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Spontaneous radiative dissociation of the second bound state of positronium hydride
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The spontaneous radiative dissociation spectrum of the second bound state of positronium hydride (PsH)
located just below the H(2p) + Ps(2p) threshold energy is investigated by the variational and complex coordinate
rotation methods. Convergence of the transition rates is examined in both length and velocity gauges. The
spectrum indicates that the primary channel of radiative dissociation is the transition into the continuum of
H(1s) + Ps(2p), and the secondary one is that into the H(2p) + Ps(1s) continuum. Radiative transition to the
resonance state located close to the second bound state is found to exist. The total rate of the radiative dissociation
is found to be 9.1(2) × 108 s−1.
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I. INTRODUCTION

Optical transitions of the hydrogen atom and its related sys-
tems are of importance in understanding stellar radiation and
have attracted considerable attention in astrophysics [1–5].
The negative hydrogen ion (H−), which usually refers to the
1s2 ground state (1Se) located below the H(1s) + e− disso-
ciation threshold energy, is known to play an important role
in stellar absorption spectra, or opacity [1,6–9], and several
methods are dedicated to accurate prediction of the photode-
tachment processes of H− [10–14]. Here, the term symbol
represents 2s+1L� where s denotes the total spin quantum
number of electrons, L total orbital angular momentum quan-
tum number, and � = ±1 spatial parity e (even, � = 1) or
o (odd, � = −1). The optical transitions of the hydrogen
molecule also contribute to the opacity, and in addition, the
decay of their dissociative states produces hot hydrogen atoms
which play an important role in interstellar reaction kinetics.

Although most of the electronically excited states of these
species are unstable against the autoionization, some of them
are known to be stable against such nonradiative dissocia-
tion. H−(2p2 3Pe) is known as the second bound state, with
0.0096 eV binding energy, below the H(2p) + e− dissociation
threshold energy [15–17]. The two electrons in H−(2p2 3Pe)
are doubly excited in a spin triplet (S = 1) and possess the
total orbital angular momentum L = 1 in even parity (� =
1). The corresponding vector L is composed of the angular
momentum between the two electrons, l1, and the angular
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momentum between the center of mass of the two electrons
and the proton, l2. The conditions L = 1 and � = 1 only allow
l1 = l2 � 1. As the H(1s) + e− continuum has � = (−1)L

owing to the s orbital of the H atom, H−(3Pe) has no overlap-
ping continuum (under the LS-coupling approximation), and
thus the autoionization of H−(3Pe) is prohibited. A similar
bound state that has doubly excited electrons but does not
undergo autoionization is also known in the H2 molecule, as
�− bound states that are located below the H(2p) + H(2p)
dissociation threshold energy [18–20].

As the two H atoms form a bound state, the H atom
and a positronium (Ps; a bound state of an electron and a
positron) also form a bound state, called positronium hy-
dride (PsH) [21–32]. PsH can be regarded as a hydrogen-like
molecule in which one of the H2 protons is replaced by the
positron (e+) or as a proton-lepton system in which H− binds
itself by the positron. Positrons are known to be abundant in
the galaxy, and astrophysical observation suggests that most
positrons form Ps before being annihilated [33]. Thus, the
optical transitions of the PsH system might also contribute to
stellar spectra.

Although the bound state of PsH usually refers to the
2Se state, there exists a second bound state in 2,4So that has
doubly excited electrons but does not undergo nonradiative
dissociation [34]. Regarding the term symbol of 2s+1L� of
PsH, s denotes the total spin quantum number of leptons.
The ground state of PsH (2Se) has spin singlet electrons and
a positron, which gives s = 1/2. PsH(2,4So) has spin triplet
electrons (hence s = 1/2 or 3/2) and 0.019 eV binding en-
ergy against the lowest dissociation threshold of H(2p) +
Ps(2p). The odd parity (� = −1) with the total orbital angular
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FIG. 1. Energy levels of H−(3Pe, 3Po) and positronium hydride
PsH(2,4So, 2,4Pe). Black lines indicate dissociation threshold ener-
gies, and red lines indicate the bound state energies. nH(Ps) is the
principal quantum number of H (Ps). The blue line in H−(3Po) is
the resonance energy of the 2s2p autoionizing state of H−.

momentum L = 0 requires nonzero angular momentum
within the electron-positron pair, which prevents the system
from decaying via 2γ and 3γ annihilation, unlike the more
typical positronic compounds.

The dominant decay process for H−(3Pe) and PsH(2,4So)
is considered to be spontaneous radiative transition to the
autoionization states and/or dissociation continuum of a dif-
ferent symmetry. The left panel of Fig. 1 shows energy levels
of H− and the right panel those for PsH. H−(3Pe) undergoes
spontaneous radiative transitions resulting in the 3Po contin-
uum [the selection rule of dipole transition also allows 3Do

as long as there are no continuum states below the H−(3Pe)
energy level]. The spectrum for the radiative dissociation
to H(1s) + e− was reported in 1973 by Drake [35]. It is
also known that the transition to the autoionization state of
H−(2s2p, 3Po) results in a resonant peak at a photon wave-
length of 29 138 Å [36].

The radiative dissociation process for PsH(2,4So) has not
been discussed in detail. In contrast to H−(3Pe), PsH(2,4So)
has a number of dissociation channels. As shown in the right
panel of Fig. 1, the bound state of PsH(2,4So) is located just
below the H(nH = 2) + Ps(nPs = 2) threshold energy. In the
2,4So symmetry, there is no other dissociation threshold be-
low this bound-state energy. The electric dipole transition of
PsH(2,4So) bound state results in the 2,4Pe continuum. The
lowest threshold energy of 2,4Pe continuum states corresponds
to the H(nH = 1) + Ps(nPs = 2). Note that H(nH = 1) +
Ps(nPs = 1) channel is closed in 2,4Pe symmetry because two
s-state atoms configure the state having � = (−1)L where L
coincides with the orbital angular momentum of interatomic
motion, which indicates that the even parity � = 1 is not
compatible with L = 1. There could also be a transition to
the autoionization state embedded in the 2,4Pe continuum. As
PsH(2,4So) is located just below the H(2p) + Ps(2p) dissoci-
ation threshold energy, the structure of PsH(2,4So) is expected
to be a loosely bound state of these excited atoms. Therefore,
the lifetime of PsH(2,4So) would be comparable to the life-
times of H(2p) and Ps(2p), on the order of 10−8 to 10−9 s [34].

In this study, we calculate the spectrum of the spon-
taneous radiative dissociation of PsH(2,4So) based on the
variational method and complex coordinate rotation method
(CCRM) [37]. From the spectrum, we investigate the dissoci-
ation channels of PsH(2,4So) and its stability. The convergence
of the results is examined for both the length- and velocity-
gauge calculations. Atomic units (a.u.; me = h̄ = e = 1) are
used throughout this paper except where stated otherwise.

II. THEORY

A. Radiative dissociation rates

We consider the four-body Hamiltonian H consisting of
the kinetic energy operators and all interparticle Coulomb
potential operators. The numerical method used to calcu-
late the radiative dissociation rates of PsH(2,4So) follows
the method utilizing the complex coordinate rotated wave
function [37–40]. Denoting the bound-state wave function of
PsH(2,4So) as �i, the radiative dissociation rate Γγ per unit
photon energy can be calculated as

dΓγ

dEγ

= 4

3
α3E3

γ |〈�f (Ef )|d|�i〉|2, (1)

where Eγ is the photon energy, α is the fine-structure constant,
d is the electric dipole moment operator, and �f (Ef ) is the
wave function of the PsH(2,4Pe) continuum state correspond-
ing to the energy Ef = Ei − Eγ , normalized per unit energy.

For numerical calculation of dΓγ /dEγ , we introduce
the complex rotated Hamiltonian H (θ ), in which the dis-
tance r is scaled by a complex factor of eiθ as r → reiθ .
|�f (Ef )〉〈�f (Ef )| can be expressed with H (θ ) and the com-
plex rotation operator R(θ ) as

|�f (Ef )〉〈�f (Ef )| = 1

2iπ

[
R(−θ )

1

H (θ ) − Ef
R(θ )

− R(θ )
1

H (−θ ) − Ef
R(−θ )

]
. (2)

The eigenstates of H (θ ), ψn(θ ), satisfy

H (θ )ψn(θ ) = En(θ )ψn(θ ), (3)

〈ψ̄n(θ )|ψm(θ )〉 = δnm, (4)

where ψ̄n(θ ) denotes the complex conjugate of ψn(θ ) ex-
cept for the angular part. Utilizing the closure relation∑

n |ψn(θ )〉〈ψ̄n(θ )| = 1, dΓγ /dEγ can be written in terms of
the eigenfunctions of H (θ ) as

dΓγ

dEγ

= 4

3
α3E3

γ

1

π
Im

∑
n

[ 〈ψ̄n(θ )|d(θ )|�i(θ )〉2

En(θ ) − Ef

]
, (5)

where d(θ ) = R(θ )dR(−θ ) is the rotated electric dipole mo-
ment operator, and �i(θ ) is the rotated wave function of the
bound state.

In the present work, we evaluate dΓγ /dEγ in both length
and velocity gauges. In the length gauge, d(θ ) is written as

d(θ ) = −eiθ
(
rp→e−

1
+ re+→e−

2

)
, (6)

where rp→e−
1

is a vector from p to one of the electrons, e−
1 ,

and re+→e−
2

is a vector from e+ to the other electron, e−
2 . In the

012814-2



SPONTANEOUS RADIATIVE DISSOCIATION OF THE … PHYSICAL REVIEW A 105, 012814 (2022)

FIG. 2. Jacobi coordinate systems for PsH.

velocity gauge,

d(θ ) = −e−iθ

Eγ

(
1

μpe−
1

∇p→e−
1

+ 1

μe+e−
2

∇e+→e−
2

)
, (7)

where μi j is the reduced mass between particles i and j, and
∇i→ j is the differential operator associated with ri→ j .

dΓγ /dEγ would give the same results in the length and
velocity gauges if the �i(θ ) and ψn(θ ) were exact. However,
as described above, the PsH(2,4Pe) continuum wave function
in principle involves infinitely many dissociation channels,
which makes it difficult to construct the exact scattering wave
function. In this work, �i(θ ) and ψn(θ ) are calculated by the
variational method for energy and are expanded in terms of
the square integrable functions to satisfy

〈�̄i(θ )|H (θ )|�i(θ )〉 = Ei(θ ) (8)

and

〈ψ̄n(θ )|H (θ )|ψm(θ )〉 = En(θ )δnm. (9)

Therefore, the discrepancy between dΓγ /dEγ in the length
and velocity gauges are an indicator of the numerical accu-
racy.

B. Bound state

For the description of the bound-state wave function, �i,
we consider the five Jacobi coordinate systems {rc, Rc, ρc}
(c = 1–5) illustrated in Fig. 2 and their electron-permutated
counterparts. As described above, the angular momentum of
the interparticle motion in PsH(2,4So) is not zero. �i(θ ) can
be expanded in terms of Gaussian functions and spherical
harmonics as follows:

�i(θ ) =
∑

c

∑
i jk

(1 − P )Cci jk (θ ) rcRcρc

× exp
(−air

2
c − AjR

2
c − αkρ

2
c

)
× exp

( − σ (1)
c

√
aiA jrc · Rc

− σ (2)
c

√
AjαkRc · ρc − σ (3)

c

√
αkaiρc · rc

)
× [[Y1(r̂c) ⊗ Y1(R̂c)]1 ⊗ Y1(ρ̂c)]LML

, (10)

where L = ML = 0 for S state, P is the permutation op-
erator for two electrons, and c denotes the corresponding
Jacobi coordinate system in Fig. 2. The linear coefficients
Cci jk (θ ) (complex values depending on θ ) are determined by
the Rayleigh-Ritz variational principle. [· · · ] denotes the lin-
ear combination of spherical harmonics with Clebsch-Gordan
coefficients as defined in Ref. [41]. Although we do not ex-
plicitly write the spin part in Eq. (10), the spin functions
configure the triplet state (S = 1) for two electrons; therefore,
the electron-permutated term is added with a negative sign.
The coefficients {ai}, {Aj}, {αk} are chosen to range from
0.001 to 3000 according to their geometric progression. Al-
though each of the basis functions involves only Y1 functions,
the use of several sets of basis functions written in different
coordinate systems facilitates description of the interparticle
correlation in the bound state [42,43]. For example, the c = 1
coordinate system is suitable for describing the p-e− and e−-
e+ interactions as well as the interaction between these pairs,
and c = 2 and c = 3 are suitable for describing the (pe−e−)-
e+ interaction. c = 4 and c = 5 provide an auxiliary picture
in which the e−-e+-e− cluster interacts with the proton.

The nonzero σ (i)
c introduces the ability to describe the

higher angular correlations because

exp
( − σ (1)

c rc · Rc
) = 4π

∞∑
λ=0

√
2λ + 1iλ

(
σ (1)

c rcRc
)

× [Yλ(r̂c) ⊗ Yλ(R̂c)]00, (11)

results in the higher order spherical functions. Here iλ is the
modified spherical Bessel function of the first kind. While
the σ (i)

c can be chosen arbitrarily, the use of basis functions
written in different Jacobi coordinates efficiently facilitate the
description of the four-body correlation, which allows us to
choose σ (i)

c from small ranges around zero. In the present
work, five kinds of σ (i)

c = 0,±0.04, and ±0.08 are used for
each basis function.

C. Pseudocontinuum and resonance states

ψn(θ ) in Eq. (9) is expanded in terms of Gaussian functions
and spherical harmonics as follows:

ψn(θ ) =
∑

c

∑
lcLc�cλc

∑
i jk

(1 − P )C(n)
ci jk (θ )rlc

c RLc
c ρλc

c

× exp
(−bir

2
c − BjR

2
c − βk (1 + iε)ρ2

c

)
× [[Ylc (r̂c) ⊗ YLc (R̂c)]�c ⊗ Yλc (ρ̂c)]L′M ′

L
, (12)

where L′ = 1 and −1 � M ′
L � L. The spherical harmonics

are chosen to configure even parity, namely, (−1)lc+Lc+λc = 1.
{bi}, {Bj}, and {βk} are chosen according to their geometric
progression. The ε introduces complex Gaussian functions
that are suitable for describing the oscillation behavior of
the wave function and contribute to increase the numerical
stability of eigenvalue problem. In a way similar to that in
the bound-state calculation, C(n)

ci jk (θ ) is determined by the
Rayleigh-Ritz variational principle. The continuum energies,
therefore, are discretized as a result of the eigenvalue problem.

The orbital angular momentum quantum numbers
lc, Lc,�c, and λc are chosen from the possible combinations
of 0 � lc � 2, 0 � Lc � 2, |lc − Lc| � �c � lc + Lc, and
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TABLE I. Four-body energy Ei of PsH(2,4So) bound state and ex-
pectation values of interparticle distances, listed against the number
of basis functions Nb. Here, the proton mass is set to be infinite to
facilitate comparison with the previous work [44].

Nb Ei 〈rp,e−〉 〈re−,e+〉 〈rp,e+〉 〈re−,e−〉 〈rp,(e−e+ )〉
34 920 −0.188 189 8.899 12.754 14.301 14.058 10.016
44 850 −0.188 282 8.883 12.740 14.274 14.029 9.997
52 634 −0.188 313 8.870 12.724 14.248 14.006 9.978
Ref. [44] −0.188 317 8.867 12.722 14.243 14.001

0 � λc � 2. As PsH(2,4So) is expected to have a loosely
bound structure of H(2p) and Ps(2p), the dominant channels
of radiative dissociation would be H(1s) + Ps(2p) and
H(2p) + Ps(1s); namely, one of the excited atoms is
deexcited, emitting a photon, and the other remains as it
is. Thus, basis functions written in the c = 1 coordinate
system having the angular part of lc = 0, Lc = 1,�c = 1,
and λc = 1 play a primary role in the description of H(nHs)
+ Ps(nPs p). Similarly, those written in the c = 1 coordinate
system having the angular part of lc = 1, Lc = 0,�c = 1, and
λc = 1 provide a good description of H(2p) + Ps(1s). The
{bi} (and {Bj}) are chosen to range 0.1 � b−2

i (B−2
j ) � 40 so

that the eigenenergies of the dissociation fragments, Ps and
H, can be reproduced up to n ≈ 4 excited states. The {βk} for
these basis functions are chosen to range 0.1 � β−2

k � 100
so as to describe the continuum states of H(1s) + Ps(2p) and
H(2p) + Ps(1s) precisely. We typically use 40 parameters of
{βk} setting ε = ±0.5. The set of {βk} corresponding to the
higher order of the angular part is chosen from the range of
0.1 � β−2

k � 60 with ε is set to be 0.
Since basis functions written in c coordinate system and

having the angular part specified by lc, Lc,�c, and λc have
the same physical role in the description of the total wave
function. Thus, we call the set of c and (lc, Lc,�c, λc) “ar-
rangement channel.” We constructed ψn with 21 arrangement
channels and 61 248 basis functions in total. We examine the
convergence of calculation by increasing the number of ar-
rangement channels as well as the number of basis functions.

III. RESULTS AND DISCUSSION

A. Bound state

Table I displays the convergence of the bound-state energy
Ei against the number of basis functions Nb. Note that the
proton mass is set to be infinite for comparison with the previ-
ous work [44]. Ei converges as the number of basis functions
increases. Our best bound-state energy value, −0.188 313 a.u.,
reproduces the best variational value, −0.188 317 a.u. [44],
to five digits. Table I also shows the expectation values of
inter-particle distances. ri, j denotes the distance between par-
ticles i and j, and ri,( jk) denotes the distance between particle
i and the center of mass of the pair of particles j and k.
As Ei converges, the expectation value of the interparticle
distances also converges and shows good agreement with the
previous work. The distances between the repulsive particles,
〈rp,e+〉 and 〈re−,e−〉, are approximately 14 a.u., which roughly
characterizes the size of this system.

FIG. 3. Interparticle correlation functions (solid lines) of
PsH(2,4So) bound state against the distance. (a) Red solid line, p-e−

correlation (multiplied by 2); blue line, p-e+ correlation; orange line,
p-(e−, e+) correlation (multiplied by 2), where (e−, e+) represents
the center of mass of e− and e+; red open circles, p-e− correlation
(multiplied by 2) of H−(3Pe); black dashed line, p-e− correlation of
H(2p). The dotted line is a function of 10−6 exp(−Kr) where K2/4
corresponds to the binding energy of PsH(2,4So). The dashed line
is 10−6 exp(−kr) where k2/2 corresponds to the binding energy of
H−(3Pe). (b) Green solid line, e+-e− correlation of PsH(2,4So); black
dotted line, e+-e− correlation of Ps(2p).

In order to see the structure of the PsH(2,4So) bound state,
we introduce correlation functions defined as

C(r′
i j ) =

〈
�i

∣∣∣∣δ(ri j − r′
i j )

4πr2
i j

∣∣∣∣�i

〉
, (13)

where i and j denote particles p, e−, or e+ or the center of
mass of a pair of these particles. The correlation function is
normalized to unity as

∫
C(r′

i j )dr′
i j = 1. Figure 3 illustrates

correlation functions of the PsH(2,4So) bound state together
with those of H(2p), H−(3Pe), and Ps(2p). Due to the iden-
tical nature of the electrons, in the two-electron systems, the
correlation functions related to the electron density, C(rp,e− ),
C(rp,(e−,e+ ) ), and C(re−,e+ ), are multiplied by 2 so that we
can directly compare them with the electron density of H(2p)
and Ps(2p). Owing to the nonzero interparticle angular mo-
mentum, the correlation functions start at zero. As shown in
Fig. 3(a), the p-e− correlation function of PsH(2,4So) has a tail
broader than that of H(2p) whereas the short range (�5 a.u.)
behavior of PsH(2,4So) coincides with that of H(2p). Simi-
larly, as shown in Fig. 3(b), the e+-e− correlation function of
PsH(2,4So) has a tail broader than that of Ps(2p) whereas the
short range (� 5 a.u.) behavior coincides with that of Ps(2p).

It should be noted that the broad tail of the p-e− corre-
lation function of PsH(2,4So) does not exclude the structure
consisting of Ps(2p) and H(2p). As indicated in Ref. [44], the
shape of the p-e− correlation function can be well modeled
by the H(2p) + e−-e+ pair. Similarly, the shape of the e+-e−
correlation function can be well modeled by the Ps(2p) + p-
e− pair. As we see in Fig. 3, the tail of 2C(rp,e− ) coincides with
those of 2C(rp,(e−,e+ ) ) and C(rp,e+ ) at the greater distances,
which suggests the Ps formation in PsH(2,4So).

The tail of the p-e− correlation function is shorter than
that of H−(3Pe). This could be because the attached positron
reduces the electron-electron repulsion, causing the electronic
size of PsH(2,4So) to shrink, as discussed in the first bound
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state of PsH [26,30]. The other explanation can be given by the
asymptotic form of the wave function. When the positron and
one of the electrons form a Ps at the long distance, the asymp-
totic form of the p-e± correlation functions should coincide
with the analytical form of exp(−2Kr) where K = √

2εbμ

(εb, binding energy of PsH(2,4So); μ, reduced mass of Ps and
H). Figure 3(a) also shows this asymptotic form as well as that
of H−(3Pe), exp(−2kr). Given the fact that the binding energy
of PsH(2,4So) is approximately two times larger than that of
H−(3Pe) and the reduced mass of Ps-H is also two times larger
than that of H-e−, and K is roughly two times larger than k,
which explains the faster decay of the correlation function
of PsH(2,4So) than H−(3Pe). The p-e− correlation function
of H−(3Pe) gradually coincides with the asymptotic form of
exp(−2kr) at the long distance >40 a.u. Similarly, the p-e±
correlation functions gradually coincide with the asymptotic
form of exp(−2Kr) at the long distance >40 a.u.

B. Continuum and resonance states

Hereinafter, for calculation of the radiation spectrum,
we use the real proton-electron mass ratio mp/me =
1836.152 673 89 [45], which gives Ei = −0.188 237 a.u.
which corresponds to the binding energy of 0.022 123 a.u.
Given that the infinite mass condition results in Ei =
−0.188 313 a.u. by the present calculation, corresponding to
the binding energy of 0.021 906 a.u., the difference between
the real proton mass calculation and the infinite proton mass
calculation is 0.217 meV.

Because we describe the final states of radiative dissoci-
ation in terms of ψn(θ ), obtained by the diagonalization of
the Hamiltonian [Eq. (9)], the properties of ψn(θ ) contribute
directly to the radiation spectrum. To investigate the charac-
teristics of ψn(θ ) and survey the resonance states embedded
in the continuum, we examine the eigenenergies En(θ ) for a
given rotation angle θ .

Figure 4(a) shows En(θ ) for θ = 0.16. Continuum states
of H(nl) + Ps(n′l ′) are discretized by the use of finite-range
basis functions, and their En(θ ) values rotate by −2θ owing to
the rotation of the kinetic energy operator. The light blue lines
of Fig. 4(a) denote the rotated cuts of H(nl) + Ps(n′l ′) con-
tinuum states, and some En(θ ) values below Ei = −0.188 237
clearly lie on these cuts. In particular, the continuum states
of H(1s) + Ps(n′l ′) for 2 � n � 5 and of H(nl) + Ps(1s) for
2 � n � 6 are expected to be well described by the present
calculation.

The complex coordinate rotation trajectories of En(θ ) re-
veal a resonance state. Close to Ei, the 2,4Pe resonance state is
located at resonance energy −0.199 502 (just below the 2,4So

bound-state energy Ei = −0.188 237) with an energy width of
0.001 182. Figure 4(b) shows the trajectories of En(θ ) around
the complex resonance energy, Er − iΓc/2. We examined
10 different sets of basis functions (changing the expansion
ranges; using the same arrangement channels), increasing θ

from 0 to 0.22 by 0.02. All trajectories converge to a unique
point on the complex energy plane as θ increases.

For the structural investigation of this resonance state, we
introduce expectation values of the interparticle distances:

〈ri j〉 = 〈ψ̄n(θ )|ri je
iθ |ψn(θ )〉. (14)

FIG. 4. (a) Complex coordinate rotated eigenenergies En(θ ) (θ =
0.16), plotted as red circles. The light blue lines are rotated cuts.
The black arrow shows the resonance pole (see the lower panel).
(b) Complex coordinate rotation trajectories around the resonance
energy. The different colors correspond to different sets of basis
functions. The open circles are results calculated for values of θ in-
cremented from 0 to 0.22 by 0.02. Each arrow indicates the direction
of increasing θ .

The real part of 〈ri j〉 gives the probable expectation value, and
the imaginary part can be regarded as its uncertainty due to
the finiteness of the lifetime of the resonance state [46–48].
Table II lists those mean distances for which the size of the
resonance state is found to be similar to that of the bound state.
It is found that 〈rp,e−〉 and 〈re−,e−〉 of the resonance state are
slightly smaller than those of the bound state. On the other
hand, 〈re−,e+〉 is slightly larger than that of the bound state, and
〈rp,e+〉 remains nearly unchanged. Thus, the transition from
the bound state to the resonance state should be accompanied
primarily by shrinkage of the electronic cloud but not by the
positronic one.

C. Radiative dissociation rates

Now we evaluate the radiation spectrum according to
Eq. (5) in both length and velocity gauges. Figure 5 displays

TABLE II. The real part of the expectation values of inter-
particle distance in the PsH bound state (2,4So) and resonance
state (2,4Pe). The proton-electron mass ratio is set to mp/me =
1836.152 673 89 [45]. The digit in parentheses denotes the uncer-
tainty in the last digit obtained from the imaginary part of the
expectation value.

〈rp,e−〉 〈re−,e+〉 〈rp,e+〉 〈re−,e−〉 〈rp,(e−e+ )〉
Bound state 8.894 12.74 14.28 14.05 10.01
Resonance state 7.45(7) 13.5(2) 14.2(2) 12.3(1) 9.1(1)

012814-5



YAMASHITA, HIYAMA, YOSHIDA, AND TACHIKAWA PHYSICAL REVIEW A 105, 012814 (2022)

FIG. 5. Radiation spectra calculated by five different sets of basis functions. Nb denotes the total number of basis functions. The solid lines
are the averaged results of the length- and velocity-gauge calculations; the shaded areas denote the discrepancy between them. (a) Energy range
from 8.0 to 10.5 eV. The vertical dotted lines indicate the energy difference between Ei and the threshold energies of H(1s) + Ps(nPs � 2).
(b) Energy range from 1.0 to 5.5 eV. The vertical dashed lines indicate the energy difference between Ei and the threshold energies of H(nH � 2)
+ Ps(1s). The insets show that part of the spectrum multiplied by 200. (c) Energy range from 0.1 to 0.6 eV.

dΓγ /dEγ against Eγ as obtained by five different sets of basis
functions, with counts of Nb = 25 600 with 2 arrangement
channels, Nb = 37 240 with 5 arrangement channels, Nb =
49 336 with 12 arrangement channels, Nb = 56 248 with 16
arrangement channels, and Nb = 61 248 with 21 arrangement
channels. In each of the calculations, 2400 pseudostates are
included in the summation in Eq. (5). In the set of basis
functions with Nb = 61 248, ψ1(θ ) and ψ2400(θ ) correspond
to ReE1(θ ) = −0.562 166 and ReE2400(θ ) = −0.024 566, re-
spectively. It should be noted that the calculation results are
unchanged against the number of pseudostates �2000. The
discrepancy between the length- and velocity-gauge calcu-
lations is indicated by the shaded areas, and their average
is shown as solid lines. The maximum photon energy Eγ is
10.18 eV, which is close to the energy difference between

Ei and the lowest threshold energy of H(1s) + Ps(2p). In
general, the discrepancy between the length- and velocity-
gauge calculations decreases as the number of basis functions
increases.

The radiation spectrum has two notable peaks at Eγ =
10.14 eV and Eγ = 5.02 eV as well as small peaks at Eγ =
3 eV and Eγ = 0.306 eV. Figure 5(a) shows the highest peak,
found at Eγ = 10.14 eV, which almost corresponds to the
energy difference between Ei and the threshold energy of
H(1s) + Ps(2p). As there are no other dissociation channel
in Eγ > 9.23 eV, this peak can be definitively attributed to the
radiative dissociation into H(1s) + Ps(2p). It can be seen that
the five different sets of basis functions give well-converged
results on the radiation spectrum in the energy range 8.0 <

Eγ < 10.2 eV. Moreover, both length- and velocity-gauge
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TABLE III. Resonance energy Er , width Γc, and lifetime τc =
Γ −1

c of PsH(2,4Pe) resonance state as calculated by the complex
coordinate rotation method (CCRM) and Lorentzian fitting of the
radiation spectrum.

Method Er (a.u.) Γc (a.u.) τc (ps)

Lorentzian fitting −0.199 607 0.001 130 0.021 41
CCRM −0.199 502 0.001 182 0.020 46

calculations give consistent results, affirming the accuracy of
our calculation.

The second highest peak is at Eγ = 5.02 eV, as shown in
Fig. 5(b). It is situated close to the energy difference between
Ei and the threshold energy of H(2p) + Ps(1s). Although this
peak could in principle be contributed by the radiative disso-
ciation into H(1s) + Ps(nPs � 2) and the exact decomposition
of these components is not possible, in light of the steep rise of
this peak at the threshold energy, it can fairly be attributed to
the radiation of the dissociation into H(2p) + Ps(1s). As with
the primary peak at Eγ = 10.14 eV, the five different sets of
basis functions give well-converged results.

From previous work [44] and our discussion in Sub-
sec. III A, PsH(2,4So) is considered to be a loosely bound state
of H(2p) and Ps(2p). A radiation spectrum whose two highest
peaks are attributable to the dissociation into H(1s) + Ps(2p)
and H(2p) + Ps(1s) is consistent with this picture.

The energy transfer between H(2p) and Ps(2p) upon the
spontaneous radiative dissociation would be an intriguing sub-
ject for investigation. The deexcitation energy of H(2p) to
H(1s) is 0.375 a.u., which is sufficient to induce excitation
of Ps(2p), as its binding energy is 0.0625 a.u. Similarly, the
energy gap of Ps(2p) to Ps(1s), 0.1875 a.u., is sufficient to
excite H(2p), whose binding energy is 0.125 a.u. Thus, in
principle, there are branches resulting in H(1s) and excited
Ps or in excited H and ground-state Ps. However, in the tail
of the primary peak [Fig. 5(a)], we did not observe any clear
peak near the former threshold energies. In contrast, as can be
seen in the insets of Fig. 5(b), there is a small but clear peak at
Eγ = 3 eV, the threshold energy of H(3p/3d) + Ps(1s). This
suggests that the deexcitation energy of Ps(2p → 1s) tends to
transfer to the H(2p), not vice versa.

Figure 5(c) shows the peak found near Eγ = 0.306 eV. This
peak can be attributed to the transition from PsH(2,4So) to
the resonance state PsH(2,4Pe) investigated in Subsec. III B.
As PsH(2,4So) is truly a bound state unless it couples with
the radiation field, the spectral shape of the transition to the
resonance state PsH(2,4Pe) should be characterized by the
resonance energy Er and width Γc of PsH(2,4Pe).

In the absence of the background phase, the spectral shape
can be analyzed by a Lorentzian function as

dΓγ

dEγ

= A
Γc/2

(Eγ − Ei + Er )2 + Γ 2
c /4

, (15)

where A is a constant. Note that Γc is the nonradiative dis-
sociation rate of PsH(2,4Pe). We fitted the radiation spectrum
by Eq. (15) with free parameters Er, Γc, and A. The values
obtained for Er and Γc are listed in Table III. They are in good
agreement with those calculated by the complex coordinate

FIG. 6. Blue line, radiation spectrum of PsH(2,4So); orange line,
that of H−(3Pe). The solid lines indicate the average of the velocity-
gauge and length-gauge calculation results, and the shaded areas
indicate their discrepancy.

rotation method shown in Fig. 4(b). Therefore, the peak at
Eγ = 0.306 eV is undoubtedly attributable to the transition to
the PsH(2,4Pe) resonance state.

Although the amplitude of this peak is smaller than those of
the primary and secondary peaks at Eγ = 10.14 and 5.02 eV,
the transition to the resonance state embedded in the 2,4Pe

continuum has features that differ from those of radiative
dissociation into the nonresonant continuum. The 2,4Pe res-
onance state has a lifetime of 0.02 ps and is located far above
the p + e− + Ps(1s) threshold energy. As the center of mass
of the system is located almost precisely at the proton, the
nonradiative decay of the 2,4Pe resonance state may produce
Ps(2p) with 9.9 eV kinetic energy and Ps(1s) with 4.8 eV
kinetic energy. This is in contrast to the radiative dissociation
into the nonresonant continuum state of H(1s) + Ps(2p) and
H(2p) + Ps(1s), in which most of the deexcitation energy is
carried away by the photon, thereby producing the slow Ps.

D. Branch estimation and comparison with H−(3Pe)
radiative dissociation

Figure 6 shows a gross view of the radiation spectrum
of PsH(2,4So) together with that of H−(3Pe) calculated in a
framework similar to that described for PsH. For calculation
of the H−(3Pe) spectrum, we used 3904 basis functions for the
bound state, reproducing the binding energy of the best vari-
ational calculation [49] to greater than six-digit precision. As
the H−(3Pe) bound state is located just below the H(2p) + e−
dissociation threshold energy, the maximum photon energy is
10.19 eV, which is very close to the maximum photon energy
from PsH(2,4So).

The spectrum of H−(3Pe) has two clear peaks, at Eγ =
10.17 and 0.456 eV. The higher energy peak corresponds to
the radiative dissociation into the H(1s) + e− continuum, and
the lesser one corresponds to the radiative transition into the
2s2p resonance state of 3Po [36]. The spectral shape around
the higher energy peak resembles that of PsH(2,4So). The half
width at half maximum of the highest peak of PsH(2,4So) is
slightly greater than that of H−(3Pe), which means that the
deexcitation energy is more effectively transferred to kinetic
energy of the relative motion of the dissociation fragments.
Although PsH(2,4So) would have the structure of a loosely
bound state consisting of H(2p) and Ps(2p), it can also be
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TABLE IV. Summary of radiative transition rates for H(2p) and
Ps(2p), H−(3Pe), and PsH(2,4So). The digit in parentheses denotes
the uncertainty estimated by the discrepancy between the velocity-
and length-gauge calculations.

System Γγ (s−1) τγ (ns)

H(2p) → H(1s) 6.26 × 108 1.60
Ps(2p) → Ps(1s) 3.13 × 108 3.19
H−(3Pe)
→ H−(3Po) 2.4 × 106 4.2×102

→ H(1s) + e− 5.80 × 108 1.72
Total 5.82 × 108 1.72
Total [35] 5.77 × 108

PsH(2,4So)
→ PsH(2,4Pe) 4.6 × 105 2.2×103

→ excited H + Ps(1s) 2.71(1) × 108 3.69(3)
→ H(1s) + excited Ps 6.4(1) × 108 1.57(4)
Total 9.1(2) × 108 1.10(3)

considered as a bound state between H−(3Pe) and the positron
in the p orbital. As shown in the p-e− correlation function
in Fig. 3(a), the electrons of the PsH(2,4So) bound state are
closer to the proton than those of H−(3Pe). As the p-e− mean
distance of H−(3Pe), 〈rp,e−〉 = 11.66, is greater than that of
PsH(2,4So), 〈rp,e−〉 = 8.894, one can expect tighter interaction
between the dissociation fragments. Therefore, the widening
of the radiation spectrum for PsH(2,4So) is convincing.

H−(3Pe) also exhibits the bound–resonance transition peak,
which is consistent with Ref. [36]. There is a resemblance in
the resonance peaks between PsH(2,4So) and H−(3Pe), though
the peak height in H−(3Pe) is greater than that in PsH(2,4So).

Although the present calculation does not distinguish the
final state fragments and consequently does not rigorously
determine the branching ratio for the spontaneous radiative
dissociation, we estimate the branching ratio based on the
integration of the radiation spectrum by utilizing the large
discrepancy of the threshold energies of H(1s) + Ps(nPs � 2)
and H(nH � 2) + Ps(1s).

For H−(3Pe), the rate of transition to the 2s2p resonance
state of 3Po is calculated by integration of the fitted Lorentzian
function. The total radiative dissociation rate, including the
transition to the resonance state, is calculated by integration of
dΓγ /dEγ over 0 � Eγ � 10.19 eV. The radiative dissociation
rate to the nonresonant H(1s) + e− continuum is obtained by
subtracting the rate of transition to the resonance state from
the total rate. Similarly for PsH(2,4So), the rate of transition
to the 2,4Pe resonance state is calculated by integration of
the fitted Lorentzian function. The total rate is given by the
integration of dΓγ /dEγ over the entire energy range. The
rates of radiative dissociation resulting in H(1s) + excited
Ps and excited H + Ps(1s) are approximated by integrating
dΓγ /dEγ over 5.08 � Eγ � 10.18 and 0 � Eγ � 5.08 eV,
respectively.

These estimated values are summarized in Table IV along
with the spontaneous deexcitation rates for H(2p) and Ps(2p).

The total radiative dissociation rate for H−(3Pe), 5.82 ×
108 s−1, is comparable to the one previously reported, 5.77 ×
108 s−1 [35]. The contribution of the bound-resonance transi-
tion is 0.4% of the total rate. For PsH(2,4So), the total rate is

9.1(2) × 108 s−1, which is greater than that of H−(3Pe). The
contribution of the bound–resonance transition is 0.05% of
the total rate. The radiative dissociation resulting in the H(1s)
fragment has a rate of 6.4(1) × 108 s−1, which is also greater
than that for H−(3Pe) and is comparable to the rate of spon-
taneous radiative deexcitation of H(2p). The rate resulting in
the Ps(1s) fragment, in turn, is 2.71(1) × 108 s−1, which is
slightly less than the spontaneous radiative transition rate for
Ps(2p). These theoretical observations are consistent with the
structural analyses above.

IV. CONCLUSION

We have reported the spontaneous radiative dissociation
spectrum of the second bound state of PsH(2,4So) based on the
calculation utilizing complex coordinate rotated wave func-
tions. The accuracy of the results were carefully investigated
by their convergence against the choice of basis functions and
the choice of length and velocity gauges.

PsH(2,4So) predominantly undergoes dissociation with
emission of a photon whose radiation spectrum peaks at 10.14
and 5.02 eV. The former peak is attributable to transition to the
continuum states of H(1s) + Ps(2p), and the latter one mainly
to those of H(2p) + Ps(1s). We also reported that the radiative
dissociation spectrum of PsH(2,4So) has aspects similar to
those of H−(3Pe). In particular, the radiation resulting in the
H(1s) fragment has almost the same spectral shape. Both
the rate resulting in the H(1s) fragment and that resulting in
the Ps(1s) fragment are close to those of 2p → 1s transition
rates, which suggests that PsH(2,4So) is a loosely bound state
of H(2p) and Ps(2p). The total rate of the spontaneous radia-
tive dissociation is calculated to be 9.1(2) × 108 s−1.

In the present calculation, we do not consider the annihi-
lation branch; however, given that the structure of PsH(2,4So)
can be considered as the loosely bound state of H(2p) and
Ps(2p), the annihilation rate would be similar to that of
Ps(2p). In the literature [50,51], the 2γ annihilation lifetime
of Ps(2p) is known to exceed 100 μs, corresponding to the
rate of � 104 s−1 which is smaller than the radiative tran-
sition rate into the resonance state identified in the present
work.

The radiative transition to the resonance state of 2,4Pe,
whose lifetime against the nonradiative dissociation is 0.02
ps, is found to make a small contribution to the total rate
of the radiative dissociation. The resonance state may emit
9.9 eV Ps(2p) in its short lifetime, which could pave the
way for future experiments to observe PsH(2,4So). Besides,
the reverse process, namely the photon absorption of the 2,4Pe

resonance state resulting in the PsH(2,4So) bound state, might
also contribute to the stellar spectrum involving the excited H
and/or Ps.
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