0 + d∗
1 dZ− + b1dZ∗

−), (C39)

D(φ0) = −γ

2
φ0dt + √

γ (d∗
+dZ+ + b+dZ∗

+ + n0dZ0 + c0dZ∗
0 + d∗

−dZ− + b−dZ∗
−), (C40)

D(φ−) = −γ

2
φ−dt + √

γ (d1dZ+ + b1dZ∗
+ + d−dZ0 + b−dZ∗

0 + n−dZ− + c−dZ∗
−). (C41)

The dissipator of the second moments 〈δ̂(†)
m δ̂n〉 = 〈â(†)

m ân〉 − φ(∗)
m φn is found by first calculating D(φ(∗)

m φn) using Itō’s lemma
(dφ(∗)

m φn = φ(∗)
m dφn + φndφ(∗)

m + dφ(∗)
m dφn), and subtracting it from D(〈â(†)

m ân〉). The stochastic part is found to vanish, leaving
only a deterministic dissipation:

D(n+) = −γ [n+(n+ + 1) + |c+|2 + |d+|2 + |b+|2 + |d1|2 + |b1|2]dt, (C42)

D(n0) = −γ [n0(n0 + 1) + |c0|2 + |d+|2 + |b+|2 + |d−|2 + |b−|2]dt, (C43)

D(n−) = −γ [n−(n− + 1) + |c−|2 + |d−|2 + |b−|2 + |d1|2 + |b1|2]dt, (C44)

D(c+) = −γ [c+(2n+ + 1) + 2d+b+ + 2b1d∗
1 ]dt, (C45)

D(c0) = −γ [c0(2n0 + 1) + 2d∗
+b+ + 2d∗

−b−]dt, (C46)
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D(c−) = −γ [c−(2n− + 1) + 2d−b− + 2b1d1]dt, (C47)

D(b+) = −γ [b+(n+ + n0 + 1) + d∗
+c+ + c0d+ + d∗

−b1 + b−d∗
1 ]dt, (C48)

D(b1) = −γ [b1(n+ + n− + 1) + c+d1 + c−d∗
1 + d+b− + b+d−]dt, (C49)

D(b−) = −γ [b−(n− + n0 + 1) + d∗
−c− + c0d− + d∗

+b1 + b+d1]dt, (C50)

D(d+) = −γ [d+(n+ + n0 + 1) + b∗
+c+ + c∗

0b+ + d−d∗
1 + b∗

−b1]dt, (C51)

D(d1) = −γ [d1(n+ + n− + 1) + c∗
+b1 + c−b∗

1 + d∗
+d− + b∗

+b−]dt, (C52)

D(d−) = −γ [d−(n− + n0 + 1) + b∗
−c− + c∗

0b− + d+d1 + b∗
+b1]dt . (C53)
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