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Cyclic three-level-pulse-area theorem for enantioselective state transfer of chiral molecules
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We derive a pulse-area theorem for a single-loop cyclic three-level system without applying the rotating-wave
approximation while explicitly taking into account the time delays of control fields. This corresponds to an
archetypal model for exploring enantioselective state transfer (ESST) in chiral molecules driven by three linearly
polarized microwave pulses. By dividing the closed-loop excitation into two separate stages, we obtain both am-
plitude and phase conditions of three control fields to generate high fidelity of ESST. As a proof of principle, we
apply this pulse-area theorem to cyclohexylmethanol molecules, for which three rotational states are connected
by a-type, b-type, and c-type components of the transition dipole moments in both center-frequency-resonant
and -detuned conditions. Our results show that two enantiomers with opposite handedness can be transferred
to different target states by designing three microwave pulses that satisfy the amplitude and phase conditions
at the transition frequencies. The corresponding control schemes are robust against the time delays between the
two stages. We suggest that the two control fields used in the second stage should be applied simultaneously for
practical applications. This work contributes an alternative pulse-area theorem to the field of quantum control,
which has the potential to determine the chirality of enantiomers in a mixture.
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I. INTRODUCTION

Since Pasteur first reported molecular chirality [1], the the-
oretical and experimental study of chiral molecules has drawn
increasing interest because of its fundamental importance in
modern chemical and biochemical industries as well as quan-
tum science [2–5]. Two enantiomers of chiral molecules with
opposite handedness have the same components and config-
uration for spatial reflection. This implies that distinguishing
enantiomers from each other, highly related to the discrimina-
tion, separation, and purification of chiral molecules, remains
a formidable task, because general physical properties of chi-
ral molecules, such as boiling points, melting points, and
densities, are the same for opposite enantiomers. Based on
chemical mechanisms and enantiomer-specific interactions
with auxiliary substances, many spectroscopic techniques
were established to detect enantiomers of chiral molecules
with different handedness [6–9]. Traditional chemical tech-
niques, such as crystallization and chiral chromatography, are
usually complicated and expensive because they require sig-
nificantly longer than seconds or chirally pure derivatization
reagents. In addition, previous theoretical works have shown
that the interparticle interactions mediated by a bridging
molecule via either the dispersion force [10–12] or resonant
energy transfer [13–15] depend on the handedness of two
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enantiomers, making it possible to measure the chiral contri-
butions.

By taking advantage of the sign difference property of
rotational transition dipoles of two enantiomers, it has be-
come promising to select enantiomers by designing coherent
chiral control schemes [16–35]. The concept of adiabatic pas-
sage techniques, such as stimulated Raman adiabatic passages
[36,37] and shortcuts to adiabaticity [38,39], was proposed
to generate efficient and robust detection and separation of
chiral molecules [40–45]. In order to meet adiabatic crite-
ria, the adiabatic passage techniques involve strict limitations
on the control fields and therefore the corresponding control
processes are usually slow and complicated. To that end,
nonadiabatic schemes using much shorter durations of control
pulses than the adiabatic approaches have been proposed to
reach fast enantioselective excitation of chiral molecules [46].
Experimentally, it has been demonstrated by using resonant
microwave three-wave-mixing (M3WM) techniques [47–54].
A common feature of both adiabatic and nonadiabatic control
schemes usually involves a closed-loop quantum system by
cyclic coupling of three molecular (i.e., rotational or rovi-
brational) states (as shown in Fig. 1), which are resonantly
driven through the a-type, b-type, and c-type components
of the transition dipole moments by a combination of three
orthogonally polarized and phase-controlled microwave fields
[55]. Since one of three cyclic couplings differs in the sign
of the transition dipole moment in two opposite enantiomers,
the direct one-photon transition path from the ground state
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(a)

(b)

FIG. 1. Schematic illustration of enantioselective state trans-
fer. (a) Space orientations of the dipole components μa,b,c in the
molecule-fixed coordinate with respect to the polarization directions
of three linearly polarized microwave pulses Ea,b,c(t ). (b) Corre-
sponding closed-loop transitions within three rotational states |A〉,
|B〉, and |C〉. The transition frequencies and couplings between states
are identical, except for a difference due to the sign difference in
the transition dipole moment μAB. The parameters of the cyclohexyl-
methanol molecules are used for numerical simulations

to a given target state constructively or destructively inter-
feres with the indirect two-photon transition path through
an intermediate state, leading to enantioselective state trans-
fer (ESST). Although the pulse areas of the three control
fields that can generate enantioselective excitation have been
experimentally examined in M3WM experiments, a general
pulse-area theorem that can be used to directly calculate the
amplitudes and phases of three time-dependent control pulses
so as to gain insight into the underlying coherent quantum
control mechanism is still lacking.

In this paper we focus on ESST and present a three-
level-pulse-area theorem analysis. Previous works derived
the pulse-area theorems for two-level systems [56,57] and
three-level quantum systems with ladder-, �-, and V -type
configurations [58–61], leading to many successful applica-
tions in coherent quantum control simulations and experi-
ments [62–67]. Note that the pulse-area theorem of a two-level
model under resonant and off-resonant conditions with the
rotating-wave approximation has been investigated for con-
trolling the populations of the left- versus right-handed excited
states of enantiomers by using circularly polarized lights
[68–70]. Here we take the strategy of dividing the closed-loop
three-level excitation into two separate stages, i.e., com-
bining a two-level excitation and a time-delayed open-loop
three-level transition. We derive a pulse-area theorem of the
three-level system with a �-type configuration without apply-
ing the rotating-wave approximation while explicitly taking
into account the time delays of the laser pulses in coherent
chiral control schemes. The derived pulse-area theorem can
calculate the exact amplitude and phase conditions for gen-
erating efficient ESST to the desired quantum state, which
is examined in cyclohexylmethanol molecules with different
pulse sequences. This work provides an essential reference
for coherent control of ESST using closed-loop three-level
interaction schemes.

The remainder of this paper is organized as follows. In
Sec. II we describe the theoretical methods for obtaining a
three-level-pulse-area theorem with cyclic coupling. We per-
form numerical simulations to examine the derived pulse-area
theorem in Sec. III. We conclude with a summary in Sec. IV.

II. THEORETICAL METHOD AND NUMERICAL MODEL

A. Closed-loop three-level model

To describe our model, three rotational states of asym-
metric top molecules, as shown in Fig. 1, are labeled as
|A〉, |B〉, and |C〉 with a subscript L (R) for the left- (right-
)handed enantiomer, which can be expressed as superpositions
of symmetric top eigenstates (see details in Refs. [54,55]). The
energies EA, EB, and EC of three rotational states are identical
for enantiomers. We mark three microwave control fields as
Ea,b,c(t ), which drive the three states with the dipole moments
μL (R) consisting of three components μ̂a, μ̂b, and μ̂c in the
molecule-fixed coordinate. The triple product μ̂a · (μ̂b × μ̂c)
is independent of the choice of the inertia principal axes
a, b, and c, but is of opposite sign for the left- and right-
handed enantiomers. As demonstrated in Refs. [55,71], the
ESST scheme with the use of linearly polarized control fields
requires a combination of fields Ea, Eb, and Ec with three or-
thogonal polarization directions in the space-fixed coordinate.
The molecule-fixed coordinate is related to the space-fixed
coordinate by the Euler angles (θ , φ, and χ ). To that end, we
describe the time- and polarization-dependent electric fields
of the three control fields by

Ea,b,c(t ) = ea,b,cEa,b,c fa,b,c(t ) cos[ωa,b,c(t − ta,b,c) + φa,b,c],
(1)

where ea,b,c, Ea,b,c, fa,b,c(t ), ωa,b,c, ta,b,c, and φa,b,c denote
the polarization direction, strength, envelope function, center
frequency, center time, and phase of Ea,b,c(t ), respectively.
The Hamiltonian of the two different handed enantiomers
driven by the control fields in the energy basis can be written
as (h̄ = 1)

HL,R(t ) =

⎛
⎜⎝

EA ±�a(t ) �b(t )

±�a(t ) EB �c(t )

�b(t ) �c(t ) EC

⎞
⎟⎠, (2)

where the three cyclic couplings read �a(t ) = −|〈A
|μ̂L (R) · ea|B〉|E(t ) = −|μAB|Ea(t ), �b(t ) = −〈A|μ̂L (R) ·
eb|C〉Eb(t ) = −μACEb(t ), and �c(t ) = −〈B|μ̂L (R) ·
ec|C〉Ec(t ) = −μBCEc(t ). In this work we specify that
the transition dipole moments μAC and μBC are identical
for two enantiomers, whereas the transition dipole moment
μAB changes sign with the handedness reflected in Eq. (2)
by the sign ±. The evolution of the three states can be
described by using the time-dependent wave function
|ψ (t )〉 = ∑

X=A,B,C CX (t ) exp(−iEX t )|X 〉 with the complex
coefficients CX (t ).

We now analyze how to achieve enantioselective excitation
of a given target state from a given initial state. We assume
that two enantiomers are initially in the state |A〉, and the
control target can be either the excited state |B〉 or |C〉. For the
choice of |C〉 as the target, there are a direct one-photon tran-
sition |A〉 ↔ |C〉 and an indirect two-photon transition |A〉 ↔
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|B〉 ↔ |C〉, which form the closed-loop interaction scheme. If
we take |B〉 as the target, two transition paths correspond to
a direct one |A〉 ↔ |B〉 and an indirect one |A〉 ↔ |C〉 ↔ |B〉.
Since it remains difficult to derive an analytical solution by
directly using the Hamiltonian in Eq. (2), we use the strategy
of dividing the excitation processes into two stages.

B. Control conditions for ESST to |C〉
1. Analytical solution for a two-level system

For the ESST to |C〉, we assume that the coupling �a is
turned on at the initial time t0 and off at a time t1 before the
couplings �b and �c. Thus, the system is reduced to a two-
level system and the corresponding Hamiltonian reads

HL,R
1 (t ) =

(
EA ±�a(t )

±�a(t ) EB

)
. (3)

Without using the rotating-wave approximation, the evolution
of the system in the interaction picture can be described by
using the unitary operator

U L,R
1 (t, t0) = U L,R

1 (t0, t0) − i
∫ t

t0

dt ′HL,R
1I (t ′)U L,R

1 (t ′, t0), (4)

where HL,R
1I (t ) = exp(iH10t )[±�a(t )(|A〉〈B| + |B〉〈A|)] exp

(−iH10t ) with the field-free Hamiltonian of the two-level
system H10 = EA|A〉〈A| + EB|B〉〈B|. By involving the
first-order Magnus expansion [72], the time-dependent
unitary operator U L,R

1 (t, t0) can be given by [60,61,64,65]

U L,R
1 (t, t0) = cos |θa(t )|(|A〉〈A| + |B〉〈B|)

∓i sin |θa(t )|
[ |θa(t )|

θ∗
a (t )

|B〉〈A| + |θa(t )|
θa(t )

|A〉〈B|
]

(5)

in terms of the complex pulse area θa(t) =∫ t
t0

�a(t ′) exp(iωABt ′)dt ′, with ωAB = EB − EA. By
considering the left- and right-handed enantiomers initially
in the ground state |A〉, an analytic solution for the wave
function of the two-level system can be obtained by

∣∣ψL,R
1 (t )

〉 = U L,R
1 (t, t0)|A〉

= cos |θa(t )||A〉 ∓ i
|θa(t )|
θ∗

a (t )
sin |θa(t )||B〉. (6)

2. Analytical solution for a three-level system

After the coupling �a off at t1, we turn on the couplings �b

and �c. The Hamiltonian in Eq. (2) is reduced to

HL,R
2 (t ) =

⎛
⎜⎝

EA 0 �b(t )

0 EB �c(t )

�b(t ) �c(t ) EC

⎞
⎟⎠. (7)

The corresponding time-dependent unitary operator can be
given by

U L,R
2 (t, t1) = U L,R

2 (t1, t1) − i
∫ t

t1

dt ′HL,R
2I (t ′)U L,R

2 (t ′, t1), (8)

where HL,R
2I (t ) = exp(iH20t )[�b(t )(|A〉〈C| + |C〉〈C|) + �c(t )

(|C〉〈B| + |B〉〈C|)] exp(−iH20t ), with the field-free Hamilto-
nian of the three-level system H20 = EA|A〉〈A| + EB|B〉〈B| +
EC |C〉〈C|. By making the first-order Magnus expansion of the
unitary operator U L,R

2 (t, t1), the time-dependent wave function
of two enantiomers can be given by

∣∣ψL,R
2 (t )

〉 = U L,R
2 (t, t1)

∣∣ψL,R
1 (t1)

〉 =
[

cos |θa(t1)| |θc(t )|2 + |θb(t )|2 cos θ (t )

θ2(t )
∓ i sin |θa(t1)|ζ (t )

|θa(t1)|
θ∗

a (t1)

]
|A〉

+
[

cos |θa(t1)|ζ ∗(t ) ∓ i sin |θa(t1)| |θa(t1)|
θ∗

a (t1)

|θb(t )|2 + |θc(t )|2 cos θ (t )

θ2(t )

]
|B〉

− sin θ (t )

θ (t )

[
i cos |θa(t1)|θb(t ) ± sin |θa(t1)|θc(t )

|θa(t1)|
θ∗

a (t1)

]
|C〉, (9)

where ζ (t ) = θc(t )θ∗
b (t )[cos θ (t ) − 1]/θ2(t ) and θ (t ) =

√
|θb(t )|2 + |θc(t )|2 in terms of the complex pulse areas θb(t ) =∫ t

t1
�b(t ′) exp(iωACt ′)dt ′ and θc(t ) = ∫ t

t1
�c(t ′) exp(iωBCt ′)dt ′, with the transition frequencies ωBC = EC − EB and ωAC = EC −

EA.
To entirely transfer the left-handed enantiomer to the state |C〉 while keeping the right-handed one unpopulated at the final

time t f , the complex pulse areas should satisfy the two relations∣∣∣∣ sin θ (t f )

θ (t f )

[
iθb(t f ) cos |θa(t1)| + |θa(t1)|θc(t f )

θ∗
a (t1)

sin |θa(t1)|
]∣∣∣∣ = 1, (10)

∣∣∣∣ sin θ (t f )

θ (t f )

[
iθb(t f ) cos |θa(t1)| − |θa(t1)|θc(t f )

θ∗
a (t1)

sin |θa(t1)|
]∣∣∣∣ = 0. (11)

From the Eq. (11) we can derive

θc(t f )

θ∗
a (t1)

= iθb(t f ) cos |θa(t1)|
|θa(t1)| sin |θa(t1)| . (12)
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By inserting Eq. (12) into Eq. (10), we can obtain the relation

4|θb(t f )|2 sin2 θ (t f ) cos2 |θa(t1)| = θ2(t f ). (13)

This relation can be fulfilled when the three control fields
satisfy the amplitude conditions

|θb(t f )| = |θc(t f )| = 1√
2

(
k + 1

2

)
π (k ∈ N ),

|θa(t1)| =
(

k′ + 1

4

)
π (k′ ∈ N ). (14)

Furthermore, we insert Eq. (14) into Eq. (12) with θb =
−|θb| exp[−i(φb − ωACtb)], θc = −|θc| exp[−i(φc − ωBCtc)],
and θa = −|θa| exp[−i(φa − ωABta)]. We find that the three
control fields satisfy the phase condition
φa + φc − φb

= (
2l + 1

2

)
π + (ωABta + ωBCtc − ωACtb) (l ∈ Z ). (15)

Similarly, we can use the same amplitude conditions as
those in Eq. (14) to achieve complete ESST to |C〉 of the right-
handed enantiomer by using the phase condition of φa + φc −
φb = (2l − 1

2 )π + (ωABta + ωBCtc − ωACtb) (l ∈ Z ). This im-
plies that a π flip of the phase on one of three control fields
can result in the opposite ESST. To that end, the handedness of
enantiomers can be determined by measuring the population
in the state |C〉.

C. Control conditions for ESST to |B〉
For ESST to |B〉, we apply the coupling �b before the cou-

plings �a and �c, which results in a coherent superposition
state of |A〉 and |C〉. As demonstrated above by involving
the first-order Magnus expansion and further mathematical
derivations, an analytic wave function of the three-level �-
type system can be given by

∣∣ψL,R
2 (t )

〉 =
[

cos |θb(t1)| |θc(t )|2 + |θa(t )|2 cos θ (t )

θ2
∓ i sin |θb(t1)|ξ ∗(t )

|θb(t1)|
θ∗

b (t1)

]
|A〉

− sin θ (t )

θ (t )

[
sin |θb(t1)|θ∗

c (t )
|θb(t1)|
θ∗

b (t1)
± i cos |θb(t1)|θa(t )

]
|B〉

−
[

i sin |θb(t1)| |θb(t1)|
θ∗

b (t1)

|θa(t )|2 + |θc(t )|2 cos θ (t )

θ2(t )
∓ cos |θb(t1)|ξ (t )

]
|C〉, (16)

where ξ (t ) = θc(t )θa(t )[cos θ (t ) − 1]/θ2(t ) and θ (t ) =
√

|θa(t )|2 + |θc(t )|2.
To entirely transfer the left-handed enantiomer to the state |B〉 at the final time t f , but with the right-handed one not populating,

we have ∣∣∣∣ sin θ (t f )

θ (t f )

[
sin |θb(t1)|θ∗

c (t f )
|θb(t1)|
θ∗

b (t1)
+ i cos |θb(t1)|θa(t f )

]∣∣∣∣ = 1, (17)
∣∣∣∣ sin θ (t f )

θ (t f )

[
sin |θb(t1)|θ∗

c (t f )
|θb(t1)|
θ∗

b (t1)
− i cos |θb(t1)|θa(t f )

]∣∣∣∣ = 0. (18)

Furthermore, we can obtain the amplitude condition for the three control fields

|θa(t f )| = |θc(t f )| = 1√
2

(
k + 1

2

)
π (k ∈ N ),

|θb(t1)| =
(

k′ + 1

4

)
π (k′ ∈ N ). (19)

The ESST to |B〉 of the left-handed enantiomer can be reached
by using the phase condition

φa + φc − φb

= (
2l − 1

2

)
π + (ωABta + ωBCtc − ωACtb) (l ∈ Z ). (20)

The amplitude conditions in Eq. (19) are of the same form
as Eq. (13) with different orders. That is, the orders of the
three pulses are interchangeable, dependent on the choice of
the target state. From the phase condition in Eq. (20), we can
find that a π flip of the phase on one of three control fields
can also lead to the opposite ESST. Since our schemes that
divide the closed-loop excitation schemes into two stages are
different from previous works [27–29,45,52], which turned on
the direct one-photon transition path before the two-photon
one, these amplitude and phase conditions provide an alterna-

tive way to achieve ESST within a cyclic three-level system in
chiral molecules. In addition, we find that our derived phase
conditions in Eqs. (15) and (20) explicitly include time delays
ta,b,c, indicating that the time delays of the second stage play
important roles in achieving the ESST.

Note that the amplitude conditions of |θa,b(t f )| = π/4
and |θ (t f )| = √|θb,a(t f )|2 + |θc(t f )|2 = π/2 are equivalent to
those with the use of π/2 and π pulses, for which a scale
of 1

2 factor comes from the definition of the complex pulse
areas without using the rotating-wave approximation and the
resonant excitation conditions. To show the advantage of us-
ing the complex pulse areas, we can have a frequency-domain
analysis for the control fields

Ea,b,c = 1

π

∫ t f

t0

dωAa,b,c(ω)eiφa,b,c (ω)eiωt , (21)
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where Aa,b,c(ω) and φa,b,c(ω) are the spectral amplitude and
phase, respectively. We find that the values of θa,b,c(t f ) de-
pend only on Aa,b,c(ω) and φa,b,c(ω) of three control fields
at transition frequencies ωAB, ωAC , and ωBC . Thus, our defini-
tions of the complex pulse areas can also be applied to the
pulsed control fields whose center frequencies are detuned
away from the transition frequencies. In Sec. III we present
simulations to examine the amplitude and phase conditions
for both center-frequency-resonant and -detuned microwave
excitation schemes.

III. RESULTS AND DISCUSSION

We perform numerical simulations for the cyclohexyl-
methanol molecules. Three rotational states of |101〉, |202〉, and
|212〉 are used as |A〉, |B〉, and |C〉. The transition frequencies
between states are ωAB = 4720 MHz, ωBC = 2339 MHz, and
ωAC = 7059 MHz and the transition dipole moments take the
values μa = 0.4 D, μb = 1.2 D, and μc = 0.8 D [27,54]. In
our simulations, we take three control fields with the Gaussian
profile as

Ea,b,c(t ) =
√

2

π

Aa,b,c

τ0
exp

[
− (t − ta,b,c)2

2τ 2
0

]

× cos[ωa,b,c(t − ta,b,c) + φa,b,c]. (22)

This description of the control fields is convenient for deter-
mining the field strengths Ea,b,c for any accessible duration
τ0. By choosing constant values of Aa,b,c, we can see that
the complex pulse areas θa,b,c(t f ) with such descriptions do
not depend on the duration τ0. Thus, this scheme avoids the
strict limitations by the adiabatic criterion, providing a way
to design fast control schemes using much shorter pulse du-
ration than the adiabatic scenario. For practical applications,
however, we need to balance the choice of pulse duration τ0 so
that unwanted transitions to neighboring energy levels could
be avoided by using narrowband pulses.

For cyclohexylmethanol molecules, there exists a rota-
tional state |111〉 with energy slightly below state |B〉, referred
to as state |B′〉, which can be connected to the excited
state |C〉 via the a-type transition in ωB′C = 4484 MHz and
to the ground state |A〉 via the c-type transition in ωAB′ =
2575 MHz. To this end, we include it in a four-level model
to perform the numerical simulations and examine how to
choose the laser pulses to exclude the effect of this state in
the ESST so that the system can be reduced to the three-level
model developed above. The corresponding field-molecule
interaction Hamiltonian reads

HL,R
c (t ) =

⎛
⎜⎜⎜⎝

0 �′
c(t ) ±�a(t ) �b(t )

�′
c(t ) 0 0 ±�′

a(t )

±�a(t ) 0 0 �c(t )

�b(t ) ±�′
a(t ) �c(t ) 0

⎞
⎟⎟⎟⎠, (23)

where we use the additional couplings �′
a(t ) = −〈B′|μ̂ ·

ea|C〉Ea(t ) = −μB′CEa(t ) and �′
c(t ) − 〈A|μ̂ · ec|B′〉Ec(t ) =

−μAB′Ec(t ) in our simulations. The time-dependent unitary
operator in the interaction picture can be numerically com-
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FIG. 2. Chiral dependence of ESST on the phase for the target
state |C〉. (a) Final population of the left-handed enantiomer PL

C (t f )
versus the duration τ0 and phase φa in a range of [0, 2π ] and the cor-
responding cut lines at (b) τ0 = 35 ns and (c) φa = π/2. (d)–(f) Same
as (a)–(c) for the right-handed enantiomer except for φa = 3π/2
in (f). The parameters are chosen with φb = φc = 0 while setting
ta = 4τ0 and tb = tc at a value to satisfy Eq. (15).

puted by

U L,R(t, t0) = U L,R(t0, t0) − i
∫ t

t0

dt ′HL,R
I (t ′)U L,R(t ′, t0),

(24)
where U L,R(t0, t0) = I and HL,R

I (t ) =
exp(iH0t )[HL,R

c (t )] exp(−iH0t ) with the field-free Hamil-
tonian H0 = ∑C

X=A EX |X 〉〈X |. By projecting the unitary
operator U L,R(t, t0) onto the initial state |A〉, we can
obtain the time-dependent wave function of the system
|ψL,R(t )〉 = U L,R(t, t0)|A〉 without using the first-order
Magnus expansion. Thus, the time-dependent population in
the state |X 〉 can be calculated by PL,R

X (t ) = |〈X |ψL,R(t )〉|2
with X = A, B′, B,C.

A. ESST to |C〉
For the target state |C〉, we set the parameters Aa =

π/4μAB, Ab = π/2
√

2μBC , and Ac = π/2
√

2μAC . It is easy to
verify that the couplings �a,b,c(t ) with the three control fields
defined by Eq. (22) with different values of τ0 exactly satisfy
the amplitude conditions in Eq. (14) at transition frequencies
by fixing the center frequencies ωa = ωAB, ωb = ωAC , and
ωc = ωBC and are independent of the values of the transition
dipole moments of the system. Figure 2 shows the results of
PL,R

C (t f ) versus τ0 and φa with φb = φc = 0. As expected, the
ESST to the state |C〉 appears and depends strongly on the
phase values of φa. The fidelity of PL,R

C (t f ) > 0.999 can be
reached for τ0 > 35 ns, indicating that the unwanted transition
to the neighboring state |B′〉 can be ignored. Figures 2(b)
and 2(e) plot the dependence of PL,R

C (t f ) on the phase φa

for the case of τ0 = 35 ns. There is no ESST at φa = 0 and
π . The entire ESST to the left-handed molecule occurs at
φa = π/2 and a phase change to φa = 3π/2 results in an
opposite transfer to the right-handed one. Similar features can
be observed by changing the value of φb (φc) while choosing
φa = φc = 0 (φa = φb = 0). These results are in good agree-
ment with the theoretical predication by the phase conditions
as well as previous M3WM experiments. To visualize the
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FIG. 3. Time-dependent populations of four rotational states for
ESST to the state |C〉. Simulations for the (a) left-handed and
(b) right-handed enantiomers with duration τ0 = 35 ns and phase
φa = π/2 are shown. The other parameters are chosen with φb =
φc = 0 while setting ta = 4τ0 and tb = tc at a value to satisfy Eq. (15).

underlying quantum state transfer mechanism, Fig. 3 shows
the time-dependent populations of the four states induced by
the control fields for the cases of τ0 = 35 ns and φa = π/2.
For the two enantiomers, there are no visible populations in
the state |B′〉 during the whole process. The four-level system
is equivalent to the present closed-loop three-level model with
the pulse parameters used. The control field Ea(t ) with the
pulse areas θa(t1) = π/4 drives the system to the maximal co-
herent superposition of |A〉 and |B〉 with PL,R

A (t1) = PL,R
B (t1) =

0.5 for both enantiomers. Due to the sign difference of the
transition from |A〉 to |B〉, Ea(t ) with a phase φa = π/2 will
result in the phase of the state |B〉 in 0 and π for the left
and right handedness, respectively, as described by Eq. (9).
For the left handedness, the transition path from |A〉 to |C〉
induced by Eb(t ) will constructively interfere with the path
from |B〉 to |C〉 by Ec(t ), leading to a complete ESST to |C〉.
For right handedness, however, the two paths are destructive,
which keeps the molecules in the states |A〉 and |C〉, as shown
in Figs. 3(a) and 3(b).

As can be seen from our theoretical derivations, we divide
the closed-loop excitation scheme into two time-separated
stages. To see whether the amplitude and phase conditions
can be applied to the overlapped cases, as an example, Fig. 4
plots the landscape of PL

C (t f ) with respect to the time delays
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FIG. 4. Dependence of ESST on the time delays of control fields
for the target state |C〉. (a) Final population of the left-handed enan-
tiomer PL

C (t f ) versus the time delays tba = tb − ta and tca = tc − ta.
(b) Cut line plot of PL

C (t f ) along tba = tca.
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FIG. 5. Chiral dependence of ESST on the phase for the target
state |B〉. (a) Final population of the left-handed enantiomer PL

C (t f )
versus the duration τ0 and phase φb in a range of [0, 2π ] and the cor-
responding cut lines at (b) τ0 = 35 ns and (c) φb = π/2. (d)–(f) Same
as (a)–(c) for the right-handed enantiomer except for φa = 3π/2 in
(f). The other parameters are chosen with φa = φc = 0 while setting
tb = 4τ0 and ta = tc at a value to satisfy Eq. (20).

tba = tb − ta and tca = tc − ta while keeping the center time
ta unchanged. In our simulations, we set φb = φc = 0 and
φa = π/2 + (ωABta + ωBCtc − ωACtb) to satisfy Eq. (15). We
find that PL

C (t f ) strongly depends on the overlap between two
control fields of the second stage. Interestingly, the value
of PL

C (t f ) remains PL
C (t f ) > 0.999 for tba = tca > 2τ0 when

Eb(t ) and Ec(t ) are turned on simultaneously with tba = tca.
Even when the three control fields are applied without any
delays, the high fidelity of PL

C (t f ) > 0.90 holds, as shown in
Fig. 4(b). This phenomenon can also be observed for the right
handedness (not shown here).

B. ESST to |B〉
Figure 5 examines the same simulations as in Fig. 2 but

for the target |B〉 with φa = φc = 0. In our simulations, we
choose the parameters Ab = π/4μBC , Aa = π/2

√
2μAB, and

Ac = π/2
√

2μAC so that all control fields satisfy the am-
plitude conditions. The influence of the state |B′〉 is more
visible than that in Fig. 2 in the short-duration regime, which
becomes rather weak with increasing duration τ0. The final
population PL,R

B (t f ) can also reach high fidelity for τ0 > 35 ns.
As demonstrated in Fig. 2, the landscape of PL,R

B (t f ) exhibits
a chiral symmetry with respect to the phase φb, for which
the control field Eb(t ) with φb = π/2 leads to a complete
ESST to |B〉 for the left handedness. For the right handedness,
however, φb = 3π/2 is required. This dependence of PL,R

B (t f )
on the phase is consistent with the theoretical predication.
Figure 6 plots the time-dependent populations of the system
with τ0 = 35 ns and φb = π/2. Since the transition moments
μb are identical for the two enantiomers without a difference
of sign, Eb(t ) plays the same role in the first stage, generating
the same maximal coherent superposition of |A〉 and |C〉. The
constructive or destructive interference that depends on μa

occurs between the transition paths from |A〉 and |C〉 to |B〉.
As a result, the left-handed enantiomer is fully transferred
to the state |B〉, whereas the right-handed one is still in the
coherent states |A〉 and |B〉 at end of three pulses. To see the

013102-6



CYCLIC THREE-LEVEL-PULSE-AREA THEOREM FOR … PHYSICAL REVIEW A 105, 013102 (2022)

(b)(a)

0             280           560
Time (ns)

0

0.5

1

Po
pu

la
tio

n

Left handed Right handed

|A
|B
|C
|B'

0             280           560
Time (ns)

|A
|B
|C
|B'

0

0.5

1

Po
pu

la
tio

n

FIG. 6. Time-dependent populations of four rotational states for
ESST to the state |B〉. Simulations for the (a) left-handed and
(b) right-handed enantiomers with duration τ0 = 35 ns and phase
φb = π/2 are shown. The other parameters are chosen with φa =
φc = 0 while setting tb = 4τ0 and ta = tc at a value to satisfy Eq. (20).

robustness of the scheme on the time delays, Fig. 7 examines
the dependence of PL

B (t f ) on the time delays tab = ta − tb and
tcb = tc − tb. In this simulation, we set φa = φc = 0 and φb =
π/2 + (ωABta + ωBCtc − ωACtb) to satisfy the phase condition
in Eq. (20). Similar behaviors can be observed, indicating
that both excitation schemes do not require strict separations
between the control fields. The identical delays of the sec-
ond stage fields are beneficial for the control. As a result,
the amplitude and phase conditions can also be used for the
overlapping control fields, leading to the high selectivity of
handedness.

C. ESST with center-frequency-detuned pulses

Finally, we examine the amplitude and phase conditions of
control fields whose center frequencies ωa,b,c are not exactly
resonant with the transition center frequencies ωAB, ωBC , and
ωAC . As can be seen from the definitions of the complex
pulse areas θa,b,c(t f ), when the center frequencies are detuned
away from resonances, the values of |θa,b,c(t f )| will decrease
while the parameters Aa,b,c remain the same as those used
in resonant cases. We can increase the values of Aa,b,c to
increase the values of θa,b,c(t f ) at the transition frequencies
so as to satisfy the amplitude conditions. That is, the ESST
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FIG. 7. Dependence of ESST on the time delays of control fields
for the target state |B〉. (a) Final population of the left-handed enan-
tiomer PL

B (t f ) versus the time delays tab = ta − tb and tcb = tc − tb.
(b) Cut line plot of PL

B (t f ) along tab = tcb.

FIG. 8. Dependence of ESST on the detunings for the target state
|B〉. (a) and (b) Final population PL

B (t f ) versus the scale factor α of
the coupling �b(t ) for different values of detuning �b = ωb − ωAC .
(c) and (d) Final population PL

B (t f ) versus the scale factor β of the
couplings �a(t ) and �c(t ) by setting �a = ωa − ωAB = �c = ωc −
ωBC = �. The analytical simulations [(a) and (c)] are compared with
the exact results [(b) and (d)].

in principle could be achieved by using the center-frequency-
detuned pulses, as long as they satisfy the amplitude and
phase conditions Ea,b,c and φa,b,c at transition frequencies.
Figure 8 shows the dependence of PL

B (t f ) on the detunings,
for which the calculated results obtained by using the ana-
lytically derived time-dependent wave functions [Figs. 8(a)
and 8(c)] are compared with those from exactly numerical
solutions [Figs. 8(b) and 8(d)]. We perform the simulations in
Figs. 8(a) and 8(b) to calculate PL

B (t f ) for different values of
�b = ωb − ωAC while scaling the coupling �b(t ) with a factor
α, for which the center frequencies ωb and ωc are fixed at the
resonant conditions. The simulations in Figs. 8(c) and 8(d)
are accomplished with different detunings �a = ωa − ωAB

and �c = ωc − ωBC by scaling the couplings �a(t ) and �c(t )
with a factor β, for which we set �a = �c = � while setting
�b = 0. For both analytical simulations, we can see that the
detunings decrease PL

B (t f ). By increasing the strengths of the
control fields, the maximal value of PL

B (t f ) can be increased
to the same level as the resonant excitation, as shown in
Figs. 8(a) and 8(c). For the exact simulations, however, the
maximal values can be increased, but below the theoretical
maximum. The differences can be attributed to the influence
of high-order Magnus expansion terms, which are ignored in
the analytical model. We also observe similar results for the
target state |B〉 (not shown here). Thus, the center-frequency-
detuned excitations with small detunings are also allowed by
applying the corresponding amplitude and phase conditions
at transition frequencies. The larger detunings will reduce
the ESST efficiency due to the optical processes described
by the higher-order (mainly second-order) terms of Magnus
expansion, which strongly depend on the coupling strengths
between states.

013102-7



GUO, GONG, MA, AND SHU PHYSICAL REVIEW A 105, 013102 (2022)

IV. CONCLUSION

We have presented a general pulse-area theorem analysis
to explore ESST within a closed-loop three-level system. We
considered three rotational states cyclically connected by a-
type, b-type, and c-type components of the transition dipole
molecules. Using a strategy that separates the closed-loop
excitation into two stages, we derived the amplitude and phase
conditions for designing three linearly polarized microwave
pulses to generate ESST to different targets. The two-stage
strategy we used differs from previous schemes that turned on
the direct one-photon transition from the initial state to the
target state before the indirect two-photon one. Our schemes
first switched on one control field involved in the two-photon
path by generating maximal coherent supposition between the
initial and intermediate states. We examined this three-level-
pulse-area theorem in cyclohexylmethanol molecules and
analyzed its applications with both center-frequency-resonant
and -detuned pulse sequences. For the latter, small detunings
on the center frequencies of the control pulses would be
expected to reduce the influence of high-order Magnus expan-

sion terms. This introduces a fundamental question of whether
one can design fast and robust quantum control schemes
against center-frequency detunings. To that end, optimal and
robust control methods combined with artificial intelligence
algorithms could be used to search for shaped control pulses
subject to multiple constraints [61,73–76].
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