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Missing-rung problem in vibrational ladder climbing
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Vibrational ladder climbing (VLC), which is a cascade excitation process of molecular vibrational levels under
chirped laser pulses, is one of the promising methods to realize molecular bond breaking, but there have been
few experimental reports on bond breaking by VLC. In this study we observed vanishing of the transition dipole
moment, interrupting VLC in general molecular systems. This phenomenon, that adjacent transition is forbidden
at a certain vibrational level, was found to be explained by the parities of the dipole function and the vibrational
wave functions. In order to preserve VLC, we proposed a method to use an additional chirped pulse that realizes
“double-stepping” transitions at levels where adjacent transitions are forbidden. To show the effectiveness of our
method, we conducted wave-packet dynamics simulations for LiH dissociations with chirped pulses. The results
indicate that the efficiency of LiH dissociation is significantly improved by our method compared to conventional
VLC methods with a single pulse. We also revealed the quantum interference effect behind the excitation process
of VLC and found that the relative phase between the main pulse and the additional pulse has a significant effect

on the dissociation probabilities of molecules.
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I. INTRODUCTION

Controlling molecular reactions as desired is one of the
ultimate goals of chemical physics. Compared to conventional
macroscopic reaction control methods using temperature and
pressure, proposed methods that directly control the quan-
tum state of molecules using the electric field of a laser are
expected to achieve dramatically improved efficiency and se-
lectivity of reactions [1-3]. Such techniques, first proposed
by Brumer and Shapiro in the 1980s [1], are called “co-
herent control,” and with the advent of femtosecond pulsed
lasers and the development of laser shaping technology have
been the subject of numerous studies and continue to attract
considerable attention [4-6]. A promising coherent control
method is vibrational ladder climbing (VLC) [7], which em-
ploys a cascade excitation process in molecular vibrational
levels under chirped infrared laser pulses with time-dependent
frequencies corresponding to the vibrational excitation energy
levels. VLC can focus an input laser pulse energy on a spe-
cific molecular bond. Thereby, it is expected to realize highly
efficient bond-selective photodissociation [8]. VLC has been
studied intensively both experimentally and theoretically. Ex-
perimentally, the vibrational excitation by VLC in diatomic
molecules (NO [9], HF [10]) and amino acids [11] has been
reported. Recently, Morichika et al. succeeded in breaking
molecular bonds in transition-metal carbonyl WCOg with a
chirped infrared pulse enhanced by surface plasmon reso-
nance [8]. Unfortunately, there are few experimental reports of
successful bond breaking by VLC, which remains a challenge.
In early theoretical works, Liu et al. and Duan et al. studied
the classical motion of driven Morse oscillators [12—14]. They
analyzed the excitation and dissociation dynamics of diatomic
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molecules under a chirped electric field using the action-
angle variable, and found the condition for efficient excitation
[12,13]. Regarding the quantum aspects, a pioneering work by
Marcus et al. [15] focused on quantum and classical excitation
processes, specifically quantum ladder climbing and classical
autoresonance, and proposed parameters to characterize the
quantum and classical phenomena [15,16]. Based on the char-
acterization parameters, quantum and classical comparisons
were made in various systems [17-20] such as plasma sys-
tems [21] and superconducting circuits [22]. The excitation
condition proposed by Yuan er al. and the characterization
parameters proposed by Marcus et al. depend on the physical
properties of the system such as the potential energy sur-
face (PES) and the dipole function. Thereby, these properties
determine the characteristic of VLC. However, most of the
theoretical treatments were based on simple model functions
of these properties such as Morse potentials and linear dipole
moments [12,15,23-25].

In this study, we performed wave-packet dynamics sim-
ulations of VLC based on the PES and the dipole moment
computed by a highly accurate ab initio quantum chemistry
method. The results of the simulations revealed a problem
that has not previously been recognized in VLC: VLC is inter-
rupted by the existence of a level with a nearly zero adjacent
transition dipole moment (TDM), i.e., vanishing of the TDM.
We call this problem the missing-rung problem (MRP) as it is
like a rung missing in the middle of a ladder.

II. MISSING-RUNG PROBLEM

The lower panels of Figs. 1(b) and 1(c) show the absolute
values of TDMs for the diatomic molecules LiH and HF,
respectively. It can be seen that the TDMs of the 16th level
of LiH and the 12th level of HF have nearly zero values,
which indicate “missing rungs” in the vibrational levels. To
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FIG. 1. Top: PESs and dipole moments for (a) the harmonic model, (b) the LiH molecule, and (c) the HF molecule. For the harmonic
model, the model dipole moments are shown. The orange and light blue lines show the vibrational wave functions. Bottom: Absolute values

of the corresponding TDMs.

understand the cause of the MRP, we start by considering
a harmonic oscillator. The vibrational wave functions of the
harmonic potential |¢;) are described by Hermite polynomi-
als, and their parities are different between adjacent levels,
as described in Fig. 1(a). Assuming an odd function for the
dipole moment, the TDM between adjacent levels ;1 =
(¢ilit|dir1) becomes an integral of an even function, which
yields a nonzero value (i.e., an allowed transition). The well-
known infrared selection rule Av = %1 corresponds to this
result [26]. On the other hand, if we assume an even function
for the dipole moment, the adjacent TDM p; ;41 becomes an
integral of an odd function, which yields zero (i.e., a forbidden
transition), as shown in the lower panel of Fig. 1(a).

Based on the above discussions, we consider two realistic
molecular systems, LiH and HF, where the shapes of the
vibrational wave functions of molecules are similar to those
of a harmonic potential except for a distortion due to the
anharmonicity of the PESs, as shown in Figs. 1(b) and 1(c).
Therefore, the nature of the parity of the wave functions is
approximately conserved, whereas the parity of molecular
dipole moments is not as simple as in the above discussion
for the harmonic potential. In the following discussion on the
parity, the coordinate origin is taken to be the center of the vi-
bration wave function of interest. For lower levels whose wave
function is localized near the equilibrium distance, the dipole
moment can be regarded as being linear (i.e., odd-function-
like). Thereby, the TDM p; ;4| between these lower levels
increases monotonically as the vibrational level increases, as
for the harmonic model. For higher levels, however, such
linear approximation of the dipole moment does not hold,

and the nonlinearity of it becomes pronounced. As the bond
length increases, the dipole function takes maxima (i.e., even-
function-like) and then decreases asymptotically to zero. This
behavior results from the relaxation of the molecular polariza-
tion, which generally occurs for charge-neutral heteronuclear
diatomic molecules. Owing to the even-function nature of
the dipole function, the TDM pu; ;4 between higher levels
decreases as the vibrational level increases. As a consequence,
the TDM between certain levels has a near-zero value, as can
be seen in Figs. 1(b) and 1(c) for LiH and HF, respectively.

No missing rung will appear in the VLC simulations based
on the assumption of the linear dipole function and is likely
to give an unrealistic result. Since the position of the missing
rung sensitively depends on the shape of the PES and dipole
function (see Appendix A), highly accurate quantum chem-
istry methods are required to identify its exact position.

III. NUMERICAL EXPERIMENTS

To verify the existence of the missing rung by numerical
experiments, we conducted wave-packet dynamics simula-
tions for the LiH molecule. The time evolution of the wave
packet W(x, ¢) under a laser electric field E () is expressed by
the following time-dependent Schrédinger equation:

0
inE\P(x,t) =H(x, H)Y(x,t), (1)
where the Hamiltonian H (x, t) is defined by
H(x,1) = Ho(x) — n(x)E(1), (2)
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FIG. 2. Color maps of the results of the single-pulse method and the double-stepping pulse (DSP) method (explained later in the
paper). (a) Dissociation probabilities Pyissoc and (b) vibrational level with the largest occupation number N, for the single-pulse method.
(c) Dissociation probabilities Pyissoc for the DSP method. The blue dots represent the grid points where the wave-packet simulations were
conducted. The yellow boxed area in (a) and (b) represents the parameter range chosen for the DSP method.
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Meq in Hy(x) is the reduced mass of LiH. The potential energy
V (x) and the dipole moment i (x) were calculated by the mul-
tireference averaged quadratic coupled-cluster (MR-AQCC)
method [27]. Details of these computations are described in
Appendix A. We employ a Gaussian pulse as the electric field
E(t) of the pulsed laser:

E(t) = Egexpl—a(t —to)*}cos{w()(t —1p)},  (4)

Ho(x) = —

where Ej is the maximum electric field amplitude, o is
the Gaussian spreading parameter, #; is the center time of
the pulse, and w(¢) is the time-dependent frequency. The
time variation of w(t) is assumed to be a linear chirp, and
parametrized by the two dimensionless parameters y; and y,
as

t—1 Yi— )2

where o0 = 1/ /2« is the standard deviation of the Gaussian
pulse envelope. Equation (5) means that w(¢) is a linear func-
tion through two points, w(ty — 20) = wo(1 + ;) and w(ty +
20) = wp(l — y»). The reference frequency wy was set to the
transition frequency between the ground state and the first
excited state [wg = (€] — €p)/h]. Based on the above formu-
lation, the VLC process for the LiH molecule was simulated
by computing the time evolution of wave packets initially
set to the ground state using the second-order Suzuki-Trotter
decomposition method.

Here, we discuss the parameter ranges of Ej and « that
determine the shape of the pulses. As mentioned in the
Introduction, there are two types of excitation process mech-
anisms induced by chirped lasers: quantum ladder climbing
and classical autoresonance. Since MRP is a quantum issue
that apparently appears when the vibrational levels can be
regarded as discrete, the parameter range should be chosen
so that quantum ladder climbing occurs. Therefore, using the
characterization parameters proposed by Barth et al. [16], we
estimated the parameter range for quantum ladder climbing

o) = o] ~(n + )

(see Appendix C for details). The parameter range was deter-
mined to be Ey = 2.0-20 MV /cm and o = 1078-1077 fs2.
For this parameter range of Ej and «, a grid of 20 x 20
points on logarithmic scales was defined and wave-packet
dynamics simulations were carried out for each grid point.
The chirp parameters y; and y, were optimized by Bayesian
optimization so as to maximize the degree of excitation and
the dissociation probability. The degree of excitation was eval-
uated by the expectation value of the occupied states, and the
dissociation probability was evaluated by a time integration of
the probability density flux of the wave-packet that reaches the
dissociation limit. The details of the wave-packet simulations
and optimizations are described in Appendixes B and D.

IV. RESULTS

Figures 2(a) and 2(b) show the results of the wave-packet
dynamics simulations with optimized chirp parameters. The
color map in Fig. 2(a) shows the dissociation probabilities,
showing the trend that the dissociation probabilities get larger
with larger electric fields (o< Ep) and longer pulse widths
(¢ 1/4/a). This result is a natural consequence of the fact that
greater dissociation is promoted by a higher pulse energy. The
color map in Fig. 2(b) shows the vibrational state that has the
largest occupation number (excluding the ground state) after
each of the simulations. It can be seen that there is a wide
plateau consisting of the 15th and 16th states. The missing
rung of LiH is located around the 16th state, indicating that the
wave packet was trapped there due to the missing rung during
VLC. This result shows that the MRP hinders photodissocia-
tion by VLC. Since the MRP occurs for all molecular bonds
with polarization, it is important to solve the MRP to achieve
photodissociation by VLC.

V. DOUBLE-STEPPING PULSE METHOD

Here, we propose the double-stepping pulse (DSP) method
as a solution for the MRP. In addition to a conventional pulse
for the adjacent transitions (Av = %1), the DSP method uses
a secondary pulse to achieve transitions of Av = +2, i.e.,

013117-3



HORIBA, SHIRAI, AND HIRAI

PHYSICAL REVIEW A 105, 013117 (2022)

Transition Dipole Matrix [LiH]

01234567 891011121314151617181920212223 ‘/li,j‘

TDMs of Av= * 1 have maximum values|

TDMs of Av= * 2 have maximum values

LCoONOUAE WN RO

0.6
- sl =laui+ 0] A ig 02
3 0.5 == |Wii+2| = {ilu]i+2)] j \. 17
S 18
204 7‘ 19 o1
- i 20 ;
2 ! P & i %;
S 02 .'. ‘“‘KA AI!; g 23
w \ ]
e o A5 e
S o1{d Pl HRY,
nu““ \“ .
0.0 A

0 2 4 6_8 10 12 14 16 18 20 22
1357 9111315171921

State

FIG. 3. Absolute values of the transition dipole matrix |u; ;| for
the LiH molecule. The star indicates the level where TDM has
the maximum value (magenta, TDMs of Av = %1 have maximum
values; lime, TDMs of Av = +2 have maximum values). The lower
left inset shows the absolute values of TDMs for Av = +1 and
Av = 2. The TDMs are calculated based on the PESs and dipole
moments calculated by the MR-AQCC method.

double stepping, between levels around the missing rung.
Based on the previous discussion, when the dipole func-
tion has an even function property around the missing rung,
transitions between levels with different parity (Av = %1)
are forbidden, while transitions between levels with the same
parity (Av = =£2) are allowed, and vice versa when the dipole
function has an odd function property (see Fig. 3). Thereby,
the DSP is complementary to a conventional pulse for suc-
cessful VLC. A well-known ladder climbing method with two
pulses is Raman chirped adiabatic passage (RCAP) [7,28,29],
which excites vibrational levels with series of Raman pulses
(linearly chirped pump and Stokes pulses). The key difference
between RCAP and the DSP method is that RCAP uses non-
resonant Raman pulses, while the DSP method uses resonant
pulses for vibrational excitation.

To show the effectiveness of our method, we conducted
wave-packet dynamics simulations of the DSP method. For
the main pulse for the transitions of Av = +1 we chose
pulse parameters for which almost no dissociation occurred
using a single pulse [Ey = 3.0-9.0 MV /cm, o = (1.0-2.0) x
1078 fs72, and 9 x 6 grid points on logarithmic scales, as
shown in the yellow boxed areas in Fig. 2]. For the DSP, the
pulse parameters Ey = 3.0 MV/cm and o = 8.0 x 1078 fs=2
were used. Here, we have to optimize the chirp parameters
for two pulses, the main pulse and the DSP, and the delay
time between the two pulses (Afy = t(l)mi“ — t(l))SP). Hence, we
have to optimize five parameters, y™n, ymain ,,DSP ) DSP
and Afy. Since the computational cost of handling five vari-
ables in Bayesian optimization is high, the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [30] evolutionary
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FIG. 4. (a) Snapshot of the excitation process with the most
energy efficient pulses in the DSP method. The pulse parameters of
the main pulse are £y = 5.95 MV/cm and a = 1.27 x 1078 fs72,
(b) Snapshot of the excitation process with only the main pulse, with
the same parameters as in (a). (c) Top: Electric field intensities of the
main pulse, the DSP, and the overall field. Bottom: Corresponding
time-dependent frequencies of the main pulse and the DSP in (a).
The red and blue dashed lines represent the transition frequencies for
Av = %1 (red) and Av = £2 (blue).

optimization method was used for the parameter optimization
(see Appendix D for details). The reference frequency of the
DSP is set to the transition frequency between the 15th and
17th levels, a)(]))SP = (€17 — €15)/h, where most of the wave
packets were trapped, as shown in Fig. 2(b). Although the
effect of the relative phase on dissociation probabilities is not
negligible, the relative phase between the main pulse and the
DSP was set to zero for the ease of optimizations. The effect
of the relative phase is discussed in Sec. VI.

The dissociation probabilities obtained by the DSP method
are shown in Fig. 2(c). It can be seen that the DSP
method enhances the dissociation significantly compared to
the single-pulse method [Fig. 2(a)]. Although this result
shows the superiority of the DSP method over the single-pulse
method in terms of the dissociation probabilities, the energy
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efficiency of the DSP method remains a concern because the
method requires additional energy to generate the additional
pulse. Thus, we compared the energy efficiency of the two
methods, specifically the amount of dissociated molecules per
unit energy of the pulses. (Details of the calculation method
are described in Appendix E.) The highest energy efficiency
for the DSP method was 0.763 ) while that for the single-pulse
method was 0.193 mol/J. Thus, the DSP method was found
to be about four times more efficient than the single-pulse
method, demonstrating that the DSP method is a promising
method for solving the MRP. This result was obtained based
on simulations only for the molecular vibrational degrees of
freedom; however, the rotational degrees of freedom need to
be taken into account for more realistic simulations. Since
the dissociation efficiency may decrease due to the leakage
of populations to undesired levels caused by the rovibrational
coupling, it may be necessary to use light-induced molecular
orientation control techniques [31,32].

Figure 4(a) shows a snapshot of the wave-packet dynamics
simulations with the most energy efficient pulses in the DSP
method. Figure 4(b) shows a snapshot with only the main
pulse in Fig. 4(b). Without the DSP [Fig. 4(b)], it is clearly
seen that the wave packet is trapped in the missing rung level,
while with the DSP [Fig. 4(a)], the wave packet is successfully
excited to the dissociation limit. Figure 4(c) shows the electric
fields and time-dependent frequencies used for the above sim-
ulation shown in Fig. 4(a). It clearly shows that the DSP is
focused on the 15th and 16th excitation frequencies which are
around the missing rung. The fluence of the main pulse is 522
mJ/cm?, and that of DSP is 53 mJ/cm?. The wavelength cor-
responding to the center frequency of the main pulse is 9.6 um
and that of DSP is 7.3 um. These properties can be achieved
by focusing a few-microjoule laser pulse generated by differ-
ential frequency generation to a cross section of several tens of
pum?. The chirp rate of the main pulse is —8.1 x 107° fs=2 and
that of DSP is —3.4 x 107 fs~2 and the corresponding group
delays of dispersion (GDD) are —6.1 x 10* and —1.5 x 10°
fs?, respectively. To achieve these GDD with optical media
such as calcium fluoride or fused silica, which have nega-
tive group velocity dispersion in the infrared region, a thick
medium of about a dozen centimeters will be required. It
could also be realized by using multiple scattering by a pair
of chirped mirrors [33] or an optical fiber [34] with negative
group velocity dispersion in the infrared region. Thus, the
proposed method is not considered to be physically infeasible
in terms of laser intensity and spectrum.

VI. DYNAMICS OF VIBRATIONAL
TRANSITION PROCESSES

The above discussions were limited to phenomenological
cases. To understand the mechanism of the DSP method mi-
croscopically, we propose an analysis method that clarifies
the dynamics of vibrational transition processes under electric
fields. We calculated the time evolution of the wave packet
W(x, t) using the Suzuki-Trotter decomposition method with-
out explicitly treating the information of individual vibrational
levels. However, the probability amplitude of each vibrational
level is necessary to understand the dynamics of the vibra-
tional excitation process. Thus, the probability amplitudes
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FIG. 5. (a) Schematic illustration of Eq. (7). (b) Occupation
numbers |c; |2(¢) and the contributions from other levels AC;k)(t) for
the 12th, 13th, and 14th levels.

cj = (¢j | W(x,t)) of each vibrational level were calculated
at each time of the simulation, and the interaction between
the vibrational levels is investigated by calculating the off-
diagonal elements of the Hamiltonian. Under an arbitrary
electric field E(¢), the time evolution of the probability am-
plitude c; of the jth level is expressed by the following
equation:

. dc;
zha—t’ =€jc; —Zuj,kE(t)ck, (6)
kj
where ¢; is the eigenenergy of the jth level and 1 is the
TDM of the jth and kth levels. Approximately, the variation
of the probability amplitude Ac; during At can be written as

.EjAl‘
Acj >~ —i

(At
¢ i D yuE e ™
k#j

Figure 5(a) illustrates the meaning of Eq. (7). The first term
of the right-hand side of Eq. (7) does not change the norm of
¢; since it merely rotates c; in the complex plane. On the other
hand, the second term, which is the summation of off-diagonal
elements of the Hamiltonian and represents the mixing with
other levels via the electric field, affects the norm of c;.
As shown in Fig. 5(a), the radial component of the second
term changes the norm of ¢;. Therefore, the contribution to
the norm of ¢; can be quantified through rotating Ac; by
the argument of ¢;, §; = argc;, and taking its real part. The
second term in Eq. (7) can be regarded as the summation
of contributions to c¢; from each level. Since the TDM p; x
and probability amplitudes ¢; for each level are obtained,
each element of this summation can be calculated. We define
AC® (1) as the time integration of the contribution to the
Jjth level from the kth level, indicating the net contribution
of the kth level to the jth level norm up to time ¢. It is
written as

ch.“(t):f Re<iMkTE(t/)Ck(f/)eXP(_in(t/))>dt,-
®)
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A positive value of Eq. (8) means that the kth level acts
to increase the norm of the jth level, and a negative value
means that it acts to decrease it. By calculating AC(k)(t) for
each level, it is possible to analyze which vibrational level has
the dominant contribution to the excitation process of a given
level. Furthermore, by calculating AC](.k)(t) for each electric

field component EM3"(¢) and EPSP(¢), we can distinguish the
contributions of each pulse.

Figure 5(b) shows the occupation number of the 12th, 13th,
and 14th vibrational levels (levels lower than the missing
rung) and the contribution from the other levels calculated
by Eq. (8) for the simulation of the DSP method shown in
Fig. 4(a). It can be understood that the cascade excitation of a
wave packet, i.e., VLC, is the result of quantum interference of
the positive contribution from the lower level and the slightly
delayed negative contribution from the upper level. Note that
these transitions are caused by contributions from adjacent
levels, which agree with the process of quantum ladder climb-
ing described by successive Landau-Zener transitions [16]. It
is also worth noting that even though the electric field of the
DSP is present during the transition of these levels, it does
not contribute at all to the changes in occupation numbers.
This indicates that the excitation processes at levels lower than
the MRP region are all induced by the main pulse. Next, we
show the results for the vibrational levels of the 15th, 16th,
17th, and 18th (levels around the missing rung) in Fig. 6.
Figure 6(a) shows the result with DSP shown in Fig. 4(a) and
Fig. 6(b) shows the result without DSP shown in Fig. 4(b).
Comparing the time variations of the occupation number for
the 15th level, it can be seen that without the DSP, the positive

20

15 1

P dissoc( 9)

10 1

count

-0.1 0.0 0.1 0.2 0.3 0.4 0.5
Pgissoc(8 = 0) = Pgissoc(6 =)

FIG. 7. Histogram of the values of the difference between the
dissociation probability at relative phase 6 = 0 [Pyissoc(0 = 0)] and
0 = 7 [Pyissoc(0 = )]. The inset shows the relationships between
the dissociation probabilities and relative phases for pulses of
Pissoc (0 = 0) — Pissoc(0 = ) = 0.35.

contribution of the 14th level is not sufficiently canceled by
the negative contribution from the 16th level, and most of the
wave packet remains in the 15th level, whereas with the DSP,
the additional negative contribution from the 17th level caused
by the DSP significantly decreases the occupation number of
the 15th level. In the contribution to the 17th level in Fig. 6
there are slight contributions from other levels without the
DSP. On the other hand, there is an apparent positive contri-
bution from the 15th level with the DSP, which excites wave
packets to higher levels. Such an interlevel excitation can also
be seen between the 16th and 18th levels for the DSP method.
These results confirm the interpretation of the MRP and the
mechanism of the DSP method.

The proposed contributions reveal that the DSP method
utilizes quantum interference effectively to solve the MRP.
Such quantum interference effects are one of the most impor-
tant features of coherent control [35-37]. Another indication
of quantum interference is the effects of the phases of the
electric fields. For the 54 pulses considered in the DSP method
with optimized parameters at a relative phase of zero, we
performed a wave-packet dynamics simulation by varying the
relative phases from zero to 2.

Figure 7 shows the histogram of the values of the differ-
ence of the dissociation probability at relative phase 6 = 0
[Piissoc (@ = 0)] and 8 = 7 [Pyissoc (@ = 7 )]. For many pulses,
it is found that the dissociation probability differs signifi-
cantly between 6 = 0 and its antiphase, & = . This result
implies that the phases of the electric field and that of the
vibrational levels are coupled, and they play an important
role in the dynamics of quantum interference between vibra-
tional levels. Thus, the quantum interference effect is deeply
related to the DSP method. The inset of Fig. 7 shows the
relationship between the dissociation probability and relative
phases for pulses of Pyissoc(0 = 0) — Pyissoc(0 = ) = 0.35.
The dependencies between dissociation probabilities and rel-
ative phases show distorted cosine functional curves. Since
the pulse parameters were optimized with relative phase
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0 = 0, it is reasonable that they exhibit a cosine functional
shape which takes a maximum value at 6 = 0. However
the dissociation probability is a resulting value from the
complicated interaction between the coupled vibrational lev-
els coupled with the electric field, its dependency is not
considered to be expressed by a simple cosine function. The
distortion of the cosine function can be attributed to compli-
cated interferences between vibrational levels, but complete
understanding of these functional shapes needs further
investigation.

VII. SUMMARY

In summary, we simulated photodissociations by VLC
based on the PES and dipole moment computed by a highly
accurate quantum chemistry method. We found the MRP,
which causes an interruption of VLC, and revealed that the
MREP is caused by the disappearance of the adjacent TDM
at a specific vibrational level. As a solution to this problem,
we proposed the DSP method that uses additional pulses to
induce a Av = #£2 transition, and verified its effect on the
MRP by wave-packet dynamics simulations. We note that the
DSP method not only enhances the dissociation probability
but is also more energy efficient than the single-pulse method.
We also clarified the detailed mechanisms of VLC and the
DSP method. The excitation process of VLC is caused by
quantum interference between the positive contribution from
the lower level and the negative contribution from the upper
level and the DSP plays an essential role in the excitation
process to higher levels. The MRP is considered to be a
ubiquitous problem in VLC because it originates in the par-
ity of the vibrational wave function and the dipole function.
The MRP may be why there are few experimental reports of
VLC-induced molecular bond breaking, and we believe that
our findings may pave the way to VLC-induced photodisso-
ciation and, ultimately, to the versatile control of chemical
reactions.

APPENDIX A: QUANTUM CHEMISTRY COMPUTATIONS

The potential energy curves and dipole moments of the
LiH and HF molecules were calculated using the mul-
tireference averaged quadratic coupled-cluster (MR-AQCC)
method [27]. First, complete active space self-consistent field
(CASSCEF) calculations [38] were carried out and the obtained
CASSCF wave functions were adopted as reference functions
for the MR-AQCC calculations. For LiH, the molecular or-
bitals derived from the Li 25 and H 1s atomic orbitals were
selected as active orbitals. The complete active space (CAS)
was constructed by distributing two electrons over these two
orbitals. In the MR-AQCC calculations, the electrons in Li 1s
were additionally correlated. For HF, the molecule was placed
on the z axis. Accordingly, the H 1s and F 2pz orbitals were
relevant for the formation of the H-F bond. The molecular
orbitals derived from these atomic orbitals were selected as
active orbitals in the CASSCF calculations; two electrons
involved in these orbitals were treated as active electrons. The
electrons in the orbitals originating from F 1s, F 2s, F 2px,
and F 2 py were also correlated in the MR-AQCC calculations.
The basis set used was Dunning’s aug-cc-pVQZ [39-41].

TABLE I. Calculated and experimental parameters for LiH and
HF. r, are the equilibrium distances, D are the dissociation energies,
w, are the fundamental vibrational frequencies, and u are the dipole
moments.

System r. (A) Dy (eV) w, (cm™") w (debye)
LiH (calc.) 1.5710 2.496 142222 5.792
LiH (expt.) 1.5957 2.429 1405.65 5.882
HF (calc.) 0.9168 5.848 4103.48 1.791
HF (expt.) 0.9168 5.869 4138.32 1.826

All the calculations were carried out using the GAMESS pro-
gram [42,43]. The calculated spectroscopic parameters and
dipole moments are summarized in Table 1. Here, the spec-
troscopic parameters were estimated by fitting the potential
energy curve with a quadratic function. The calculated pa-
rameters were in good agreement with the corresponding
experimental values [44]. The results suggest that the po-
tential energy curves and dipole moments are reliable over
the entire range. The CASSCF and MR-AQCC potential en-
ergy curves and transition dipole moments are compared in
Fig. 8. The CASSCF results were quite different from the
MR-AQCC results because of the lack of dynamical corre-
lations. As a result, the missing rung in which the transition
dipole moment is close to zero appeared at different states.
The results suggest that calculations using a high-level method
are necessary to estimate the exact position of the missing
rung.

APPENDIX B: WAVE-PACKET DYNAMICS SIMULATIONS

Nonrelativistically, the time evolution of quantum sys-
tems can be described by the time-dependent Schrédinger
equation,

ih%lp(x,t) = H(t)¥(x, 1). (B1)

The formal solution of the Schrodinger equation with the
time-independent potential V (x) can be written as

Y, 1) =e g (x, 0), (B2)

where U(t) = ¢~"i'" is the time-evolution operator. How-
ever, we have to consider the time-dependent Hamiltonian
H (x, t) that describes the system under the laser electric field
E(),
2 42
Hx,t)=———+V(x,1), B3

(1) = =22 VD) (B3)
where V(x,t) = V(x) — u(x)E(¢). To treat the time-varying
potential V (x, t), we set t = Ndt and express the time evolu-
tion operator as the product of N operators in time increments
of dt,

N
U@ =[]uwn. (B4)
j=0
where

- H(x,jdr)
—i—==dt

Ujdt) =e (B5)
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FIG. 8. Comparison between CASSCF and MR-AQCC. Top: PESs and dipole moments for (a) LiH molecule and (b) HF molecule. Bottom:

Absolute values of the corresponding TDMs.

Several methods of applying an exponential operator to a
wave function have been developed [45], including methods
based on a Taylor expansion and the Chebyshev-polynomial
method. However, the Suzuki-Trotter decomposition method
[46,47] is often used because of the good balance between
computational cost and speed. We also use the Suzuki-Trotter
decomposition method for the time-evolution computation.
The second-order Suzuki-Trotter decomposition can be writ-
ten as

dt  _V(x,jdi+dt/2) T dt
e dte

Ujdt) ~ 7T 7e “it% £ 0@dr®).  (B6)
An error arises because 7 and V are noncommutative. Here,
T is diagonal in wave-number space and V is diagonal in
real space, so in the second-order Suzuki-Trotter method,
when applying e~'i %7, the wave function is expressed in
wave-number space using a fast Fourier transform (FFT) and
Y jditdtj2) g . . .

i is applied to the wave function, which returns
to real-space notation by an inverse FFT. When et T s
applied again, the wave function is expressed in wave-number
space using the FFT again. Using the above procedure, the
time-evolution computation can proceed without expanding
the exponential function operator. By repeating these calcula-
tions N times, the wave function at the desired time ¢ can be
obtained. For the simulations of LiH dissociation by chirped
laser pulses, dt = 1.0 a.u. is used. The simulation time g,
depends on the shape of the chirped laser pulses, 75, = 8o,
where o is the standard deviation of the Gaussian envelope
for the pulse laser. We take an evenly spaced isotropic grid of

210 elements for x in the range x = 1.5-15.0 bohrs. Figure 9
shows several vibrational wave functions represented in wave-
number space, indicating that the wave-number space (and
corresponding number of grids) is sufficient to represent the
wave function of the bound state.

1. Dissociation probability

Here, we describe how to calculate the dissociation prob-
ability. The wave functions that reach the right edge of the

lwo(k)|2

0.3 - |y (k) |2
; |w16(K)|?
NS 0.2 - lwa3(k)|?
]
=

0.1 1

0.0 A .

-100 0 100
k (a.u.)

FIG. 9. Vibrational wave functions represented in wave-number
space corresponding to a grid of 2!° elements for x in the range x =
1.5-15.0 bohrs.
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grid represent the state of bond dissociation. Therefore, the
probability densities |1ﬂ(xn~ght_edge)|2 represent the dissociation
probability. It is convenient to use the probability density flux,

h
J(x, 1) = zl.—M{W*(x, DV (x, 1) = (Vi (x, 1)y (x, 1)}

h
=Re{1ﬂ(x,t)*.—VW(x,t)}- (B7)
iM
liMVip(x, t) can be transformed as the following:

h
o vt = pylx, /M =IFFT(ky (p, 1))/M. (B8

where IFFT means an inverse FFT. Thereby we can quickly
compute %Vw(x, t) because we have the wave function
in wave-number space Y (p,t) and can therefore use the
Suzuki-Trotter decomposition method for the time-evolution
computation. The time integral of the probability density flux
at the right edge of the grid after a sufficiently long simulation
time gives the dissociation probability in this case:

Tsim
Pissoc = / J(xn'ght—edgea t/)dt/- (B9)
0

2. Complex absorbing potential

An absorption potential with a negative pure imaginary
value was set to prevent the wave function from reaching
the grid boundary. Here, we used the complex absorption
potential of a fourth-order function,

Vabsorb ()C) = - i§X4 s

where £ = 1.0 is used in this study. The norm of the wave
function reaching the region where this function has a signif-
icant value decays. This prevents reflections at the edge and
the consequent unwanted interference. We placed the potential
just after the flux calculation point.

(B10)

APPENDIX C: RANGE OF LASER PARAMETERS

Since the MRP is a quantum problem that appears when
the vibrational levels can be regarded as being discrete, we
have to choose laser parameters (Ey, maximum electric field
amplitude, and «, Gaussian spreading parameter) that repro-
duce the excitation process where quantum phenomena are
dominant. Here, we provide a rough estimation of the laser
parameter range where quantum ladder climbing occurs, using
the parameters proposed by Barth ef al. to distinguish between
quantum ladder climbing and classical autoresonance [16].

The excitation process is characterized by three time
scales, Tp = +/2mhwy/A (the Rabi time scale), Ty = 1 /\/F
(the sweep rate time scale), and Ty, = 2w 8/T" (the nonlinear
transition time scale), where m is the reduced mass, wy is the
eigenfrequency, B is the anharmonicity of the system, A is the
driving amplitude (amplitude of the oscillatory component of
the Hamiltonian), and I is the chirp rate. To obtain the values
of wy and B of LiH, the excitation frequency is fitted with the
following equation:

Wpnt1 = @ofl —2B(n+ D). (ChH

The fitting gives wy = 0.0068 a.u., B = 0.0176. The driving
amplitude A corresponds to the product of the electric field

. P, —(P1+1) Pt.hr(:;h
0
-5
10!
_ -10
§
§ -15
&
) -20
10° 5
-25
-30
107! - ' —35
10-° 108 1077 10°°

a(fs2)

FIG. 10. Characterization parameter Ppesn = P> — (P + 1) cal-
culated in the ranges E; = 107'-10%, @ = 107°-107°. The parameter
range corresponding the quantum ladder climbing is colored red. The
blue boxed area represents the parameter ranges we chose.

and the linear dipole moment. Although the dipole moment
of LiH is nonlinear, in the range 2-5.5 bohrs, it is linearly
approximated to be p(x) >~ 0.354x 4 1.086. The effective
driving amplitude A°T is estimated as A°"T = 0.354E,. The
chirp rate I' is taken as the value when y; = y, = 0.5, namely,
I'= wWo— 1 / 4o.

Based on these values, T;, Ts, and Typ are calculated.
The parameters that distinguish the quantum case from the
classical case Pj, P, are expressed as follows:

T

P = , C2

=T (C2)
IS

P = —. C3

2 T (C3)

The conditions under which phase-locked ladder climbing
occurs are as follows:

P2 >P1+1, (C4)

P > 0.79. (C5)

Figure 10 shows the calculated value of Pyresh = P» —
(P +1) for the parameter ranges Ey = 107'-10%, o =
107°-107°. The parameter range that satisfies conditions (C4)
and (C5) is colored in red. From Fig. 10, ladder climbing
is considered to occur in the parameter range Ey = 2.0-20
MV /cm, a < 1077 fs=2. It is not possible to make o arbitrar-
ily small due to the vibrational relaxation time. Although there
are two types of vibrational relaxation, intra- and intermolec-
ular vibrational relaxation, only intermolecular vibrational
relaxation is considered in estimating the vibrational relax-
ation time. Intramolecular vibrational relaxation (IVR) will
be negligible because the LiH molecule is a small molecule
and IVR will be suppressed by the phase locking (or “photon
locking”) between the chirped electric field and vibrational
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states [48—51]. The intermolecular vibrational relaxation time
of LiH is estimated using the mean free time of LiH at stan-
dard state (298.15 K and 10° Pa). The mean free time depends
on the molecular radius, which varies significantly during the
dissociation process. Assuming that the molecular radius is
half the equilibrium distance (r, >~ 1.6 A), the mean free time
is 377 ps. The tail of the wave function of the highest bound
state reaches about 5 A, and assuming the molecular radius
is half this distance, the mean free time is 39 ps. Thus, the
time scale for vibrational relaxation is estimated to be several
tens of picoseconds, which corresponds to the parameter range
a=10"5-10"7 fs2.

Based on the above estimation, we set the parameter ranges
as Ey =2.0-20 MV/cm, o = 1073-1077 fs~2 (blue boxed
area in Fig. 10). Note that a more detailed discussion is
required for an actual system to obtain a more accurate char-
acterization.

APPENDIX D: OPTIMIZATION OF THE CHIRPED LASER
PULSE PARAMETERS

Here, we describe the details of the optimization methods
of chirped laser parameters. We adopted the following linear
chirped frequency as the time-dependent frequency w(t) of
the laser pulse:

t J—

4o
Equation (D1) is parametrized by the two dimensionless pa-
rameters y; and y,. These chirp parameters significantly affect
the excitation process of VLC. To achieve a more effective ex-
citation, we optimized these parameters using a combination
of machine learning and a wave-packet dynamics simulation.
We used machine learning to update the parameters based
on the evaluated values of the parameters obtained by the
wave-packet dynamics simulation.

For a single pulse, the two parameters y; and y, are op-
timized in a range restricted to [0,1] so as to represent the
down-chirp. This parameter space is divided into a 100 x 100
grid (i.e., 0.01 steps), and the optimal parameter is searched
from these grid points by the optimization method.

The chirp parameters are optimized for each of 400 dif-
ferent pulses; thus a fast and efficient optimization method
is required. In addition, since the effects of the parameters
on the excitation process cannot be evaluated analytically,
this system is regarded as a black box. As a fast black-box
optimization method, we employed Bayesian optimization.
Bayesian optimization enables efficient exploration and op-
timization in parameter space leveraging predictive models
such as Gaussian process regression, which is a powerful
method for black-box optimization [52]. We used Gpy [53],
an open source library in PYTHON, for the implementation of
Bayesian optimization. In the optimization, we adopted Gaus-
sian process regression with the radial basis function (RBF)
kernel as the predictive model for the parameter space, and
employed the upper confidential bound (UCB) as the acqui-
sition function. The iteration number for updating parameters
was set to 50.

The objective function was set to be the sum of the excited
and dissociated wave packets. Although we aim to find pa-

1
Cri4

Yi—"
_ } (D1)

o) = o[~ +72)

rameters that give efficient photodissociation, for some pulse
parameters whose energy is not sufficient to cause dissocia-
tion, an objective function with only an amount of dissociation
will result in insufficient optimization. Therefore, by includ-
ing an amount of an excited wave packet in the objective
function in addition to the dissociated wave packet, it is
possible to obtain optimized parameters that realize efficient
excitation. The amount of dissociated wave packet is evalu-
ated by integrating the absorbed wave packet described in the
previous section. The degree of excitation is evaluated by the
expected value of the occupied states |¢;), as follows:

Ndissoc

> ()it v

j=0

(D2)

Pexcited =

where ngissoc 1 the highest level in the bound state, ngissoc = 23
in the case of LiH. The expected value of the level is normal-
ized by ngissoc in order to balance the amount of dissociation,
whose value range is [0,1]. Based on the above settings, op-
timization of the chirp parameters was performed for a single
pulse.

In the case of the DSP method, there are five parameters
to be optimized: the chirp parameters of the main pulse and
the DSP, yMain, yMain ©o,DSP “and PSP, and the delay time
between the main pulse and the DSP (Afy = 5P — f)ain),

Since the computational cost of Bayesian optimization in-
creases in proportion to the cube of the number of variables
[54], it is difficult to handle five variables in Bayesian op-
timization. Thus, CMA-ES [30] was used for optimization.
CMA-ES adaptively updates and optimizes the covariance
matrix of the multivariate normal distribution that generates
candidate solutions based on the evaluation values of the
candidates. It is known that CMA-ES is a robust method that
can be optimized even in noisy high-dimensional parameter
spaces [55,56].

In the optimization using CMA-ES, the number of gener-
ations was set to 150 and the number of individuals to 16 for
each generation. The objective function was set to be only the
dissociated wave packet because a certain amount of dissoci-
ation can be expected by adding the DSP. The initial values
yMain and yMain are inherited from the optimal parameters for
the single-pulse case. The value range of the parameters is not
restricted, allowing the parameters to be negative. Negative
parameters give the possibility of up-chirping or the DSP
reaching ahead of the main pulse.

In this study, the general mathematical optimization algo-
rithms, Bayesian optimization and CMA-ES, were employed
for optimizations of pulse parameters. Another option to ob-
tain the optimal external field is the quantum optimal control
theory (QOCT) [57], which is one of the most powerful
methods in quantum state control. Since QOCT optimizes the
instantaneous electric field, it has the potential to obtain a
truly optimal electric field waveform, but the resulting electric
field and spectrum tend to be complicated. In order to guar-
antee the physical feasibility of the pulse, a few numbers of
parameters that define the feasible pulse shape (i.e., linearly
chirped Gaussian pulse) were optimized using general math-
ematical optimization methods instead of using QOCT. It is
also possible to optimize the electric field directly by QOCT
without restricting the pulse shape to that specified by a few

013117-10



MISSING-RUNG PROBLEM IN VIBRATIONAL LADDER ...

PHYSICAL REVIEW A 105, 013117 (2022)

Eo (MV/cm)

3x10°

2x10°
10-8 2x1078 3x1078 6x%1078 10~7
a (fs=2)
(@)

r0.125

-0.100

-0.075

0.050

0.025

0.000

Eo (MV/cm)

Energy Efficiency [DSP method] n

0.80

0.72

0.64

r0.56

r0.48

r0.40

r0.32

0.24

0.16

0.0
12x108 15x107% 1.8x1078
a (fs~?)

(b)

1078

FIG. 11. Calculated energy efficiencies n for (a) a single pulse and (b) the DSP method.

parameters, which may give pulses similar to the DSP method
or suggest new strategies for overcoming the MRP.

APPENDIX E: ESTIMATION OF ENERGY EFFICIENCY

To determine the energy efficiency of photodissociation
by VLC, the energy of the laser pulse and the amount of
dissociated molecules have to be estimated. Here, we show
a rough estimation of these values. First, we explain how to
estimate the energy of a pulse. The electric field of a Gaussian
pulsed laser E(¢) is determined by the maximum electric
field amplitude Ey and the Gaussian spreading parameter o
as follows:

E(t) = Epexp{—a(t — t9)*} cos{w(t)(t —ty)}.  (El)

The irradiance I (in W/cm?) of a pulsed laser is expressed
using the maximum electric field amplitude Ey (in V/cm) as
follows [58]:

ceon )
I(t) = TE(t) , (E2)
where ¢, g9, and n are the speed of light, the dielectric con-
stant, and the refractive index of the vacuum, respectively. The
energy of a pulse, & (in J), is expressed by the irradiance 7 (in
W /cm?) and cross section of the pulse, S (in cm?), as follows:

T cgon E(%S

2 2 Ja
In the case of a single pulse, the total energy required to cause
VLC is calculated by Eq. (E3). In the case of the DSP method,
two pulses, the main pulse and the DSP, are required for VLC.
We assume that the optical system for the implementation of
the DSP method is like that used in pump-probe spectroscopy

&= S/OO I(t)dt = (E3)

with a single light source. Assuming that there is no energy
loss in such an optical system, the total energy required for
VLC becomes the sum of the main pulse and the DSP energy.
Since this is a very rough estimate, it is considered that more
energy is required for the DSP method in practice.

Next, we explain the calculation method for the amount
of dissociated molecules. The number of molecules, N,; (in
moles), present in the region of the pulse cross section S (in
cm?), can be written as Ny = pS, where p (in mol / cm?) is the
areal density of the molecules. Assuming that the laser pulse
causes dissociation with a dissociation probability Pyissoc, the
number of dissociated molecules, Ngjssoc (in moles), is given
by

Niissoc = NanPaissoc = ,OSPdissoc- (E4)

For simplicity, we assume that p =1 mol/cm?. From

Egs. (E3) and (E4), the energy efficiency 5 (in mol/J) of
photodissociation by VLC can be estimated as follows:

% 2 Pdissoc«/a

_ N, dissoc

& T ceon

(E5)

Based on the above formulation, we estimated the energy
efficiency for the results of the single-pulse case and DSP
method, respectively.

Figure 11 shows the calculated energy efficiency of each
case. It can be seen that the DSP method shows a higher
energy efficiency than the single-pulse case. The maximum
energy efficiency for a single pulse is 0.193 mol/J, while that
for the DSP method is 0.763 mol/J, which is about four times
higher. This result shows the superiority of the DSP method
with respect to energy efficiency.
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