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Quantum fluctuations in multiphoton Compton scattering
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We propose a method to study the interaction of a single-mode laser beam (as an external field) containing a
finite number of photons with a free electron. In particular, we give some numerical results of how the photon
number lk,ε affects the differential scattering cross section when the initial state of an external field is a Fock
state |lk,ε〉. Besides, for arbitrarily polarized light, we prove that our model will return to the semiclassical theory
as lk,ε → ∞.
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I. INTRODUCTION

Strong-field dynamics is a hot research topic and widely
exists in various quantum systems [1–4]. The classical [5–8]
and semiclassical [9–14] theoretical studies on multiphoton
Compton scattering in the past are satisfactory, and the leap-
forward development of laser technology [15] proves this
point experimentally [16–22]. It should be pointed out that
these experiments and theories imply that the initial photon
number lk,ε of the external field is sufficiently large (lk,ε →
∞) so that the laser can be treated as a fixed classical back-
ground field [1,13]. This processing method is also applicable
to other strong-field systems, such as strong-field ionization
[23–26] and harmonic generation [27,28]. However, when lk,ε

is finite or even small in magnitude, the depletion of external
fields [29–31] must be considered. In this case, how to deal
with the processes of light-matter interaction is a problem
worthy of attention. In particular, for multiphoton Compton
scattering, it is meaningful to investigate the effect of lk,ε

on some physical quantities (especially the on differential
scattering cross section).

It is a well-known fact that the motion of free electrons in
a classical plane-wave electromagnetic-field Acl

k,ε(x) is usually
described by Volkov states [32]. Utilizing the boundary condi-
tions Acl

k,ε(r, t → ±∞) = 0 [2], Volkov states will transform
into free states when t → ±∞. Based on the Furry picture
[33], the incident and outgoing states of electrons can be
treated as Volkov states in the semiclassical theory [10–14] of
multiphoton Compton scattering. Obviously, the Volkov state
involving the classical field does not reflect the information
of the photon number in the radiation field. Here, Fried and
Eberly [34] once proposed to use the full quantum electrody-
namics (QED) method of summing Feynman diagrams to deal
with multiphoton Compton scattering. This method could be
used to calculate the corresponding scattering cross section
for a given lk,ε, although their work needed some refinement
[35,36]. In addition, Begrou and Sarro [37] also studied anal-
ogous problems by using a quantized background field.

*lbfu@gscaep.ac.cn

In this paper, starting from the Dirac equation, we try to
reexamine the multiphoton Compton scattering process from
the perspective of QED. By quantizing the background field,
the Volkov state involving the quantum field was obtained
[37–39], and it can accurately describe the photon number
of the background field. Inspired by this, we numerically
describe the quantum fluctuations of the differential scattering
cross section with lk,ε in the multiphoton Compton scattering
process. The results show that lk,ε will affect the differential
scattering cross section to some extent. Meanwhile, we also
prove that our results will return to the semiclassical results
[10] when lk,ε → ∞.

The paper is organized as follows. In Sec. II, we describe
the calculation process of the differential scattering cross
section in detail and give a theoretical proof in the classical
limit. Our numerical results and conclusions are presented in
Secs. III and IV, respectively. If there is no special declara-
tion, natural units (n.u.) with h̄ = c = ε0 = 1 are employed
throughout this paper. ε0 is the permittivity of vacuum. /a is
Feynman slash notation, representing gμνγ

μaν (μ, ν = 0–3).
γ μs are the 4 × 4 Dirac matrices and the space-time metric
gμν = diag(1,−1,−1,−1). In addition, we abbreviate the
multiplication of two four-vectors aμbμ as a · b.

II. MODEL

A. S-matrix element for multiphoton Compton scattering

The electronic wave-function |ψ (x)〉 in the electromag-
netic field satisfies the Dirac equation,

i
∂

∂t
|ψ (x)〉 = {γ 0γ · [−i∇ + eA(x)] + γ 0me}|ψ (x)〉, (1)

where −e and me represent the charge and rest mass of
the electron, respectively. Furthermore, the Coulomb gauge
is used for A(x), that is, A(x) = [0, A(x)] and ∇ · A(x) =
0. Considering the collision between an electron and a
single-mode laser beam containing lk,ε photons, we are more
concerned about that a single photon scattered from the
laser beam (see Fig. 1). The corresponding transition-matrix
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FIG. 1. The schematic of multiphoton Compton scattering. The
laser beam contains lk,ε photons. After the laser beam interacts
with an electron, a photon of frequency ω′ is scattered from the
laser beam. The parameters ω (ω′) and ε (ε′) are the frequency
and the polarization vector of the laser beam (the scattered photon),
respectively.

element is expressed as

S f i = 〈φout (r, t f )|U (t f , ti )|φin(r, ti )〉. (2)

Here |φin(r, ti )〉 and |φout (r, t f )〉 are the wave functions of the
initial and final electrons, respectively, and U (t f , ti ) is the
time-evolution operator.

In order to get U (t f , ti ), we decompose A(x) into

A(x) = Ak,ε(x) +
∑
ε′

∑
k′ �=k

Ak′,ε′ (x), (3)

where k = (ω, k) is the four-momentum of the single photon
in the laser beam, and k′ = (ω′, k′) is the four-momentum of
the scattered photon; ε′ = (0, ε′) and k′ · ε′ = 0. Let us make

H0 = γ 0γ · [−i∇ + eAk,ε(x)] + γ 0me,

H ′ =
∑
ε′

∑
k′ �=k

eγ 0γ·Ak′,ε′ (x), (4)

and define the time-evolution operator U0(t, ti ), which satis-
fies the following relation:

i
∂

∂t
U0(t, ti ) = H0U0(t, ti ). (5)

Then we obtain

U (t f , ti ) = U0(t f , ti ) − i
∫ t f

ti

U0(t f , t )H ′U (t, ti )dt . (6)

If only the first-order process is considered, we have

U (t f , ti ) = U0(t f , ti ) − i
∫ t f

ti

U0(t f , t )H ′U0(t, ti )dt . (7)

Now, we quantize both Ak,ε(x) and Ak′,ε′ (x), that is,

Ak,ε(x) = g(εak,εe−ik·x + H.c.)

Ak′,ε′ (x) =
√

1

2ω′V
(ε′ak′,ε′e−ik′ ·x + H.c.), (8)

where g = (2ωV )−1/2 and V is the normalized volume of
the light field; ε = [0, cos(ξ/2), i sin(ξ/2), 0] and ξ is the
polarization parameter of the incident laser. ak,ε(ak′,ε′ ) is
the annihilation operator for the incident (scattered) photon.
When ti → −∞ and t f → +∞, electrons have no interaction
with the light field, and they should be described by free states.
Therefore, the boundary conditions are given by

φin(r, ti → −∞) = e−iEpti〈r|p〉 ⊗ |lk,ε〉 ⊗ |0k′,ε′ 〉,
φout (r, t f → +∞) = e−iEp′ t f 〈r|p′〉 ⊗ |nk,ε〉 ⊗ |1k′,ε′ 〉. (9)

Here p = (Ep, p) and p′ = (Ep′ , p′) are the four-momentum
of the initial and final electrons, respectively. lk,ε and nk,ε are
the number of photons before and after scattering in the laser
beam. Substituting Eqs. (7) and (9) into Eq. (2), we obtain

S f i = −i
∫ +∞

−∞
〈ψp′ (r, t )|〈1k′,ε′ |H ′|0k′,ε′ 〉|ψp(r, t )〉dt, (10)

where

|ψp(r, t )〉 = lim
ti→−∞U0(t, ti )〈r|p〉 ⊗ |lk,ε〉e−iEpti ,

|ψp′ (r, t )〉 = lim
t f →+∞U0(t, t f )〈r|p′〉 ⊗ |nk,ε〉e−iEp′ t f . (11)

According to Eq. (5), |ψp(r, t )〉 and |ψp′ (r, t )〉 are both the
solutions of the following equation:

i
∂

∂t
|ψ (x)〉 = H0|ψ (x)〉. (12)

This equation has the following form solution [39,40]:

ψV
qn′

k,εs(x) = exp(ik · xN̂ − iqx − iZn′
k,εsk · x)

× 1√
Jqn′

k,εsV

(
1−e/k /A

2kq

)
D†

qSq|n′
k,ε〉P (/S + s)v,

(13)

where

N̂ = 1
2 (ak,εa†

k,ε
+ a†

k,ε
ak,ε ),

Zn′
k,εs = (k·q)−1[Z(

n′
k,ε+ 1

2

) − e2g2Z−1|q · ε cosh χ

+ q · ε∗ sinh χ |2 + 1
2 e2g2s

]
,

Z = [(k · q + e2g2)2 − e4g4 cos2 ξ ]1/2,

tanh 2χ = −e2g2 cos ξ/(k · q + e2g2). (14)

q is the four-momentum of the free electron and satisfies
q2 − m2

e = 0; s = ± sin ξ ; A = g(εak,ε + ε∗a†
k,ε

). The ex-
pressions of operators D†

q and Sq are as follows:

D†
q = exp(δa†

k,ε
− δ∗ak,ε ),

Sq = exp

[
χ

2
(a†

k,ε
a†

k,ε
− ak,εak,ε )

]
,

δ = egq · (ε sinh 2χ + ε∗ cosh 2χ )/Z. (15)

The bispinor P (/S + s)v satisfies the stationary state Dirac
equation of free electrons, and it is discussed in detail in
Appendix A. For convenience, let us mark it as uqs. Moreover,
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Jqn′
k,εs is the normalization coefficient,

Jqn′
k,εs = 1

me

[
q0 + ωZn′

k,εs − |δ|2ω

−ω(n′
k,ε + 1/2) cosh 2χ

]
. (16)

Hence, we can treat |ψp(r, t )〉 and |ψp′ (r, t )〉 as

|ψp(r, t )〉 = ψV
lk,ε ps(x),

|ψp′ (r, t )〉 = ψV
nk,ε p′s′ (x). (17)

Furthermore, the boundary of ψV
qn′

k,εs(x) needs some refine-
ment, and we will discuss it in Appendix B.

We now return to Eq. (10), and there is

〈1k′,ε′ |H ′|0k′,ε′ 〉 = −
√

e2

2ω′V
γ 0/ε′eik′ ·x, (18)

Substituting Eqs. (13), (17), and (18) into Eq. (10), we
obtain

S f i = Nf iMNδ(p′ + Znk,εs′k + k′ − p − Zlk,εsk), (19)

where

Nf i = i
(2π )4

V
√

Jp′nk,εs′Jplk,εs

√
e2

2ω′V
,

MN = ūp′s′ 〈nk,ε|S†
p′Dp′

[
1 − e /A /k

2k · p′

]
/ε′

×
[

1 − e/k /A

2k · p

]
D†

pSp|lk,ε〉ups,

N = lk,ε − nk,ε,

ūp′s′ = u†
p′s′γ

0. (20)

The δ function in Eq. (19) reflects the energy-momentum
conservation of the whole scattering system. Let

q1 = p + Zlk,εsk − (
lk,ε + 1

2

)
k,

q2 = p′ + Znk,εs′k − (
nk,ε + 1

2

)
k. (21)

Then, the energy-momentum conservation equation becomes

q1 + Nk = q2 + k′, (22)

and its form is completely consistent with the corresponding
semiclassical equation [10]. In fact, when lk,ε → ∞, q1 and
q2 will reduce into the “effective” four-momentum [2] of
electrons in the external field [39]. Moreover, Eq. (22) shows
that N is exactly the difference of the photon number before
and after scattering in the light field Ak,ε(x).

Correspondingly, the transition rate is given by

wN = lim
T →∞

1

4

∑
s,s′

∑
ε,ε′

∑
k′

∑
p′

|S f i|2
T

=
∫

d�k′
∑
s,s′

∑
ε,ε′

e2ω′

32π2
√

Jp′nk,εs′Jplk,εs
|MN |2, (23)

where 1/4 comes from averaging the electron spin
and photon polarization in the initial state; k′ =
ω′(sin θ cos ϕ, sin θ sin ϕ, cos θ ); θ and ϕ are the azimuth

angles of k′; ω′ is determined by Eq. (22). In addition, the
photon number flux density can be written as

jin = lk,ε

V
. (24)

Thus, we can obtain the differential scattering cross section,

dσN

d�k′
=

∑
s,s′

∑
ε,ε′

e2ω′

32π2Jp′nk,εs′Jplk,εs jin
|MN |2. (25)

Now, we could numerically compute the scattering cross
section corresponding to given lk,ε and nk,ε with the help
of Eqs. (20) and (25). The main steps of the numerical
scheme are roughly as follows. First, when the initial pa-
rameters p, k, lk,ε, nk,ε, s, s′, ε, ε′, θ , ϕ, and I are given,
we can obtain the parameters ω′ and p′ through the energy-
momentum conservation [see the δ function in Eq. (19)].
Second, we can express the operator ak,ε as a square ma-
trix in the Fock representation. Naturally, we must truncate
the dimension of the matrix. Similarly, the Fock states |lk,ε〉
and |nk,ε〉 can also be expanded into the column matrices
with the same dimension as ak,ε. Finally, Eq. (25) can be
accurately obtained with the help of a computer and some
algorithms [41,42]. It is worth noting that the truncation of
the dimension of matrix ak,ε should ensure that the numerical
calculation results are within the convergence accuracy. The
corresponding numerical results will be discussed in detail in
Sec. III.

B. The classical limit: lk,ε → ∞
In the semiclassical theory [10–14], the incident laser beam

is described by the classical field, that is,

Acl
k,ε(x) = �

2
(εe−ik·x + ε∗eik·x ). (26)

Here, � is the classical field strength. The relationship [43]
between the classical field strength and the density of photons
in the field obeys

I = 1

2
�2ω2 = ωlk,ε

V
, (27)

where I is the laser intensity. Of course, we should follow
the basic principle of quantum mechanics that quantum the-
ory tends to be classical in the large quantum number limit.
So in this section, we will use Eq. (27) to prove that the
transition matrix element S f i can reduce to the semiclas-
sical result when lk,ε → ∞. In addition, for convenience,
we omitted the subscript of lk,ε, nk,ε, ak,ε, and a†

k,ε
in the

proof.
First, MN in Eq. (20) can be expanded as

MN =
+2∑

r=−2

Yr, (28)

where

Y0 = ūp′s′/ε′ups〈n|S†
p′Dp′D†

pSp|l〉 + e2g2k · ε′

2k · pk · p′

× 〈n|S†
p′Dp′ ūp′s′ (/ε/k /ε∗aa† + /ε∗/k/εa†a)upsD

†
pSp|l〉,
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Y−1 = eg

2
ūp′s′

[
/ε′/ε/k
k · p

− /ε/k/ε′

k · p′

]
ups〈n|S†

p′Dp′aD†
pSp|l〉,

Y1 = eg

2
ūp′s′

[
/ε′ /ε∗/k
k · p

− /ε∗/k/ε′

k · p′

]
ups〈n|S†

p′Dp′a†D†
pSp|l〉,

Y−2 = e2g2k · ε′ cos ξ

2k · p k · p′ ūp′s′/kups〈n|S†
p′Dp′a2D†

pSp|l〉,

Y2 = e2g2k · ε′ cos ξ

2k · p k · p′ ūp′s′/kups〈n|S†
p′Dp′a†a†D†

pSp|l〉. (29)

We may as well compute Y0 first. When l → ∞, there is

lim
l→∞
n→∞

N=l−n

〈n|S†
p′Dp′D†

pSp|l〉 = lim
l→∞
n→∞

N=l−n

∑
m=0

〈n|S†
p′Dp′ |m〉〈m|D†

pSp|l〉.

(30)

Through the analysis, we find that only m → ∞ contributes
to Eq. (30). Due to [39]

lim
l→∞
m→∞

〈m|D†
pSp|l〉 = ei(l−m)β1Fm−l (ζ1, η1, β1), (31)

where

ζ1eiβ1 = lim
m→∞ −2eg

√
m

p · ε

k · p
= −e�

p · ε

k · p
,

η1 = lim
l→∞

e2g2l

2k · p
cos ξ = 1

2

e2�2

4k · p
cos ξ . (32)

In the above formula, Eq. (27) is used. The function F j is
defined as

F j (ζ , η, β ) =
∞∑

t=−∞
e−i2tβJ− j−2t (ζ )Jt (η), (33)

and J− j−2t (ζ ), Jt (η) represent the Bessel function.
Similarly,

lim
n→∞
m→∞

〈m|D†
p′Sp′ |n〉 = ei(n−m)β2Fm−n(ζ2, η2, β2), (34)

and ζ2, η2, and β2 are given by

ζ2eiβ2 = −e�
p′ · ε

k · p′ , η2 = 1

2

e2�2

4k · p′ cos ξ . (35)

Then, we have

lim
l→∞
n→∞

N=l−n

〈n|S†
p′Dp′D†

pSp|l〉

= eiNβ1
∑

s1

eis1(β2−β1 )F ∗
s1

(ζ2, η2, β2)Fs1−N (ζ1, η1, β1).

(36)

By Fourier series, F j (ζ , η, β ) can be expressed as an inte-
gral,

F j (ζ , η, β ) =
∫ π

−π

dy

2π
exp[i jy + iζ sin y

+iη sin(2y − 2β )]. (37)

Using the Poisson summation formula and Eq. (37), we obtain∑
s1

eis1(β2−β1 )F ∗
s1

(ζ2, η2, β2)Fs1−N (ζ1, η1, β1)

=
∫ π

−π

dθ1

2π
exp[−iNθ1 − iζ2 sin (θ1 + β2 − β1)

+iζ1 sin θ1 + i(η1 − η2) sin(2θ1 − 2β1) ]. (38)

Also,

iζ1 sin θ1 − iζ2 sin (θ1 + β2 − β1)

= 1

2

[
eiθ1 e−iβ1

(
e�

p′ · ε

k · p′ − e�
p · ε

k · p

)
− c.c.

]
. (39)

If we let

ζeiα = e�
p′ · ε

k · p′ − e�
p · ε

k · p
,

η = η1 − η2, (40)

there is

lim
l→∞
n→∞

N=l−n

〈n|S†
p′Dp′D†

pSp|l〉 = eiNαF−N (ζ , η, α). (41)

Finally, we have

Y0 = eiNαF−N (ζ , η, α)ūp′s′

[
/ε′ + e2�2k · ε′

4k · p k · p′ /k
]

ups. (42)

In the same way, we can obtain, in turn,

Y−1 = ei(N−1)αF−N+1(ζ , η, α)
e�

4
ūp′s′

[
/ε′/ε/k
k · p

− /ε/k/ε′

k · p′

]
ups,

Y1 = ei(N+1)αF−N−1(ζ , η, α)
e�

4
ūp′s′

[
/ε′ /ε∗/k
k · p

− /ε∗/k/ε′

k · p′

]
ups,

Y−2 = ei(N−2)αF−N+2(ζ , η, α)ūp′s′
e2�2k · ε′ cos ξ

8k · p k · p′ /kups,

Y2 = ei(N+2)αF−N−2(ζ , η, α)ūp′s′
e2�2k · ε′ cos ξ

8k · p k · p′ /kups. (43)

The results in Eqs. (42) and (43) above are perfectly in agree-
ment with the corresponding results obtained by Brown and
Kibble [10].

III. NUMERICAL RESULTS

In the previous discussion, we prove that dσN/d�k′ will
reduce to the semiclassical value as lk,ε → ∞. Furthermore,
Eq. (27) means that we could keep I constant through chang-
ing lk,ε and V . That is to say, for a given intensity I , the
problem that how dσN/d�k′ is affected by lk,ε could be
solved. Next, we will take linearly polarized light (the polar-
ization parameter ξ = 0) as an example to give some specific
numerical results of scattering cross section. For convenience
in later calculations, we will take the direction of k as the
Z-axis direction and abbreviate dσN/d�k′ as dσN/d�.

We take the laser frequency ω = 1.54 eV (λ ≈ 805 nm)
and the initial electron kinetic-energy Ep = 0. As shown in
Fig. 2(a), laser intensity will affect the total scattering cross
section corresponding to N = 1 in the classical light field.
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FIG. 2. Panel (a): the total scattering cross section in the clas-
sical light field for N = 1. Here, the initial electron kinetic-energy
Ep = 0 and the abscissa is the logarithmic coordinate. Panel (b): the
Thomson differential cross section.

Moreover, there is a critical strength: Ic ≈ 1016 W/cm2, and
it is the embodiment of the relativity effect [1]. Our calcu-
lations show that dσ1/d� is invariant with intensity when
I � Ic, and its value is exactly the Thomson differential cross-
section dσT /d� [see Fig. 2(b)], that is, σ1 = σT = 8πr2

e /3 =
0.0017 n.u. Here, re = e2/(4πm) is the classical electron ra-
dius. Note that σT can be obtained by QED theory [44]
wherein the corresponding physical image is a one-electron
interacts with a single photon. However, according to our pre-
vious proof in Sec. II B, Fig. 2(a) is the result of a one-electron
interacting with infinite photons (lk,ε → ∞). So it seems that
σ1 does not vary with lk,ε when I = constant.

Generally, the volume V is considered to be infinite in QED
and the corresponding jin = 1/V → 0. However, Eq. (27)
establishes the connection between the classical light field and
the quantum light field, and it shows that single photon flux
can have the corresponding classical intensity. Meanwhile,
V is required to be larger than λ3 in order that the field be
a good approximation to a monochromatic plane wave [10].
This means that single-photon flux intensity is significative
only if I � ω/λ3 ≈ 1.42 × 104 W/cm2. Using Eq. (25), we
calculate dσ1/d� corresponding to different Eps when lk,ε =
1 and V = λ3. The results are shown in Fig. 3. It can be seen
that dσ1/d� corresponding to Ep = 0 is just the Thomson
differential cross section. This shows that Eq. (25) is reliable.

FIG. 3. Shows the differential cross sections for lk,ε = N = 1.
Here ω = 1.54 eV and V = λ3. In addition, our calculations indicate
that these differential cross sections are independent of ϕ.

FIG. 4. The contour maps of dσ2/d�. Here, ω = 1.54 eV and
I = 2ω/λ3. Panels (a)–(e) correspond to lk,ε = 2, 3, 5, 10, and 20,
respectively. Panel (f): the semiclassical results.

Besides, we also find that these curves in Fig. 3 are consistent
with corresponding semiclassical results and will not change
with lk,ε for I = ω/λ3. The same is true for I < ω/λ3. There-
fore, other than the scattered photon, the other lk,ε − 1 photons
have no contribution to dσ1/d�. However, the conclusion will
be different for dσ2/d�.

Similarly, we can also compute dσ2/d� under the pre-
requisite of ensuring V � λ3. In this case, the significative
intensity I must be less than 2ω/λ3, namely, I � 2.84 ×
104 W/cm2. In Fig. 4, we present contour maps of dσ2/d�

on the θ -ϕ plane when I = 2ω/λ3. We can see that dσ2/d�

is the periodic function of ϕ, and the period is π/2 rad. What
is more important, dσ2/d� can vary with lk,ε. So to better
understand this change, we give corresponding cross-sectional
views of Fig. 4 when ϕ = π/4 and π/2 rad. The results are
represented in Fig. 5. We find that with the increase in lk,ε,
dσ2/d� also increases and approaches to the semiclassical
value. Ulteriorly, we define the following parameter:

rmax = max

[
dσ2

d�

]
l

/
max

[
dσ2

d�

]
c

, (44)

where max[ dσ2
d�

]l is the maximum of dσ2/d� when the initial
photon number is lk,ε, and max[ dσ2

d�
]c represents the maximum

value of the semiclassical results. As shown in Fig. 6, rmax is
already very close to 1.0 when lk,ε = 200. However, the laser
beam in the laboratory generally contains a large number of

FIG. 5. The cross-sectional views corresponding to the black
dotted lines in Fig. 4. Here, (a) ϕ = π/4 rad; (b) ϕ = π/2 rad.
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FIG. 6. The transition behavior of dσ2/d� from quantum to
semiclassical. The parameters ω and I are consistent with those in
Fig. 4.

photons (lk,ε > 105). So it is difficult to observe the fluctuation
of dσ2/d� with lk,ε. In addition, our calculations show that
the above conclusions are also applicable to I < 2ω/λ3.

IV. SUMMARY AND DISCUSSION

We take the solution of the Dirac equation containing
the quantized light field as the initial and final states of
entire scattering system in this paper. With keeping the in-
tensity I = ωlk,ε/V constant, we numerically calculated the
differential scattering cross sections corresponding to differ-
ent lk,εs. The results show that within the effective intensity,
dσ1/d� will not be affected by lk,ε, but dσ2/d� will in-
crease with lk,ε and quickly approach the semiclassical value.
Although the fluctuation of dσ2/d� does exist, its value is
too small. If high-energy photons (ω ∼ 104 eV) are used, the
order of magnitude of dσ2/d� will be significantly increased
to 10−10 n.u., and it may bring convenience to experimen-
tal detection. Moreover, in the large photon number limit
(lk,ε → ∞), we also prove that the transition matrix element
S f i obtained by using quantum electrodynamics to deal with
multiphoton Compton scattering is consistent with that by the
semiclassical theory.

It is worth noting that the above discussion is based on
the fact that the initial state of the external field is the Fock
state |lk,ε〉. However, strictly speaking, the incident laser beam
should be described as the coherent state [45],

|Q〉 = e−(1/2)|Q|2
∞∑

Lk,ε=0

QLk,ε√
Lk,ε!

|Lk,ε〉, (45)

where Q = √
lk,ε and lk,ε represents the mean photon number

of the incident laser beam. The Fock state |Lk,ε〉 component in
|Q〉 follows Poisson distribution:

P(Lk,ε ) = Q2Lk,ε

Lk,ε!
e−Q2

. (46)

Similar to the previous derivation in Sec. II A, we can easily
get

[wN ]coh =
∞∑

Lk,ε=N

P(Lk,ε )[wN ]Lk,ε
, (47)

where [wN ]coh is the transition probability with the absorption
of N photons when the initial state of the external field is
the coherent state |Q〉. [wN ]Lk,ε

represents wN corresponding
to Fock state |Lk,ε〉 and it can be obtained from Eq. (23).
According to Eq. (47), we can obtain the differential scattering
cross-section [dσN/d�]coh corresponding to |Q〉.

At present, our calculation data show that when ω =
1.54 eV and I is relatively small (I ∼ 104 − 107 W/cm2),
[dσN/d�]coh will not change with lk,ε. However, For larger I ,
the corresponding lk,ε is very large. In this case, our numerical
calculation method will be difficult to carry out because ak,ε

and a†
k,ε

lie on the e index in operators D†
q and Sq. Therefore,

in a strong field with extremely high intensity, how lk,ε affects
the Compton scattering process is very worth exploring.

Finally, it should be pointed out that laser pulses used
in real experiments are not single mode. Through Fourier
decomposition, we can get the frequency spectrum of laser
pulses, which characterize the space-time distribution of the
laser pulse. Therefore, the interaction between electrons and
laser pulses is actually equivalent to the interaction between
the electron and the multimode quantum light field. This situ-
ation will be extremely complex and has greatly exceeded the
scope of our paper. However, for laser pulses with a narrow
frequency spectrum, our single-mode calculation results are
still credible.
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APPENDIX A: THE PECIFIC EXPRESSION OF uqs

In Sec. II A, we define

uqs = P (/S + s)v, (A1)

where [39]

P = (/q + me)/k

2k · q
, (A2)

and

/S = /ε∗/ε + 1 = sin ξ

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠. (A3)

Obviously, we have

/S

⎛
⎜⎝

x1

0
x2

0

⎞
⎟⎠ = sin ξ

⎛
⎜⎝

x1

0
x2

0

⎞
⎟⎠, (A4)

and

/S

⎛
⎜⎝

0
y1

0
y2

⎞
⎟⎠ = − sin ξ

⎛
⎜⎝

0
y1

0
y2

⎞
⎟⎠. (A5)
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Here, x1, x2, y1, and y2 are arbitrary complex numbers. Fur-
thermore, there is also

/S(/S ± sin ξ )v = ± sin ξ (/S ± sin ξ )v. (A6)

Because v is an arbitrary bispinor, we might as well set
x1 = y1 = 1 and x2 = y2 = 0. In this way, considering the
normalization, we obtain

uq,s=+ sin ξ =
√

k · q

meω

(/q + me)/k

2k · q

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠, (A7)

and

uq,s=− sin ξ =
√

k · q

meω

(/q + me)/k

2k · q

⎛
⎜⎝

0
1
0
0

⎞
⎟⎠. (A8)

Then, it is easy to obtain

u†
qsuqs′ = q0

me
δss′ , (A9)

∑
s

uqsūqs = /q + me

2me
. (A10)

APPENDIX B: BOUNDARY TREATMENT OF ψV
qn′s(x)

We note that ψV
qn′

k,εs(x) could not reduce to e−iEqt 〈r|q〉 ⊗
|n′

k,ε〉 as t → ±∞ although it satisfies Eq. (12). In fact, for
an actual Compton scattering system, we must consider the
coupling and decoupling processes between the electrons and
the light field. To this end, we introduce a slowly varying
function,

F (t ) = lim
�→0+

{
e−�t , t > 0
e�t , t � 0

. (B1)

Correspondingly,

H0 → H0 = γ 0γ·[−i∇ + eF (t )Ak,ε(x)] + γ 0me. (B2)

With the help of ∂F (t )
∂t → 0, it is not hard to prove that

ψV
qn′

k,εs(x) is still the solution of Eq. (12) by only replacing g in
Eq. (13) with gF (t ). As a result, ψV

qn′
k,εs(x) will adiabatically

tend to the free state e−iEqt 〈r|q〉 ⊗ |n′
k,ε〉 as t → ±∞.
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