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Negative mass effects of a spin soliton in Bose-Einstein condensates
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We investigate the energy-velocity dispersion relation of spin solitons with arbitrary initial velocities. Based on
the dispersion relation, we further characterize the inertial mass of a spin soliton and find two critical velocities to
distinguish between the positive mass and negative mass. One critical velocity separates the initial negative and
positive masses, and the other denotes the velocity for negative-positive mass transition during an acceleration
process. With the aid of the two critical velocities, we further propose two possible ways to observe the pure
negative mass effect of a spin soliton. Moreover, the relations between the soliton’s width and its velocity are
discussed according to the variational results. We report that the soliton width can become narrower with larger
moving speed (when a spin soliton possesses positive mass), in sharp contrast to the dark solitons reported
before. These results would motivate experiments to observe negative mass effects of solitons in Bose-Einstein
condensates.
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I. INTRODUCTION

Negative mass is an interesting subject [1–3] and is even
believed to play a key role in stabilizing space-time worm-
holes and in explaining the supposed acceleration of the
universe expansion [4]. Nowadays, negative mass is usually
referred as the inertial mass emerging in solid physics and
optical systems. Negative inertial mass is usually a direct
consequence of the periodicity of the energy band structure
[5,6], which has also been reported in the Bose-Einstein con-
densate (BEC) with periodic potentials [7,8]. BEC is also a
good platform to study collective dynamics for its highly con-
trollability. Recently, an experimental observation of negative
mass effect was realized in BEC systems through engineering
of the dispersion relation by spin-orbit coupling effects [9,10].
Besides this engineering of linear dispersion relations, non-
linearity was shown to induce negative mass [11]. Therefore,
solitons induced by nonlinearity become a good candidate for
observation on negative mass effects. The dark soliton [12]
and magnetic soliton (a special dark-antidark soliton) [13,14]
were suggested to admit negative mass properties in BEC
systems.

However, it is difficult to directly drive dark solitons or
antidark solitons by applying an external force, since those
solitons have a nonzero density background [12–14]. Even
the motion of a dark soliton in a harmonic trap suggested
that it admitted negative mass [12,15–18], but we would like
to observe negative mass effects of solitons (the accelerating
direction is inverse to the force direction) by accelerating them
more directly. We note that it is possible to drive a spin soliton
by adding external forces on the bright soliton component in a
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two-component BEC system, since the spin soliton contains a
bright soliton in one component and a dark soliton in the other
component, and the the total density distribution is uniform
[19]. In our previous studies, the spin soliton was shown to
admit positive mass and negative mass periodically during
an acceleration process [19]. There was a maximum speed
for the spin soliton’s acceleration process, which determined
the negative-positive mass transition. Therefore, it is possible
to investigate the pure negative mass of a spin soliton with
some proper limitations on the moving speed. Moreover, the
energy-velocity dispersion relation was used to explain the
motion of a spin soliton, when the initial spin soliton is static
relative to the mass background [19]. But the general disper-
sion relation (with arbitrary initial speed given by exact spin
soliton solution) is still absent, which can be used to fully
characterize the inertial mass of spin solitons.

In this paper, we systemically discuss the energy-velocity
dispersion relation of spin solitons with arbitrary initial veloc-
ities, which is an important development of the results in [19].
Based on full analysis on the inertial mass of spin solitons,
we find two critical velocities to distinguish the positive mass
from negative mass. One critical velocity is for the initial
soliton states, and the other denotes the velocity for negative-
positive mass transition during an acceleration process. Then
we propose two possible ways to observe pure negative
mass effects of spin solitons by driving them directly. Driven
by a slowly varying kink-shaped potential, a spin soliton
moves against the force and “climbs up” to the position with
larger potential energy. This character more directly shows
the soliton’s negative mass effects, in contrast to the mo-
tion of dark solitons or magnetic solitons in a harmonic trap
[12,13,15–18]. The final velocity of the spin soliton can be
controlled well by the potential energy possessed by the
kink-shaped potential. A negative mass oscillator is proposed
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through loading a spin soliton in an antiharmonic potential.
Decay of the soliton energy makes the oscillation amplitude
become larger, in contrast to the smaller oscillation amplitude
for the positive mass oscillator in a harmonic trap. These
results would motivate some discussions about the inertial
mass of solitons and experimental observations of the negative
mass in BECs.

The paper is organized as follows. In Sec. II, we derive
the energy-velocity dispersion relation of spin solitons with
arbitrary initial velocities through combining the exact spin
soliton solution and Lagrangian variational method. Based on
this dispersion relation, we fully characterize the inertial mass
of a spin soliton and find two critical velocities to separate
the positive mass and negative mass. In Sec. III, we propose
two possible ways to observe negative mass effects of spin
solitons by adding forces on the bright soliton component.
In Sec. IV, the relation between width and moving speed is
discussed. The spin soliton with positive mass can become
narrower with acceleration, which cannot be described by the
exact spin soliton solution. Finally, we summarize our results
in Sec. V.

II. THE ENERGY-VELOCITY DISPERSION RELATION
AND INERTIAL MASS OF A SPIN SOLITON

We consider a two-component BEC system which is tightly
confined in the radial direction so that the radial characteristic
length is smaller than the healing length and its dynamics is
essentially one-dimensional [20]. Rescaling the atomic mass
and Planck’s constant to be 1, the dimensionless dynamical
equations can be written as the following coupled model,

i
∂ψ+
∂t

= −1

2

∂2ψ+
∂x2

+ (g1|ψ+|2 + g2|ψ−|2)ψ+

+V+(x)ψ+, (1a)

i
∂ψ−
∂t

= −1

2

∂2ψ−
∂x2

+ (g2|ψ+|2 + g3|ψ−|2)ψ−

+V−(x)ψ−, (1b)

where x is the axial coordinate, and ψ = (ψ+, ψ−)T denotes
the condensate wave function, where ± refers to the two
components. The parameters g1 and g3 denote intraspecies
interactions between the atoms in the components ψ+ and ψ−,
respectively, and g2 describes the interspecies interactions
between the atoms. If g2 − g1 > 0, a spin soliton solution
with |ψ+|2 + |ψ−|2 = 1 can be obtained when g1 + g3 = 2g2

and V+(x) = V−(x) = 0 as follows [19], ψ+(x, t ) =
√

1 − v2

c2
s

sech[
√

c2
s − v2 (x − vt )]e

1
2 i[−g1t−g2t+2v(x−vt )], ψ−(x, t ) =

{
√

1 − v2

c2
s

tanh[
√

c2
s − v2(x − vt )] + iv

cs
}e−i(−g1+2g2 )t , where

cs = √
g2 − g1 denotes the maximum speed of exact spin

soliton solutions. In this paper, we set the parameters to
g1 = 1, g2 = 2, g3 = 3 for simplicity, and in this case cs = 1.
We note that the large differences between interaction
strengths are chosen to make the soliton more obvious, and
they can be adjusted directly by scaling transformation. For
the spin solitons, an external force (for instance, by applying
magnetic fields) can be added solely to the bright soliton since
its background density is zero. This character is absent for the
dark soliton [15–18] or the magnetic soliton [13,14]. Namely,

we choose proper V+(x) to drive the spin soliton while setting
V−(x) = 0. This enables us to test negative inertial mass
effects by directly observing the motion of a spin soliton.
The motion of the spin soliton is similar to the spin currents
discussed in [21,22]. The acceleration of spin currents has
not been discussed before. We would like to investigate the
motion of a spin soliton driven by different external potentials.
The concept of the inertial mass captures the response of a
spin soliton to an applied force, encapsulating Newton’s
equations of quasiparticle dynamics. The inertial mass of the
soliton has been used to explain the motion of the soliton
widely [13,15,19,23,24]. The inertial mass of the soliton
is usually defined based on the energy-velocity dispersion
relation of solitons [19,23,24]. Therefore, we derive the
energy-velocity dispersion relation of the spin soliton first,
which can be used to develop a quasiparticle model to predict
or explain well the spin soliton’s motion.

From the exact spin soliton solution, we can calculate the
energy of the spin soliton as

√
c2

s − v2. However, this relation
cannot be used to describe the acceleration process of a spin
soliton, since the exact spin soliton solution just holds for ar-
bitrary constant velocities. The particle number for the bright
soliton or the dark soliton depends on its moving velocity;
this naturally means that the exact spin soliton solution cannot
describe any motion of spin solitons driven by external fields.
This problem had been solved by the modified Lagrangian
variational method [19,25]. Therefore, we introduce a simple
linear potential into the bright soliton component, namely,
V+(x) = −Fx, and V−(x) = 0, to derive the energy-velocity
dispersion relation (see the Appendix for details). The energy-
velocity dispersion relation is derived as

Es = c2
s

2
√

c2
s − v2

0

±

√√√√√
⎛
⎝ c2

s

2
√

c2
s − v2

0

⎞
⎠

2

− v2. (2)

In this way, we extend the analysis of initial static spin solitons
to the cases with arbitrary initial velocities. The expression
Eq. (2) manifests that the soliton energy has two branches,
and the plus (minus) sign of the second term corresponds to
the negative (positive) mass branch.

When the second term equals zero, the two branches inter-
sect and thus a critical velocity for the negative-positive mass
transition can be given in the form of

cm =
√

c4
s

4
(
c2

s − v2
0

) . (3)

It is likewise the upper speed limit for a spin soliton with ini-
tial velocity v0. The result also manifests that the spin soliton
with nonzero initial velocities can still oscillate periodically in
the presence of a constant force [19]. Furthermore, the upper
speed limit cm is a variable quantity positively correlated
with the initial velocity v0 (v0 < cs). Thus, the velocity of
an accelerated spin soliton is not confined by cs, significantly
distinguished from scalar dark solitons [12,15–18] or vector
dark-bright solitons [26].

In particular, there exists a special case that the initial
velocity is equal to cm, which means the spin soliton is in the
critical state of the negative-positive mass transition. Hence,
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FIG. 1. Panel (a) shows the energy-velocity dispersion relations for spin solitons with three different initial velocities, (a1) v0 = 0.5, (a2)
v0 = v0c = 1/

√
2, and (a3) v0 = 0.95. The solid red and dashed blue semicircles correspond to the negative and positive mass branches,

respectively. The green dots denote the three initial states. It is seen that the initial velocity should be smaller than a critical value v0c for
observing negative mass of the spin soliton. Panel (b) denotes the corresponding inertial mass of the spin solitons. The black arrows indicate
the mass evolution of spin solitons driven by a linear potential −Fx applying on the bright soliton. The parameters are F = −0.01, g1 = 1,

g2 = 2, g3 = 3.

the spin soliton with lower (higher) initial velocity admits
negative (positive) mass. This critical velocity for the initial
mass of spin solitons is derived as

v0c = cs√
2
. (4)

To gain insight into these two critical velocities, we plot
several energy-velocity dispersion relations and the corre-
sponding inertial mass for spin solitons with different initial
velocities in Fig. 1. Evidently, a spin soliton with the initial ve-
locity v0 = 0.5 < v0c lies on the negative mass branch [solid
red semicircle in Fig. 1(a1)]. For the spin soliton with the crit-
ical initial velocity v0c, its initial state lies on the intersection
of two branches [the transition point in Fig. 1(a2)]. If it has an
initial velocity which is higher than v0c, the initial state will
locate at the positive mass branch [dashed blue semicircle in
Fig. 1(a3)].

It must be stressed that the inertial mass of a spin soliton is
different from the effective mass of a single particle [7,11]; it
can be derived as the following form:

M∗ = 2
∂Es

∂ (v2)
= ∓ m0√

1 − v2

c2
m

, (5)

where m0 = 2
√

c2
s − v2

0/c2
s denotes the soliton mass of the

corresponding exact solution. When the initial velocity is zero,
the soliton is static and m0 is formally consistent with the rest
mass in the theory of relativity. We note that in this case, the
above relations are reduced to that in [19]. The corresponding
inertial mass during the oscillation process is shown in the
panel (b) of Fig. 1, for which the initial conditions are given
by the exact spin soliton solution with different initial veloci-
ties, respectively. For the v0 = 0.5 (v0 = 0.95) case, the spin
soliton first admits negative (positive) mass and later transits
to positive (negative) mass [see Figs. 1(b1) and 1(b3)]. During

this process, the soliton becomes heavier with the increase
of velocity, its inertial mass tends to infinity, and the sign
changes when v = cm. The black arrows in Figs. 1(b1) and
1(b3) indicate the mass evolution of spin solitons driven by
a linear potential −Fx, which is performed on the bright
soliton component. Specifically, a spin soliton with the critical
initial velocity v0c admits divergent mass [see Fig. 1(b2)].
This means that it possesses an infinite mass and its speed is
hard to change. This character is supported by the numerical
simulation results in next section.

We further consider the dynamics for a spin soliton
subjected to a linear potential V+(x) = −Fx. The external
potential energy of the soliton is Ep = ∫ +∞

−∞ −Fx|ψ+|2dx =
−2Fxc

√
c2

s − v2
0/c2

s (xc denotes the soliton center position)
under the local density approximation. From the energy

conservation Es + Ep =
√

c2
s − v2

0 with the initial conditions
t = 0, xc = 0, v = v0, we can derive the kinetic equation of

the spin soliton as d2xc
dt2 + 4F 2 c2

s −v2
0

c4
s

xc + c2
s −2v2

0
c2

s
F = 0. The mo-

tion of the spin soliton can be also given from the initial
conditions. The derivation suggests that the periodic transi-
tion between negative and positive mass of the spin soliton
driven by a constant force can be equivalently described by a
harmonic oscillator. We can see that the results with v0 = 0 re-
duce to the oscillation amplitude A = c2

s
2|F | and period T = csπ

|F |
for an initial static spin soliton [19]. Our numerical simula-
tions for the spin soliton driven by F = −0.01 agree well
with the quasiparticle model. Both of them show a transition
between infinite negative mass and positive mass, which is
similar to the case in Bloch oscillation [27].

It should be noted that the energy-velocity dispersion
relation holds for many other slowly varying potentials, al-
though the linear potential is chosen to derive the relation for
simplicity. Since the negative-positive mass transition effects

013303-3



MENG, GUAN, AND ZHAO PHYSICAL REVIEW A 105, 013303 (2022)

FIG. 2. (a) The profile schematic diagram of a kink-shaped po-
tential. The numerical simulation results (b) and (c) for evolutions
in two components when the potential is applied to the bright soli-
ton. The spin soliton with a zero initial velocity accelerates in the
direction opposite to the force. The parameters are g1 = 1, g2 = 2,

g3 = 3, D = 0.995, h = 0.15.

have been discussed before [19], we mainly investigate the
pure negative mass effect of a spin soliton, with the aid of full
dispersion relation and the two critical velocities.

III. THE PURE NEGATIVE MASS OF SPIN SOLITON

We can observe the pure negative mass of the spin soli-
ton by adding slowly varying potentials on the bright soliton
component. Taking two cases as examples, we choose a kink-
shaped potential and an antiharmonic potential to demonstrate
the negative mass effects.

A. Controllable motion of spin soliton with negative mass

We first use a kink-shaped potential to drive the
spin soliton. The potential is chosen as V+(x) =
h
4 (tanh[−√

1 − D2x] − 1)2, where D controls the slope
and h denotes the height of a kink-shaped potential. We
choose a large value of |g2 − g1| to decrease the soliton
width and choose an appropriate value of D to ensure that
the potential varies slowly on the size scale of the soliton.
In addition, the height h should be lower than an upper limit
to avoid accelerating the spin soliton to the positive mass
region, since the sign of inertial mass would change when its
velocity reaches cm. This weak potential is only added to the
bright soliton component ψ+ to eliminate the acceleration of
the entire particle density background. We have an initially
static spin soliton (v0 = 0) at the bottom of the potential. The
profile schematic diagram is shown in Fig. 2(a). Then the spin
soliton is naturally expected to “climb up” to the top of this
kink-shaped potential due to the negative mass effect.

We made the numerical simulations by the integrating-
factor method together with a fourth-order Runge-Kutta
method to test this anomalous behavior, and the exact spin
soliton solution given above can be a perfect initial condition
for our simulation. The results of the two components are
shown in Figs. 2(b) and 2(c). The external potential forms an
accelerating field that can apply a force on the soliton in the

FIG. 3. (a) The final velocity of an initial static spin soliton
versus the height of the kink-shaped potential. The numerical re-
sults (blue dots) are obtained with different heights h = 0.01, 0.05,

0.1, 0.15, 0.2, 0.25. (b) The relation between inertial mass of a spin
soliton and its moving velocity. The blue dots are obtained from
numerical simulation with h = 0.25. The quasiparticle theory gives
the red solid line. It is seen that the quasiparticle theory can explain
well the numerical results. The other parameters are g1 = 1, g2 =
2, g3 = 3, D = 0.995.

direction of the lower potential. Strikingly, the acceleration of
the static spin soliton is opposite to the direction of the force.
This surprising dynamical behavior directly demonstrates the
negative mass property of the spin soliton, and provides us
with a way to manipulate solitons with negative mass. Accord-
ing to energy conservation and the energy-velocity dispersion
relation of spin solitons, we obtain the quantitative relation
between the potential height h and the final soliton velocity v f

(after climbing up the kink potential) as follows:

c2
s

2
√

c2
s − v2

0

+

√√√√√
⎛
⎝ c2

s

2
√

c2
s − v2

0

⎞
⎠

2

− v2
f

+
2h

√
c2

s − v2
0

c2
s

=
√

c2
s − v2

0 . (6)

The soliton energy term is chosen as the negative mass
branch in the above expression. The v0 is an arbitrary initial
velocity given by exact spin soliton solution, and it should
be smaller than the critical initial velocity v0c. Moreover,
the potential height h is also limited for observing the pure
negative mass effect, whose value is given by initial velocity
and the other critical velocity cm. When the initial velocity of
the soliton is zero, the upper limit of the potential height is
h = c2

s /4, for observing the pure negative mass effect. Then
the relation between the height h and the final velocity v f can
be obtained theoretically [red line in Fig. 3(a)]. The theoretical
as well as numerical results show that the initial static spin
soliton was accelerated by different kink-shaped potentials
and the final velocities are predicted well by our theoretical
results.

The motion of spin solitons under different potential
heights in Fig. 3(a) indicates that the spin soliton indeed
admits negative mass. For instance, we show the variation of
the spin soliton’s inertial mass during the acceleration process
in Fig. 3(b), where the potential height is chosen as 0.25. The
velocity of the spin soliton slightly exceeds the theoretical
limit derived by Eq. (6), due to that the soliton energy decays
during the acceleration process.
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FIG. 4. The relation between the ratio of the soliton’s final and
initial velocity versus its initial velocity. The numerical results (blue
dots) are obtained from the spin soliton crossing the kink-shaped po-
tential with different initial velocities. The quasiparticle theory gives
the red solid line theoretically. The green dashed line indicates the
case of v f = v0, which can be used to distinguish the acceleration or
deceleration of the spin soliton. The parameters are g1 = 1, g2 = 2,

g3 = 3, D = 0.995, h = 0.1.

On the other hand, the motion of spin solitons with differ-
ent initial velocities can be used to test the above theoretical
prediction on v0c. For the solitons with nonzero initial ve-
locities, we introduce the ratio v f /v0 to depict the change
of the solitons’ motion, which can be used to denote the
inertial mass character of spin solitons. If v f /v0 > 1, this
means that the acceleration and spin soliton admit negative
mass; if v f /v0 < 1, the spin soliton admits positive mass. We
simulated the evolutions of spin solitons with different initial
velocities. The slope and height of the potential are fixed to
D = 0.995 and h = 0.1. The numerical results are shown as
blue dots in Fig. 4. Theoretical result is denoted by the red
solid line, which is given by the energy conservation and
the energy-velocity dispersion relation of spin solitons. One
can see that v0c indeed distinguishes well between the initial
negative and positive masses.

Particularly, if the initial velocity v0 = v0c, we have
v f /v0 = 1 theoretically. Figure 4 shows that the spin soliton
keeps nearly the same velocity after crossing the kink-shaped
potential. This character partly supports the above predicted
divergent mass character at the critical initial velocity [see
Fig. 1(b2)]. It should be noted that the divergent mass cannot
be shown well for much larger potential height h, since energy
conservation and continuous increase of the bright soliton’s
external potential energy break the critical soliton state.

B. The oscillation of a spin soliton in antiharmonic potentials

It is known that a substance with positive inertial mass
can oscillate periodically in a harmonic potential, while the
negative mass effect of the spin soliton allows it to have
anomalous kinetic effects. Hence, it can be expected that when
we put the spin soliton in an antiharmonic potential, it could
show a similar oscillating behavior. Taking the antiharmonic
potential V+(x) = − 1

2ω2x2 as an example, a spin soliton is
placed closely to the center of the potential [see Fig. 5(a)].
Simulating the Eq. (1) numerically, we see that the spin soliton

FIG. 5. (a) The profile schematic diagram of the initial soliton
in antiharmonic potential. The numerical simulation results (b) and
(c) show that the spin soliton oscillates periodically with the am-
plitude getting larger. The white dashed line denotes the oscillation
described by the quasiparticle theory. The distance between the
initial soliton and the center of the potential is �x = −2; other
parameters are g1 = 1, g2 = 2, g3 = 3, ω = 0.012.

begins to move toward the top of potential which is caused by
its negative mass effects, and then oscillates periodically to
form a negative mass oscillator, shown in Figs. 5(b) and 5(c).

The above general energy-velocity dispersion relation
can be used to explain the oscillation of spin solitons in
the antiharmonic potential. If the potential varies slowly
within the soliton size scale, the local density approxi-
mation gives

∫ ∞
−∞ − 1

2ω2x2|ψ+|2dx ≈ − 1
2ω2x2

c

∫ ∞
−∞ |ψ+|2dx.

Based on the conservation of energy cs
2 +

√
c2

s
4 − v2 +∫ ∞

−∞ − 1
2ω2x2|ψ+|2dx = cs, the dynamical equation of the

spin soliton’s center is derived:

∂2xc

∂t2
+ 2ω2xc

√
1

4
−

(
∂xc

∂t

)2

= 0. (7)

If the soliton is placed closely to the center of potential, its
velocity is always small, i.e., ∂xc

∂t = v ≈ 0. The above equation
predicts that the soliton will oscillate with period T ≈ 2π/ω.
In fact, the oscillation period could be a bit larger than T . This
is quite different from the oscillation period of a dark soliton
[12,18] or a dark-bright soliton [28] in a harmonic potential.
Although it is hard to derive the exact oscillation period from
Eq. (7), we can solve it numerically with initial conditions.
The quasiparticle theory predicts the white dashed curves in
Fig. 5. The density evolution of the spin soliton indicates that
the oscillating period agrees well with the theoretical results.
But the amplitude of the oscillator increases gradually due to
the decay of the soliton energy. It should be noted that the
soliton cannot be placed far away from the potential center;
otherwise the harmonic oscillation will be destroyed.

IV. ANOMALOUS CORRELATION BETWEEN
WIDTH AND VELOCITY OF SPIN SOLITON

Generally, the widths of scalar dark solitons [12,15–18] or
vector dark-bright solitons [26] are positively correlated with
their velocities.
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FIG. 6. The relations between width and velocity of spin solitons
with initial velocities (a) v0 = 0 and (b) v0 = 0.95. The solid red and
dashed blue semicircles correspond to negative and positive mass
regions, respectively. The green dots denote the initial states. The
width of a spin soliton with negative mass is positively correlated
with its speed, whereas for the positive mass one, the relation is
reversed.

Recent research on the negative-positive mass transition of
spin solitons [19] reveals that this correlation is only applica-
ble to the negative mass region. During the ac oscillation [19],
one can directly find that when the spin soliton reaches the
maximum displacement, it is widest but the velocity decreases
to zero; namely the spin soliton did not return to its original
state. This anomalous effect indicates that the inertial mass
significantly impacts the variation of soliton width with ve-
locity. Very recently, a similar property of a magnetic domain
wall was reported in ferromagnetic spin-1 BECs [29]. Based
on the derivation of spin soliton’s velocity v and width w

(as functions of time) in the Appendix, we have the soliton
width-velocity relation as

w−1 = cs

2
√

c2
s − v2

0

±
√

c2
s

4
(
c2

s − v2
0

) − v2

c2
s

. (8)

It is quite explicit that the width w is not a monotonic function
of the velocity v. Particularly, this indicates that spin solitons
with different inertial mass admit opposite width-velocity re-
lations.

We show the width-velocity relation of spin solitons with
two different initial velocities in Fig. 6. The semicircles corre-
spond to the negative (solid red line) and positive (dashed blue
line) mass of spin solitons, respectively. For an initial soliton
with negative mass, the spin soliton’s width will widen when
its moving speed is increased. This character is consistent with
the upper semicircle in Fig. 6(a). By contrast, if it reaches the
maximum speed and transits to the positive mass region, the
width-velocity relation will be reversed.

For the spin soliton with initial positive mass, i.e., the
initial velocity v0 > v0c, a width-velocity relation is shown in
Fig. 6(b) as an example. The initial state lies on the lower
semicircle which corresponds to the positive mass, and its
width narrows as its speed increases. Moreover, it can be seen
in Fig. 6(b) that a spin soliton with the initial positive mass
can be accelerated and exceeds cs, where cs = √

g2 − g1 is
the maximum speed given by the exact spin soliton solution.
Thus the velocity of an accelerated spin soliton is limited by
cm rather than cs. This shocking phenomenon is also described
well by the energy-velocity dispersion relation.

V. CONCLUSION AND DISCUSSION

We derive the energy-velocity dispersion relations of spin
solitons through combining the exact spin soliton solution
and Lagrangian variational method. The negative and posi-
tive masses of spin solitons are clarified systemically based
on the two critical velocities. A critical velocity v0c distin-
guishes between the initial negative mass and positive mass,
and the other velocity cm signifies the negative-positive mass
transition during the acceleration process. Our general energy-
velocity dispersion relations of spin solitons enable us to
describe well the motion of an accelerated spin soliton driven
by slowly varying external potentials, although the dispersive
wave and sound wave induce weak decay of the soliton en-
ergy. Two possible ways are suggested to observe the negative
mass of a spin soliton. Moreover, we demonstrate that the
dark soliton’s width can become narrower with larger moving
speed, when a spin soliton possesses positive mass. This char-
acter is usually absent for the dark solitons reported before
[12,15,17,20,30]. The dispersion relation and negative mass of
spin solitons could be tested in a two-component BEC, since
magnetic solitons (similar to spin solitons) were observed
recently in experiments [31,32].

ACKNOWLEDGMENTS

This work is supported by the National Natural Sci-
ence Foundation of China (Contracts No. 12022513, No.
11775176, No. 11947301, and No. 12047502) and the Ma-
jor Basic Research Program of Natural Science of Shaanxi
Province (Grants No. 2018KJXX-094 and No. 2017KCT-12).

APPENDIX: THE MOTION OF SPIN SOLITON WITH
NONZERO INITIAL MOVING VELOCITY

In the presence of the force F term, the exact analytic
expressions for the dynamic evolution of the spin solitons
cannot be obtained. We thus exploit the Lagrangian variational
method to evaluate the dynamics of the spin soliton by intro-
ducing the following trial functions,

ψ+(X, T ) = f (T )sech

[
X − b(T )

w(T )

]
eiφ0(T )+iφ1(T )[X−b(T )],

(A1a)

ψ−(X, T ) =
{

i
√

1 − f (T )2+ f (T ) tanh

[
X −b(T )

w(T )

]}
eiθ0(T ),

(A1b)

where X = csx and T = c2
s t are introduced to simplify

the following calculations. Note that the total density
keeps a constant during temporal evolution, while the soli-
ton position, amplitudes, and width vary in time. This
is distinctive from the case in [26]. We now use the
Lagrangian variational method to derive expressions of
b(T ), f (T ),w(T ), φ1(T ), φ0(T ), θ0(T ). The Lagrangian of
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the system is

L(T ) =
∫ +∞

−∞

{
cs

[
i

2
(ψ∗

+∂T ψ+ − ψ+∂T ψ∗
+) + i

2
(ψ∗

−∂T ψ− − ψ−∂T ψ∗
−)

(
1 − 1

|ψ−|2
)

− 1

2
|∂X ψ+|2 − 1

2
|∂X ψ−|2

]

− 1

cs

[
g1

2
|ψ+|4 + g3

2
(|ψ−|2 − 1)2 + g2|ψ+|2(|ψ−|2 − 1)

]
+ 1

c2
s

FX |ψ+|2
}

dX. (A2)

The factor (1 − 1
|ψ−|2 ) was first introduced in [25] for the integration of the dark soliton state. Substituting the trial wave functions

into the Lagrangian, and after taking the particularly elaborate integrals, we obtain that

L(T ) = cs

{
2 f (T )2w(T )[φ1(T )b′(T ) − φ′

0(T )] − f (T )2

w(T )
[1 + φ1(T )2w(T )2] + 2 f (T )2w(T )θ ′

0

+ 2b′(T ) arcsin[ f (T )] − 2b′(T ) f (T )
√

1 − f (T )2

}
+ 1

c2
s

2F f (T )2w(T )b(T ), (A3)

where b′(T ) = d
dT b(T ), etc.

Differently from the ones for an initial static spin soliton
[19], we consider a more general case for which the initial
conditions are given by the exact spin soliton solution with
arbitrary initial velocities. This will require that our initial
conditions for the trial wave functions be f (0) =

√
1 − v2

0/c2
s ,

w(0) = cs/
√

c2
s − v2

0 , b(0) = 0, b′(0) = v0/cs. From the con-
servation of the norm of the bright component, we have

w(T ) =
√

c2
s − v2

0

cs f (T )2
. (A4)

Then it is straightforward to apply the Lagrangian
equation d

dT ( ∂L(T )
∂α′ ) = ∂L(T )

∂α
, where α = b(T ), f (T ),

φ1(T ), φ0(T ), θ0(T ). Using the initial conditions, we find the
following solutions,

f (T ) = sin

⎛
⎝

√
c2

s − v2
0

c4
s

FT + δ

⎞
⎠, (A5a)

b(T ) = ± c5
s

2F (c2
s − v2

0 )
sin2

⎛
⎝

√
c2

s − v2
0

c4
s

FT + δ

⎞
⎠, (A5b)

φ1(T ) = ± cs

2
√

c2
s − v2

0

sin

⎛
⎝2

√
c2

s − v2
0

c4
s

FT + 2δ

⎞
⎠, (A5c)

where δ = arcsin[
√

1 − v2
0/c2

s ].

Substituting the trial functions into the kinetic energy of
the spin soliton, we obtain that

Ek =
∫ +∞

−∞

[
ψ∗

+

(
−1

2
∂2

x

)
ψ+ + ψ∗

−

(
−1

2
∂2

x

)
ψ−

]
dx

= c2
s√

c2
s − v2

0

sin2

⎛
⎝

√
c2

s − v2
0

c4
s

FT + δ

⎞
⎠. (A6)

The interaction energy can be also calculated as

Einter =
∫ +∞

−∞

[
g1

2
|ψ+|4 + g3

2
(|ψ−|2 − 1)2

+ g2|ψ+|2(|ψ−|2 − 1)

]
dx = 0. (A7)

Then the soliton energy Es = Ek + Einter. Moreover, the soli-
ton’s velocity evolves as

v = 1

cs

db(T )

dt
= ± c2

s

2
√

c2
s − v2

0

sin

⎛
⎝2

√
c2

s − v2
0

c4
s

FT + 2δ

⎞
⎠.

(A8)

Based on these expressions for the soliton energy and moving
velocity, we can finally obtain the energy-velocity dispersion
relation, and the relation can be further used to calculate the
inertial mass of a spin soliton.
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