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Role of charge-resonance states in liquid high-order harmonic generation
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High-order harmonics can be generated in the gas, solid, plasma, and liquid samples driven by intense ultrafast
lasers. The microscopic mechanisms of the former three have been well studied. However, liquid high-order
harmonic generation (HHG) has demonstrated many unexpected results compared to other materials. Due to the
complexity of liquids, it is still unknown what the quantum origin of the liquid HHG is. Here we reveal the
role of localized charge-resonance states in HHG from disordered liquids. A quantum theory based on statistical
two-level resonance is developed, which explains well almost all the characters of liquid harmonics known so
far, such as the cutoff energy independence of wavelength. It may shed light on the optimal control of harmonic
generation in liquids.
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I. INTRODUCTION

Laser technology provides us a powerful tool for study-
ing ultrafast physics [1], such as tunneling ionization [2–4],
high-order harmonic generation (HHG) [5–7], and so on.
HHG can be utilized as not only coherent attosecond pulse
sources, but also probes for extracting ultrafast dynamic in-
formation of the microworld with high spatial and temporal
resolutions [8]. To achieve this, people have to construct
physical models to describe the mechanisms of HHG. For the
gas-phase HHG, the recollision model is well accepted [6].
For the solid-phase HHG, intra- and interband transitions are
thought of as the sources [9,10]. For the HHG in plasma,
the coherent wake emission and the relativistic oscillating
mirror mechanisms are identified [11]. The electron dynamics
in liquids which link physics with the chemical reactions
and biological processes are very important. Recently, HHG
from liquids has been studied experimentally [12–14]. For
bulk liquids driven by monochromatic fields, it is found that
the cutoff energy is proportional to the electric field strength
E0 of the laser [14,15], but independent on the driving laser
wavelength [15]. This character is quite different from that in
the gas and solid HHG, which has attracted much attention
recently. However, the liquid system is rather complex. Even
the most common water has a lot of anomalous properties,
such as the law of density with temperature. The microscopic
mechanism of liquid HHG is still a mystery.

In the theoretical aspect, a statistical random model chain
is used to simulate the liquid HHG processes [15]. The radial
distribution function of a liquid could be reproduced. By tak-
ing consideration of the statistical effect, an empirical cutoff
formula for the nonperturbative HHG in monochromatic fields
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is obtained,

� = E0d∗ = E0a(a − σ )

σ
, (1)

where a is the average distance, σ is the standard deviation,
and d∗ is the maximum coherence distance. Although the
formula based on classical physics is consistent with the ex-
perimental results of the linear cutoff law on E0, the quantum
micromechanisms behind liquid HHG are still unknown. For
the gas-phase HHG, the cutoff energy is proportional to A2

0 [6].
For crystal HHG, some works find that the cutoff energy
is related to A0 [16–19], while some works think that it is
only determined by E0 rather than λ [20]. It may come from
the multielectron effect or the dominance of intraband cur-
rents. However, the physics behind the cutoff independence
of wavelength in liquid systems is still not clear. Based on
Eq. (1), the cutoff energy in liquid HHG in a two-color laser
scheme [21,22] should depend on the peak effective field
strength of the superposed fields. However, we find that the
results are unexpected. By numerical solutions of the time-
dependent Schrödinger equations (TDSEs), the HHG cutoff
energy only changes slightly even though the superposed field
strength E ′ is apparently increased when the phase ϕ = 0. The
cutoff decreases obviously even if the effective field strength
E ′ is very close to the monochromatic field when ϕ = π . A
quantum version explanation based on mathematical deriva-
tions is highly desired to explain the wavelength-independent
cutoff in monochromatic fields and the break of linear field-
strength-dependent cutoff law in bichromatic fields. In this
paper, we developed a statistical two-level resonance model,
which can interpret the origin of the characters of liquid HHG
in the monochromatic and bichromatic laser fields.

II. NUMERICAL SIMULATIONS

The details of the numerical TDSE method can be found
in Ref. [15]. For a given σ , we perform several calculations
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FIG. 1. High-order harmonic spectra from one-color and two-
color laser schemes. The laser parameters are in the main text. A
trapezoidal envelope with full width at half maximum of 10T0 is used.

for different random realizations of the model and then co-
herently sum all these contributions to the HHG signal to
properly account for the intrinsic disorder of the liquid phase.
In the numerical simulations, the fundamental driving laser
wavelength is λ0 = 1600 nm, and the field strength E0 =
0.015 a.u. For the second pulse, E20 = 0.3E0, λ2 = λ0/3, or
λ2 = λ0/2 is applied. The phase difference ϕ is set to be
zero. The results are shown in Fig. 1. Since it is a disordered
system, the noise floor is high compared to the HHG from
ideal atomic and crystal systems. We identify the cutoff en-
ergy in the symmetric ω0 and ω0 + 3ω0 fields by the intensity
change and the separation point of the odd- and even-order
harmonics. The even harmonics correspond to the fluctuation
of the disordered system, which is incoherent and cannot be
measured in experiments. From Fig. 1 one can find that the
cutoff energy in the monochromatic ω0 field is around 43ω0.
The cutoff energy in the ω0 + 3ω0 fields is around 45ω0. For
the ω0 + 2ω0 fields, the cutoff energy is identified by the sep-
aration point of stable harmonics and fluctuation harmonics
by investigating their intensities with different numbers of
random chains. The former is robust, while the latter changes
obviously in different chains. One can find that even-order
harmonics are generated, and the cutoff energy is 44ω0. The
results in ω0 + 2ω0 fields qualitatively agree with the case
of ω0 + 3ω0. In the latter it is easy to identify the cutoff en-
ergy. Thus we mainly present the ω0 + 3ω0 results next. The
strength of the two-color fields is E ′ = 1.3E0 when ϕ = 0.
From the cutoff law in monochromatic fields, the cutoff en-
ergy is expected to increase 30%. However, the TDSE results
in bichromatic fields do not support the linear cutoff law any-
more. This phenomenon seems abnormal, which indicates that
the second laser field can change the symmetry of the system,
but cannot obviously extend the maximum HHG energy. It
suggests that the mechanism of liquid HHG is complex. A
new theory needs to be established to describe the interactions
between intense laser fields and liquids.

FIG. 2. (a) The eigenvalues and (b) the eigenstates from a ran-
dom chain with N = 256 atoms. (c) The sketch diagram of a series
of resonance two-level bound states. (d) The laser pulse and (e) the
time-dependent population for the resonance states φ1(x) and φ256(x)
when the initial state is φ1(x).

III. RESULTS AND DISCUSSION

To analyze the origin of liquid HHG, we calculate the
eigenvalues and eigenstates of the random model chain in
Ref. [15] by numerically solving the stationary Schrödinger
equation. The eigenvalues from the chain with N = 256 atoms
are shown in Fig. 2(a), and there is a band gap between
the bound states and the quasifree states. Figure 2(b) shows
four representative wave functions for the cases of n = 1,
25, 232, and 256, respectively. One can easily find that the
wave functions are localized states, which agrees with the
theory of Anderson localization of a disordered system [23].
φ1(x) and φ256(x) are mainly located near the 47th and 48th
potentials with the same modulus of the wave function, and
the difference is the sign of the wave function for the adjacent
potentials. The pair of states φ25(x) and φ232(x) has a similar
characteristic but is located in the region from the 33rd to
38th potentials. Further verification shows that almost all of
the bound states distribute in pairs. This reminds us of the
resonance excitation between the ground state and the first
excited state in H2

+ [24]. Figure 2(c) shows the sketch dia-
gram of the resonance between the pairs of the states. They are
almost degenerate. The maximum energy difference of bound
states is 	εm = 0.0096 a.u. and it is less than the photon
energy of the fundamental field. This is reasonable since the
energy shift of one liquid molecule is less influenced by others
because of their relatively long intermolecular distance and
long-range disorder. The resonance is verified by calculating
the time-dependent electron population with the initial state at
φ1(x) in a laser pulse. Figure 2(d) shows the laser field and
Fig. 2(e) shows the electron population on the states n = 1
and n = 256. The population transfer is almost 100% at some
times. The resonance excitation also occurs in other pairs of
states as well. As a result, we propose a statistical two-level
model and give a physical picture for the HHG in liquids.

From the mathematical derivation [24], the maximum har-
monic energy from a pair of strongly coupling states in the
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FIG. 3. The statistics of transition dipole moment pi j for differ-
ent standard deviations: (a) σ = 1.0, (b) σ = 1.4. The interval of
the dipole is set to be dp = ω0/(2E0 ) to make sure the resolution of
harmonic energy is one photon. The count is divided by the number
of configurations, M.

monochromatic field is

�cutoff = 2p12E0, (2)

where p12 is the transition dipole between the resonance
states [24]. This can explain the experimentally measured
linear dependence of maximum harmonic energy as a function
of laser field strength E0 and the independence of wave-
length [15]. By comparing the above equation and Eq. (1),

an effective dipole moment p∗ should be

p∗ = d∗

2
= a(a − σ )

2σ
. (3)

To justify this connection between the dipole and maxi-
mum coherence distance d∗, we use M = 100 chains with the
same statistical parameter σ to make a statistic of the number
of pi j between different pairs of resonance states. The count
in the y axis of Figs. 3(a) and 3(b) is the total count divided
by the number of configurations, M. One can find that the
maximum value of 2pi j is much bigger than the maximum
coherence distance d∗ [15]. However, d∗ is a statistical dis-
tance that stands for the maximum stable coherence. From this
sense, d∗/2 should correspond to a critical value of pi j that
must appear M times in the M configurations. Otherwise, it
corresponds to the fluctuation part of the liquid system, which
cannot generate stable coherent harmonic signals. In other
words, the count of critical pc

i j in Figs. 3(a) and 3(b) should be
one. For σ = 1.0 from our estimation in Eq. (3), pc

i j = d∗/2 =
45 a.u. For σ = 1.4, pc

i j should be 31 a.u. One may find that
the estimations agree well with the statistical values in Fig. 3.
We can conclude that our statistical resonance model can well
explain our TDSE results and the empirical formula (1) in a
monochromatic laser field. It provides a connection between
the classical and quantum pictures of liquid HHG.

To further justify the model, we can separate the contri-
bution of HHG from different states in the length gauge by
projecting the time-dependent wave function on the eigen-

FIG. 4. Intraharmonic spectrum of bound and quasifree states and interharmonic spectrum between them. (a–c) one-color scheme, (d–f)
two-color scheme. Intraharmonic spectra for bound states are shown in (a) and (d), intraharmonic spectra for quasifree states are shown in
(b) and (e), and interharmonic spectra are shown in (c) and (f). The laser parameters are the same as those in Fig. 1.
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FIG. 5. HHG spectra with different phases and strengths of the second laser: (a, c) obtained by the three-level model and (b, d) TDSE
simulations. In (a) and (b), the phase is set to be zero. In (c) and (d), the strength of the second field E20 = 0.3E0.

states [25–28]. The intracurrent is given by

Jintra = −〈�b(q)(x, t )| p̂|�b(q)(x, t )〉, (4)

where b and q stand for the bound states and the
quasifree states, |�b(x, t )〉 = ∑N

i=1 |φi(x)〉〈φi(x)|ψ (x, t )〉 and
|�q(x, t )〉 = ∑2N

i=N+1 |φi(x)〉〈φi(x)|ψ (x, t )〉. The higher states
are ignored because of the very low population in the evolu-
tion. The intercurrent between quasifree states and the bound
states can be obtained by

Jinter = −〈�b(x, t )| p̂|�q(x, t )〉. (5)

The intraharmonic spectrum for bound resonant states in
the one-color scheme is shown in Fig. 4(a); the cutoff is about
43rd, which is equal to the cutoff of the total harmonic spectra
shown in Fig. 1. Figure 4(b) shows the intraharmonics from
the quasifree states and the cutoff is about 81st. The inter-
harmonic spectrum is also simulated as shown in Fig. 4(c).
Only odd orders are obtained and the cutoff is about 93rd
order. The intensity of the interharmonics is much higher
than others. Those results indicate that the intensity of liquid
HHG is determined by the transition between the quasifree
state and localized bound states. However, the cutoff energy

is determined by the coherence length of the resonant bound
states, similar to the cask theory. The whole process can be
described as follows: (i) electron coupling in a series of bound
resonant two-level localized states with a small displacement
and the emission of intra-bound-state HHG; (ii) ionization
from the resonance states and movement in quasifree states
with a bigger range, leading to intra-quasifree-state HHG; and
(iii) transition from quasifree states to resonant bound states
with interband HHG emission. Different from the ideal gas
and crystal systems, the coherence length or the cutoff energy
in disordered liquids is determined by the bound two-level
resonance states since they play key roles in the initial and
final steps.

For the case of the two-color scheme with ϕ = 0, the ef-
fective field strength E ′ = 1.3E0. We give more information
in Figs. 4(d)–4(f). The cutoff of the intraharmonics of bound
states changes little, even though the cutoff of interharmonics
is extended to 113th order, and the cutoff of intraharmonics
of quasifree states is extended to 105th order. This implies
that the cutoff of total harmonics still depends on the pairs
of resonant bound states by the cask theory. The two-color
fields can modulate the symmetry of the system during ac-
celeration of the ionized electrons in step (ii), which leads to
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the even-order harmonic generation in ω0 + 2ω0 fields. They
disappear again in ω0 + 3ω0 fields because the symmetry of
the laser fields is restored. However, the two-color field cannot
effectively increase the cutoff of HHG from intrabound states.

To further reveal why the cutoff energy of intra-bound-state
harmonics is not obviously changed in this case, we have to
include the strong coupling between the resonant two states
and the continuum states because of the big photon energy
of the second field. For simplicity, we use one quasifree state
to represent all the other free states. Then the system is re-
duced to a three-level system. It is difficult to find the analytic
solution of this three-level system. We solve it numerically
instead. The results are shown in Fig. 5(a). Due to the beating
of the three-level states, the structure of the spectra is com-
plex, but it could provide clear cutoff information. One can
find that the cutoff energy is slightly changed compared to
the calculation of monochromatic fields. It qualitatively agrees
with the results in Fig. 1. When we increase the strength of the
3ω0 field, the cutoff energy slightly increases for the case of
ϕ = 0. It agrees with the TDSE results in Fig. 5(b).

The phase effects in ω0 + 3ω0 fields by the three-level
simulations and the TDSE are shown in Figs. 5(c) and 5(d),
respectively. The cutoffs by TDSE are 39th, 37th, and 35th
for the cases of the phases π/4, π/2, and π , respectively,
which agrees qualitatively with the three-level simulations.
For ϕ = π , the ω0 and 3ω0 fields are destructively interfered
at t = nT0/2, but they may constructively interfere at other
times. The peak strength of the superposed field is still around
0.9E0. From the cutoff law in monochromatic fields, the cutoff
energy should only decrease 10%. However, Fig. 5(c) by
the three-level calculation and Fig. 5(d) by TDSE show an

obvious decrease of HHG cutoff energy. It comes from the
coupling of quasifree states in two-color fields.

IV. CONCLUSION

In conclusion, the mechanism of HHG from liquid systems
is revealed by our statistical resonance model, which can
explain the results of TDSE simulations in both the monochro-
matic and bichromatic laser fields. This is a full quantum
picture for the physical mechanism explanation of HHG in
bulk liquids. Its validity is justified by the success in interpret-
ing the linear cutoff energy dependence of field strength, and
the independence of wavelength in the monochromatic field.
By including the coupling to continuum states, the problem of
the results in two-color fields is also solved. Our microscopic
model will help understand other phenomena in liquid HHG
optical sources. It also provides us clues for the optimal con-
trol of electron dynamics in liquids, which may be useful in
chemical and biological processes.
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