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The recently presented general algorithm for calculating an atomic fine structure [Kędziorski et al.,
Chem. Phys. Lett. 751, 137476 (2020)] is employed to study the fine splitting of the lowest eight 3P states of
beryllium, i.e., the 1s2 2s np, n = 2, . . . , 9, 3P states. All-electron explicitly correlated Gaussian functions and a
finite-nuclear-mass variational method are used in the calculations. The energies of the states are augmented with
the leading α2 relativistic and α3 (and approximate α4) QED corrections (α = 1

c is the fine-structure constant, and
c is the speed of light in atomic units). The calculated results are compared with the available experimental data.
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I. INTRODUCTION

Experimental spectra of small atomic systems are an im-
portant area of comparison between very high resolution
measurements and state-of-the-art quantum-mechanical cal-
culations. There are constant improvements being made to
the databases that list the most current atomic experimental
data concerning atomic interstate transitions [1]. There is also
constant progress being made in high-accuracy calculations
of atomic energy levels. Among those levels, lines resulting
from the splitting of the main atomic lines due to spin-orbit
(SO) magnetic interactions are particularly interesting, as they
provide fingerprint signatures that are characteristic of specific
atomic systems. This splitting that arises from the interaction
of the orbital motion of the electrons with the electronic spins
gives rise to the fine structure of the spectral lines of atoms
with nonzero total orbital angular momenta and nonzero total
spin angular momenta.

The most accurate theoretical calculations of atomic fine
structures have been performed for two- and three-electron
atoms using Hylleraas-type explicitly correlated functions
(see, for example, the calculations for the spectra of the
lithium atom by Wang et al. [2], as well as the calcula-
tions for other two- and three-electron atomic systems [3–7]).
However, extending the use of Hylleraas functions to expand
wave functions of atoms with more than three electrons has
been hampered by technical difficulties with calculating the
Hamiltonian matrix elements [8].

An alternative type of explicitly correlated basis function
that has been gaining popularity in high-accuracy atomic
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calculations, especially for atoms with more than three elec-
trons, is the set of all-electron explicitly correlated Gaussian
functions (ECGs). These functions exponentially depend on
squared distances between electrons of all electronic pairs in
the system. For four- and five-electron atomic systems, the use
of ECGs enabled achieving very high accuracy in calculations
of interstate transitions [9–17]. The popularity of ECGs in
atomic calculations results from the high efficiency of these
functions in describing the correlated motion of the electrons
and from the relative simplicity of the algorithms for calcu-
lating the Hamiltonian matrix elements with these functions.
These algorithms can be analytically derived and coded in a
general form for an arbitrary number of electrons in the atom.
One can also easily derive algorithms for calculating the first
derivatives of the Hamiltonian matrix elements with respect
to the ECG nonlinear parameters and use them to determine
the energy gradient [18,19]. The use of the gradient in the
variational energy minimization considerably accelerates the
minimization process and enables achieving high accuracy in
the calculations. It also allows extending the size of atomic
systems whose spectra can be very accurately calculated using
present-day computer systems. As the computational time in
ECG atomic calculations scales as the factorial of the number
of electrons in the system, the practical present limit of the
number of electrons in the atom that can be calculated with
high accuracy is less than 10. The largest atomic system
considered so far in ECG calculations is carbon and nitrogen
atoms [20–23]. Calculations for larger atoms will need to wait
for a new generation of computer hardware to be performed
at the same accuracy level which is now possible for four- and
five-electron atoms.

The advantage of using ECGs in atomic calculations also
stems from the fact that matrix elements involving operators
representing the leading relativistic and QED corrections can
be analytically evaluated in a compact form. These matrix

2469-9926/2022/105(1)/012813(10) 012813-1 ©2022 American Physical Society

https://orcid.org/0000-0001-9136-5125
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.012813&domain=pdf&date_stamp=2022-01-18
https://doi.org/10.1016/j.cplett.2020.137476
https://doi.org/10.1103/PhysRevA.105.012813
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elements can be calculated for an arbitrary number of elec-
trons. Including the relativistic and QED corrections in the
total state energies of the considered atom, as done in the
present work, significantly improves the accuracy of the cal-
culated interstate transition energies.

There are some drawbacks of using ECGs in atomic cal-
culations. They are related to these functions not satisfying
Kato’s cusp conditions and to their decaying too fast at large
distances. However, if a large number of Gaussians is used
in the calculation (e.g., in the present calculations of the
lowest eight beryllium 3P states we use 10 000–11 000 ECGs
for each state) and the Gaussian exponential parameters are
thoroughly variationally optimized, then the above-mentioned
drawbacks can be overcome [9–12]. Such optimization aided
by inputting the energy gradient determined with respect to
these parameters into the procedure that runs the variational
energy minimization is carried out in this work for each of the
eight lowest 3P states of the beryllium atom.

In the approach used in the present calculations, the Hamil-
tonian representing the internal state of the atom is obtained
by separating out the motion of the center of mass from the
laboratory-frame nonrelativistic Hamiltonian. The resulting
internal Hamiltonian explicitly depends on the mass of the nu-
cleus. Thus, the energy calculated, for example, for the ground
state of 9Be is slightly higher than the energy of the beryllium
atom with an infinite nuclear mass, ∞Be. Also, the optimiza-
tion of the exponential ECG parameters is carried out by the
minimization of the 9Be energy and not the ∞Be energy, as
was done in the standard calculations. After the basis sets are
generated for all eight 3P 9Be states and their optimal total
nonrelativistic energies are obtained, they are used to calculate
the corresponding ∞Be energies without reoptimization of the
exponential parameters. Only the linear expansion parameters
are adjusted for the change in the nuclear mass.

In a recent paper, Puchalski et al. [24] calculated the fine
and hyperfine structures of the 2s3p 3P and 2p2 3Pe states of
beryllium. The calculations were performed using ECG basis
functions. It is interesting to compare the present variational
nonrelativistic energy of the lowest 2s3p 3P state of ∞Be with
their best energy for that state, as well as with their energy
extrapolated to an infinite number of the basis functions.
We expect the comparison to show the advantage of using
the gradient-based variational minimization that is employed
in the present work. The ∞Be energy and the extrapolated
energy reported by Puchalski et al. are −14.56724421584
and −14.567244232(8) a.u., respectively. The former energy
was obtained using 6144 ECGs. The best variational energy
obtained in this work (see Sec. VI) using 10 000 ECGs is
−14.567244231 a.u. Clearly, the use of the gradient not only
resulted in a noticeably lower energy of the state but also
allowed us to generate a significantly larger basis set.

The main goal of this work is to calculate the fine struc-
ture of the eight lowest 2snp, n = 2, . . . , 9, 3P levels of the
beryllium atom. The splitting is calculated using the first
order of the perturbation theory. Like the nonrelativistic in-
ternal Hamiltonian, the operators representing the leading
α2 relativistic corrections, including the spin-orbit magnetic-
interaction correction, explicitly depend on the nuclear mass.
The operators are obtained by first expressing them in terms
of the laboratory coordinates and then transforming them to

a new coordinate system in which the first three coordinates
are the laboratory coordinates of the center of mass and the
remaining coordinates are the so-called internal coordinates
(see the next section). Thus, in the present calculations, the
use of the finite-nuclear-mass (FNM) approach makes both
the nonrelativistic total energy and the relativistic corrections
explicitly dependent on the mass of the nucleus; that is, the
so-called recoil effects are accounted for.

The procedure to calculate the atomic fine structure was
implemented in our previous work [25]. In that work, as an
illustrative example, we showed preliminary calculations for
the lowest two 3P states of beryllium. In the present work, the
basis sets for the two states were increased to 10 000 ECGs.
Also, the number of considered 3P states was increased to
eight. For the seventh and eighth states, basis sets of 11 000
ECGs are generated. Such large basis sets ensure that very
high accuracy is achieved in the calculations.

There have been previous calculations of the fine structure
of the beryllium 3P states. They include the works of Fischer
and Tachiev [26], Chung and Zhu [27], and Chen [28], as
well as the above-mentioned recent work of Puchalski et al.
[24]. In the latter work, only the lowest 3P state of beryllium
was considered. Due to the use of large ECG basis sets in
the present work and the consideration of the eight lowest
beryllium 3P states, the present calculations represent, in our
view, significant progress over the previous works. This view
is enforced by the favorable comparison of the present results
with the available experimental data [1].

II. THE NONRELATIVISTIC CALCULATIONS

The procedure used in the present work to calculate the
total energies, transitions energies, and fine-structure splitting
was presented in our recent paper [25]. Here, only a short
summary of the approach is presented.

In the first step of the procedure, the nonrelativistic ener-
gies and the corresponding wave functions of the considered
states are calculated. The calculations are performed with-
out assuming the Born-Oppenheimer (BO) approximation
and involve an internal Hamiltonian that, as mentioned, is
obtained from the laboratory-frame full Hamiltonian by sepa-
rating out the center-of-mass motion. In general, for an atom
with n electrons, the separation is done by expressing the
laboratory-frame 3(n + 1)-dimensional Hamiltonian in terms
of new coordinates, of which the first three are Cartesian
laboratory-frame coordinates of the center of mass and the
remaining 3n coordinates are the internal (Cartesian) coor-
dinates. These coordinates are the coordinates of the vectors
ri (i = 1, . . . , n), with the origin at the nucleus and the end
at electrons (i = 1, . . . , n). The laboratory-frame Hamiltonian
transformed to the new coordinates rigorously separates into
the operator representing the kinetic energy of the center-of-
mass motion and the internal operator that has the following
form (in atomic units):

Ĥint = −1

2

⎛
⎜⎝ n∑

i=1

1

μi
∇T

ri
· ∇ri + 1

m0

n∑
i, j=1
i �= j

∇T
ri

· ∇r j

⎞
⎟⎠

+
n∑

i=1

q0qi

ri
+

n∑
i> j=1

qiq j

ri j
, (1)
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where m0 is the mass of the nucleus and q0 is its charge, qi =
−1 (i = 1, . . . , n) are electron charges, and μi = m0mi/(m0 +
mi ) are their reduced masses (mi = 1, i = 1, . . . , n, are the
electron masses). One can notice that Hamiltonian (1) de-
scribes the motion of n so-called pseudoelectrons that have the
same charges as the original electrons, but with their masses
replaced by the reduced masses, in the central field of the
charge of the nucleus. The motions of the pseudoelectrons
are coupled through the Coulombic interactions,

∑n
i=1

q0qi

ri
+∑n

i> j=1
qiq j

ri j
, where ri j = |r j − ri|, and through the so-

called mass polarization term, − 1
2

∑n
i, j=1
i �= j

(1/m0)∇T
ri

· ∇r j .

The internal Hamiltonian (1) is used in the present varia-
tional calculations of the nonrelativistic total energies and the
corresponding ground- and excited-state wave functions of
the beryllium atom (9Be and ∞Be; obviously, the mass po-
larization terms vanishes for ∞Be). The nonrelativistic wave
functions are also used in the first-order perturbation-theory
calculations of the relativistic and QED corrections to the total
energies of the considered states.

The spatial parts of the wave functions of the considered
3P states of beryllium are expanded in terms of the following
ECG (L = 1, ML = 0) basis functions:

φ
(L=1)
k = zik exp[−rT (Ak ⊗ I3)r], (2)

respectively, where electron label ik varies from 1 to n. Ak in
(2) is an n × n symmetric matrix of the exponential parame-
ters of the Gaussian which is specific to each ECG, ⊗ is the
Kronecker product, and I3 is a 3 × 3 identity matrix. In (2), r is
a 3n vector of the internal coordinates of the n pseudoelectrons
which has the following form:

r =

⎛
⎜⎜⎝

r1

r2
...

rn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

y1

z1
...

xn

yn

zn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

(Ak ⊗ I3) is denoted as Ak .
To ensure that basis functions (2) are square integrable,

which they should be since they are used to expand bound
states of the beryllium atom, the Ak matrix has to be made
positive definite. In order for this to happen, Ak is represented
in the Cholesky-factored form as Ak = (LkLT

k ) ⊗ I3, with Lk

being a real n × n lower triangular matrix. Such a represen-
tation makes Ak positive definite for any values of the Lk

matrix elements in the (−∞, +∞) range. As the Lk matrix
elements are the variational parameters that are optimized in
the present calculations by the minimization of the energy
of the particular state, this optimization can be performed
without any constraints. This is always a desirable feature of
any optimization.

The spatial part of the wave functions of the consid-
ered 3P states is a linear combination of basis functions (2)
with the linear expansion coefficients obtained by solving
the corresponding secular equation problem. The solution in-
volves constructing the Hamiltonian and overlap matrices and
their simultaneous diagonalization. In the calculation of the

Hamiltonian and overlap matrix elements, the proper per-
mutational symmetry has to be implemented for each basis
function. We use the spin-free formalism in this implemen-
tation. In this formalism, an appropriate symmetry projector
is constructed and applied to each basis function to impose
the desired symmetry properties of the total wave function.
The projector is constructed using the standard procedure
involving Young’s operators Ŷ [29–31]. As the projector
commutes with the Hamiltonian, the projector from the bra
side of the matrix element can be moved to the ket side
〈Ŷ �L|Ĥint|Ŷ �L〉 = 〈�L|Ĥint|Ŷ †Ŷ �L〉, and thus, the projector
on the ket side becomes equal to Ŷ †Ŷ . The procedure used
here to generate the permutational symmetry projector was
described in our previous work [19].

For the considered 3P states of the beryllium atom the
symmetry projector (Young’s operators) can be chosen as

Ŷ3P = (1̂ − P̂13)(1̂ − P̂14 − P̂34)(1̂ + P̂12), (4)

where P̂i j interchanges the spatial coordinates of the ith and
jth electrons. In the beryllium calculation, Ŷ †Ŷ contains 4! =
24 terms. Thus, each matrix element is a sum of 24 different
terms (as four of these terms vanish for the 3P states, the
number of terms reduces to 20).

In the calculation of the matrix elements of the operators
representing the spin-independent leading relativistic correc-
tions, i.e., the mass-velocity, Darwin, orbit-orbit, and contact
spin-spin interaction operators, ĤMV, ĤD, ĤOO, and ĤSSF,
the spin-free approach is also used. However, in calculating
first-order corrections to the energy of 3P states due to the
(noncontact) spin-spin and spin-orbit interactions, the corre-
sponding operators explicitly depend on the electron spins.
Thus, the complete wave function that explicitly includes the
electron spin and spatial components, i.e. [32],

�SMSLML (σ, r) = Â[�SMS (σ ) �LML (r)], (5)

has to be used. In (5), antisymmetrizer Â acts on both spa-
tial r and spin σ = (σ1, . . . , σn) electron variables. �SMS (σ )
is an eigenfunction of the total electron spin operators,
Ŝ2 and Ŝz. No permutational properties are imposed on
the spatial function �LML (r) and the permutation projec-
tion of the spin-free approach Y3P now transforms the spin
eigenfunction �SMS (σ ) [25]. This eigenfunction has the fol-
lowing form for the 3P (S = MS = 1) states of beryllium:
�11(σ ) = 1√

2
[α(σ1)β(σ2) − β(σ1)α(σ2)]α(σ3)α(σ4). For a

practical reason, the calculations of the matrix elements of
the spin-dependent operators are performed using the spa-
tial �(r)L=ML=1 wave functions and not �(r)L=ML=0 wave
functions. This requires replacing zik in Eq. (2) by −(xik +
iyik )/

√
2, where i2 = −1. The first-order corrections to the

energy are given for the |(SL)JMJ〉 eigenstates, where J =
S + L is the total angular momentum of the electrons.

III. RELATIVISTIC OPERATORS

The operators representing the spin-independent compo-
nents of the leading relativistic corrections of the order of
α2(∝ c−2) that include the mass-velocity (MV), Darwin (D),
and orbit-orbit (OO) terms expressed in terms of the internal
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coordinates are

ĤMV = −1

8
α2

[
1

m3
0

(
n∑

i=1

∇ri

)4

+
n∑

i=1

1

m3
i

∇4
ri

]
, (6)

ĤD = −π

2
α2

n∑
i=1

[
4

3

(g − 1)(I + ξ )

m2
0

+ 1

m2
i

]
q0qi δ3(ri ) − π

2
α2

n∑
i=1

n∑
j �=i

1

m2
i

qiq j δ3(ri j ), (7)

ĤOO = −1

2
α2

n∑
i=1

n∑
j=1

q0q j

m0mj

[
1

r j
∇ri

T · ∇r j + 1

r3
j

rT
j · (

rT
j · ∇ri

)∇r j

]

+ 1

2
α2

n∑
i=1

n∑
j>i

qiq j

mimj

[
1

ri j
∇T

ri
· ∇r j + 1

r3
i j

rT
i j · (

rT
i j · ∇ri

)∇r j

]
. (8)

In the above, δ(r) is the Dirac delta function, and I and g are
the nuclear spin and nuclear g factor, respectively; ξ = 1/4 for
half-integer I , and ξ = 0 otherwise. The above energy correc-
tions uniformly shift all of the 2S+1LJ energy levels of a given
atomic 2S+1L term. The leading relativistic corrections also
include the spin-spin Fermi contact term (SSF) represented
by the following operator:

ĤSSF = −8π

3
α2

n∑
i, j=1

j>i

qiq j

mimj
(si · s j )δ(ri j ). (9)

Even though this operator explicitly involves electronic spins
si, it provides the SSF first-order correction to the energy that
does not split the atomic 2S+1L terms.

In the calculations of the spin-dependent relativistic cor-
rections of the order of α2 the corresponding operators
representing the SO and spin-spin (SS) interactions are used.
Before they are used in the calculations, the operators, origi-
nally expressed in terms of the laboratory coordinates [33], are
transformed to the internal coordinate system. Retaining only
terms dependent on the internal ri coordinates, the following
SS operator is obtained:

Ĥ ′
SS = α2

n∑
j=1

n∑
i> j

qiq j

mimj

{
(si · ∇ri )(s j · ∇r j )

1

ri j

}
, (10)

where ∇ri and ∇r j operate on only 1/ri j . The above operator
includes part of the Fermi-contact operator (9). To separate
out this overlapping part, tensor operator techniques [34] are
applied. The procedure is explained in our previous paper
[25].

The electron spin-orbit interaction ĤSO has the following
form:

ĤSO = −α2
n∑

k=1

sk ·
{

q0qk

2mk

(
1

mk
+ 2

m0

)
1

r3
k

(rk × pk )

}

+α2
n∑

k=1

sk ·
n∑

l=1
l �=k

{
− q0qk

m0mk

1

r3
k

(rk × pl )

+ qkql

2mk

1

r3
kl

[
rlk ×

(
1

mk
pk − 2

ml
pl

)]}

≡ ĤSO1 + ĤSO2. (11)

The operator can be split into the one-electron operator ĤSO1

and the two-electron operator ĤSO2. Both operators have a
scalar-product structure involving a spin-vector operator and
a spatial-vector operator. Thus, also in this case, the tensor
operator techniques [34] are applied [25]. By setting the nu-
clear mass m0 to infinity, the ĤSO1 and ĤSO2 terms in Eq. (11)
become equal to the standard spin-orbit and spin-other-orbit
interaction operators [27,35,36].

IV. VARIATIONAL CALCULATIONS

The variational nonrelativistic non-BO calculations of
the eight considered 3P states of beryllium, i.e., the 2s np,
n = 2, . . . , 9, 3P states (the states are denoted as n 3P,
n = 2, . . . , 9), are performed separately and independently
for each state. In these calculations, the ECG basis set
is grown for each state from a small set of functions to
the final set. The procedure involves a series of additions
of subsets of new functions (usually each subset contains
100 ECGs) and optimizing the exponential coefficients
(i.e., the Lk matrix elements) separately for each function
using the gradient-based variational optimization procedure.
The optimization of the wave-function linear expansion
coefficients is carried out by solving the secular equation.
More details about the optimization procedure can be found
in our previous work [25]. The growing of the basis set is
performed using the FNM approach for the 9Be isotope.
Then, as mentioned, the basis sets are reused to perform
infinite-nuclear-mass (INM) ∞Be calculations.

The calculation of the SO and SS spatial matrix elements
needed to calculate the SO and SS energy corrections were
implemented in our previous work [25]. A detailed description
of the algorithms can be found in that paper.

V. TOTAL ENERGY

After the nonrelativistic energies of the considered states
are calculated, the spin-dependent relativistic effects are de-
termined using the first-order perturbation theory, with the
zero-order wave function being the nonrelativistic wave func-
tion of the particular state. The addition of the first-order
relativistic corrections to the nonrelativistic energy uniformly
shifts the 3PJ=0,1,2 energy levels by

E shift
rel = EMV + ED + EOO + ESSF. (12)

012813-4



FINE STRUCTURE OF THE BERYLLIUM 3P STATES … PHYSICAL REVIEW A 105, 012813 (2022)

TABLE I. The convergence of the spin-free relativistic corrections of the order of α2 and QED corrections of the orders of α3 and α4

(approximately) with the size of the basis set for the lowest eight 3P states of beryllium (9Be). The results for ∞Be calculated with the largest
basis sets are also shown. All values are in hartrees.

Isotope Basis Enrel
a 102α2 MV 102α2 Darwin 105α2 OO 103α 2Erel

shift 104α 3EQED 105α 4EHQED

2 3P
9Be 7000 −14.566341469 −1.41872 1.14030 −4.02327 −2.300225 3.34841 1.5215
9Be 8000 −14.566341478 −1.41872 1.14030 −4.02327 −2.300226 3.34841 1.5215
9Be 9000 −14.566341480 −1.41871 1.14030 −4.02327 −2.300163 3.34841 1.5215
∞Be 9000 −14.567244230 −1.41906 1.14052 −3.88411 −2.300079 3.34903 1.5217

3 3P
9Be 7000 −14.398065853 −1.42716 1.14682 −4.84363 −2.323588 3.36818 1.5302
9Be 8000 −14.398065860 −1.42716 1.14682 −4.84363 −2.323581 3.36818 1.5302
9Be 9000 −14.398065863 −1.42716 1.14683 −4.84363 −2.323577 3.36819 1.5302
∞Be 9000 −14.398968692 −1.42751 1.14704 −4.70328 −2.323491 3.36881 1.5305

4 3P
9Be 7000 −14.362049933 −1.42797 1.14748 −4.93329 −2.325521 3.37022 1.5311
9Be 8000 −14.362049940 −1.42797 1.14748 −4.93329 −2.325530 3.37021 1.5311
9Be 9000 −14.362049944 −1.42797 1.14749 −4.93329 −2.325556 3.37021 1.5311
∞Be 9000 −14.362951448 −1.42832 1.14770 −4.79281 −2.325469 3.37084 1.5314

5 3P
9Be 8000 −14.347224126 −1.42819 1.14767 −4.96059 −2.326171 3.37076 1.5314
9Be 9000 −14.347224128 −1.42820 1.14768 −4.96059 −2.326128 3.37079 1.5314
9Be 10 000 −14.347224130 −1.42820 1.14768 −4.96059 −2.326092 3.37079 1.5314
∞Be 10 000 −14.348124994 −1.42855 1.14789 −4.82006 −2.326004 3.37141 1.5317

6 3P
9Be 8000 −14.339637420 −1.42826 1.14772 −4.97180 −2.326301 3.37095 1.5314
9Be 9000 −14.339637430 −1.42827 1.14772 −4.97180 −2.326310 3.37097 1.5314
9Be 10 000 −14.339637441 −1.42827 1.14773 −4.97180 −2.326295 3.37096 1.5315
∞Be 10 000 −14.340537949 −1.42862 1.14794 −4.83126 −2.326208 3.37158 1.5317

7 3P
9Be 8000 −14.335230926 −1.42817 1.14761 −4.97725 −2.326500 3.37065 1.5313
9Be 9000 −14.335230932 −1.42831 1.14774 −4.97725 −2.326673 3.37100 1.5315
9Be 10 000 −14.335230949 −1.42831 1.14774 −4.97725 −2.326669 3.37101 1.5315
∞Be 10 000 −14.336131240 −1.42867 1.14795 −4.83670 −2.326582 3.37164 1.5318

8 3P
9Be 8000 −14.332444066 −1.42803 1.14741 −4.98022 −2.327015 3.37009 1.5310
9Be 9000 −14.332444174 −1.42818 1.14757 −4.98022 −2.326982 3.37056 1.5313
9Be 10 000 −14.332444254 −1.42820 1.14759 −4.98022 −2.326965 3.37062 1.5313
∞Be 10 000 −14.333344405 −1.42856 1.14780 −4.83967 −2.326878 3.37124 1.5316

9 3P
9Be 8000 −14.330568921 −1.42800 1.14730 −4.98198 −2.327637 3.36983 1.5309
9Be 9000 −14.330569470 −1.42801 1.14734 −4.98198 −2.327409 3.36992 1.5310
9Be 10 000 −14.330569664 −1.42816 1.14748 −4.98198 −2.327576 3.37031 1.5311
∞Be 10 000 −14.331469717 −1.42851 1.14769 −4.84142 −2.327489 3.37094 1.5314

aIncreasing the basis functions of states 2 3P, 3 3P, and 4 3P states to 10 000 ECGs gives nonrelativistic energies of 9Be of −14.566341481,
−14.398065864, and −14.362049945 a.u., respectively, and nonrelativistic energies of ∞Be of −14.567244231, −14.398968693, and
−14.362951450 a.u., respectively. Increasing the basis functions of states 8 3P and 9 3P states to 11 000 ECGs gives nonrelativistic energies
of 9Be of −14.332444310 and −14.330569811 a.u., respectively, and nonrelativistic energies of ∞Be of −14.333344460 and −14.331469863
a.u., respectively.

The sum of the α3 QED corrections also uniformly shifts the
energy levels by [13,37]

EQED = 4

3
Z

[
ln(α−2) + 19

30
− ln k0

] n∑
i=1

〈δ(ri )〉

+
(

164

15
+ 14

3
ln α

) n∑
i> j=1

〈δ(ri j )〉

− 14

3

1

4π

n∑
i> j=1

〈P
(

1

r3
i j

)
〉 (13)

and by the value of the approximately calculated α4 QED
correction [13]:

EHQED = πZ2

(
427

96
− 2 ln 2

) n∑
i=1

〈δ(ri )〉. (14)

Although the above two formulas were originally derived
within the INM approach, they are calculated here using the
FNM nonrelativistic wave functions. Thus, the recoil α3 QED
energy corrections is partially included in the calculation [38].
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The total energies that include the spin-orbit and spin-spin
energy corrections for the considered 3PJ=0,1,2 states of the
beryllium atom are calculated as

EJ = Enrel + α2[E shift
rel + CSO

J (ESO1 + ESO2) + CSS
J ESS

]
+α3(EQED + Eκ ) + α4EHQED, (15)

where the CS•
J coupling coefficients have the following values:

CSO
J=0,1,2 = −2,−1, 1 and CSS

J=0,1,2 = 10,−5, 1. ESO1, ESO2,
and ESS are the expectation values of the respective operators
as described in Ref. [25]. These expectation values are cal-
culated using the wave functions representing the considered
|n 3P MS = 1, ML = 1〉 states, where n = 2, 3, . . . , 9 for the
beryllium atom. The algorithm for calculating the α3 correc-
tion due to the anomalous magnetic moment of the electron
κ (≈ α

2π
) was also shown in Ref. [25].

VI. RESULTS

In the present work, the following values were
used: α = 7.2973525698(24) × 10−3 and 1 hartree =
2.194746313708(11) × 105 cm−1 [39]. The calculations were
carried out with a computer program written in FORTRAN90
that employs the message-passing interface (MPI) protocol
for parallel processing. The most time-consuming part of the
calculations is growing and optimizing the ECG basis set for
each of the considered eight 3P states of 9Be.

In Table I we present the results of the nonrelativistic
energies and the leading J-independent relativistic and QED
corrections for the eight lowest 3P states of 9Be. We should
note that in the calculations of the QED corrections for
the states we use the value of the Bethe logarithm (ln k0 =
5.75232 a.u.) calculated for state 2 1P of ∞Be taken from
Ref. [16]. As pointed out in Ref. [25], the QED correction
that includes the Bethe logarithm is rather insensitive to small
changes in the value of ln k0, so its approximate constant value
used in this work for all considered states should little affect
the accuracy of the calculations. The spin-dependent energy
terms, ESO1, ESO2, and ESS, are shown in Table II. These terms
are the expectation values of the corresponding relativistic
operators calculated for states |n 3P, MS = 1, ML = 1〉, where
n = 2, . . . , 9. In both Tables I and II, the convergence in
the terms with the number of basis functions calculated for
9Be is shown. As one can see, all quantities are, in general,
very well converged. Also, as one notices, the three quantities
contributing to the fine line splitting quickly decrease with the
increasing electronic-excitation level.

In the sixth column of Table I, the α2 orbit-orbit relativistic
correction is shown. We should point out that there was an er-
ror in the calculations for the orbit-orbit relativistic correction
in our previous work [25], where the two lowest 3P states of
beryllium were considered. This error has been now corrected,
and the values of the spin-independent relativistic correction
shown in Table I include the corrected orbit-orbit term.

Before the results are analyzed, let us first compare the gen-
eral splitting schemes of the 3P atomic terms of the 9Be atom
presented in Fig. 1. As one can see, the splitting pattern is
almost identical for all eight states, but energy scales are very

TABLE II. J-dependent relativistic corrections of the order of α2

to the energy of the n = 2, 3, . . . , 9 3P states of the beryllium atom
(9Be and ∞Be). All values are in a.u.

Isotope Basis α 2ESO1 (×105) α 2ESO2 (×105) α 2ESS (×107)

2 3P
9Be 7000 1.61224 −1.11247 1.364
9Be 8000 1.61224 −1.11247 1.364
9Be 9000 1.61224 −1.11247 1.364
∞Be 9000 1.61208 −1.11225 1.365

3 3P
9Be 7000 0.22948 −0.15453 0.210
9Be 8000 0.22948 −0.15453 0.210
9Be 9000 0.22948 −0.15453 0.210
∞Be 9000 0.22944 −0.15449 0.210

4 3P
9Be 7000 0.08428 −0.05629 0.072
9Be 8000 0.08428 −0.05629 0.072
9Be 9000 0.08428 −0.05628 0.072
∞Be 9000 0.08426 −0.05627 0.072

5 3P
9Be 8000 0.04036 −0.02686 0.034
9Be 9000 0.04036 −0.02686 0.034
9Be 10000 0.04036 −0.02686 0.034
∞Be 10000 0.04035 −0.02685 0.034

6 3P
9Be 8000 0.02242 −0.01489 0.018
9Be 9000 0.02242 −0.01489 0.018
9Be 10000 0.02242 −0.01489 0.018
∞Be 10000 0.02241 −0.01489 0.018

7 3P
9Be 8000 0.01372 −0.00911 0.011
9Be 9000 0.01372 −0.00911 0.011
9Be 10000 0.01372 −0.00911 0.011
∞Be 10000 0.01372 −0.00911 0.011

8 3P
9Be 8000 0.00901 −0.00597 0.007
9Be 9000 0.00901 −0.00597 0.007
9Be 10000 0.00901 −0.00597 0.007
∞Be 10000 0.00900 −0.00597 0.007

9 3P
9Be 8000 0.00623 −0.00413 0.005
9Be 9000 0.00623 −0.00413 0.005
9Be 10000 0.00623 −0.00413 0.005
∞Be 10000 0.00622 −0.00412 0.005

different. The SO interaction in the 3PJ=0,1,2 energy levels
results in the splitting pattern that follows the so-called Landé
interval rule, which predicts the (E2 − E1)/(E1 − E0) = 2
splitting ratio. The SS interaction may affect this ratio, but in
the case of 9Be, the SS interaction is relatively small, and the
Landé interval rule still applies. As in the present calculation
we do not include the mixing of the triplet 3P1 states with
the closely lying 1P1 singlet states, the slight downshifting
of the 3P1 states resulting from the triplet-singlet coupling is
not described. We also do not include the higher-order QED
corrections [38,40] that may slightly affect the fine structure
of the beryllium 3P states.
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FIG. 1. Fine splitting of the n 3P, n = 2, . . . , 9, atomic term into J = 0, 1, 2 energy levels of the 9Be atom due to spin-dependent α2

relativistic interactions and due to the α3 correction representing the effect of the anomalous magnetic moment of the electron (AMM).
Eshift = Enrel + α2E shift

rel + α3EQED + α4EHQED, EJ is defined in Eq. (15), and the SS2 term is obtained by subtracting from the expectation value
of operator (10) a part of the spin-spin contact term (9), as described in the statement below Eq. (10). The splitting patterns are almost identical
for all states, but as one can see in the plots, the energy scales are different. (a) State 2, (b) state 3, (c) state 4, (d) state 5, (e) state 6, (f) state 7,
(g) state 8, and (h) state 9.

Table I shows the nonrelativistic energies are converged
to a relative precision of 10−8–10−9. Thus, by taking into
account the level of convergence of the relativistic and QED
corrections and by accounting for the inaccuracy related to
using an approximate value for the Bethe logarithm ln k0, we
can estimate the absolute error of the total energies of the con-
sidered 3P states to be not larger than roughly 2 × 10−6 a.u. <

0.5 cm−1. As can be seen in Table III, the α 3EQED correc-
tions are two orders of magnitude larger than this error upper
bound, and even more important, these corrections differ by
roughly 2 × 10−6 a.u. for the 2 3P and 3 3P states. This
shows the importance of the QED corrections in the present
calculations. The higher-order QED corrections in terms of α,

e.g., the approximate α4 QED terms taken into account in the
present calculations, are expected to be of the order of about
1 cm−1. Their impact on the transition energies is expected
to be smaller than 0.1 cm−1 [13,15]; that is, it is below the
estimated accuracy of the present calculations. The values of
the α 4EHQED corrections are collected in Table I.

There are some experimental data that concern the total
energies of the 3PJ energy levels of beryllium determined with
respect to the ground electronic 1S state [1]. The available
experimental energy values are compared with the values
calculated in this work in Table III. As one can see, most
of the total energies calculated in this work fall within the
uncertainty brackets of the experimental values.

012813-7
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TABLE III. Total energies EJ of the n 3PJ , n = 2, . . . , 9, of 9Be (in a.u.) and the corresponding excitation energies (in cm−1) determined
with respect to the 9Be ground-state energy of −14.668440600(18) a.u. obtained with 16 000 ECG basis functions (the energy is taken from
[41] and it includes the QED correction with the value of the Bethe logarithm taken from Ref. [16]). The excitation energies are compared
with the experimental values [1]. The total EJ energies calculated for ∞Be are also included. The calculations for the 2 3P0, 2 3P1, 2 3P2, 3 3P0,
3 3P1, 3 3P2, 4 3P0, 4 3P1, and 4 3P2 states are done with 9000 ECGs, and the calculations for the 5 3P0, 5 3P1, 5 3P2, 6 3P0, 6 3P1, 6 3P2, 7 3P0, 7
3P1, 7 3P2, 8 3P0, 8 3P1, 8 3P2, 9 3P0, 9 3P1, and 9 3P2 states are done with 10 000 ECGs. The EJ energies of the 3PJ states of Be are calculated
using Eq. (15). The calculated results are compared with the experimental values take from Ref. [1].

State Isotope EJ Eexp. EJ
a

(a.u.) (cm−1)b (cm−1) (cm−1)

2 3P0
9Be −14.56830025(4) 21 978.266 ± 0.009 21 978.310 ± 0.080 −0.044
∞Be −14.56920285

2 3P1
9Be −14.56829729(4) 21 978.916 ± 0.009 21 978.310 ± 0.080 −0.009
∞Be −14.56919989

2 3P2
9Be −14.56828644(4) 21 981.297 ± 0.009 21 981.260 ± 0.070 0.037
∞Be −14.56918904

3 3P0
9Be −14.400038611(1) 58 907.427 ± 0.000 58 907.472 ± 0.060 −0.045
∞Be −14.400941289

3 3P1
9Be −14.400038176(1) 58 907.522 ± 0.000 58 907.472 ± 0.060 0.050
∞Be −14.400940854

3 3P2
9Be −14.400036546(1) 58 907.880 ± 0.000 58 907.839 ± 0.060 0.041
∞Be −14.400939223

4 3P0
9Be −14.36402366(2) 66 811.796 ± 0.004 66 811.890 ± 0.140 −0.094
∞Be −14.36492501

4 3P1
9Be −14.36402348(2) 66 811.834 ± 0.004 66 811.890 ± 0.090 −0.056
∞Be −14.36492484

4 3P2
9Be −14.36402288(2) 66 811.967 ± 0.004 66 811.890 ± 0.080 0.077
∞Be −14.36492423

5 3P0
9Be −14.34919807(4) 70 065.637 ± 0.004 70 065.400 ± 0.100 0.237
∞Be −14.35009878

5 3P1
9Be −14.34919798(4) 70 065.655 ± 0.004 70 065.400 ± 0.140 0.255
∞Be −14.35009869

5 3P2
9Be −14.34919769(4) 70 065.719 ± 0.004 70 065.400 ± 0.140 0.319
∞Be −14.35009840

6 3P0
9Be −14.34161146(1) 71 730.705 ± 0.002 71 730.640 ± 0.080 0.065
∞Be −14.34251181

6 3P1
9Be −14.34161141(1) 71 730.715 ± 0.002 71 730.660 ± 0.060 0.055
∞Be −14.34251177

6 3P2
9Be −14.34161125(1) 71 730.751 ± 0.002 71 730.660 ± 0.060 0.091
∞Be −14.34251160

7 3P0
9Be −14.33720528(8) 72 697.748 ± 0.018 72 697.330 ± 0.080 0.418
∞Be −14.33810542

7 3P1
9Be −14.33720525(8) 72 697.755 ± 0.018 72 697.340 ± 0.070 0.415
∞Be −14.33810539

7 3P2
9Be −14.33720515(8) 72 697.777 ± 0.018 72 697.340 ± 0.060 0.437
∞Be −14.33810529

8 3P0
9Be −14.33441898(4) 73 309.289 ± 0.009 73 309.170 ± 0.090 0.119
∞Be −14.33531890

8 3P1
9Be −14.33441887(4) 73 309.293 ± 0.009 73 309.160 ± 0.070 0.133
∞Be −14.33531888

8 3P2
9Be −14.33441881(4) 73 309.308 ± 0.009 73 309.150 ± 0.060 0.158
∞Be −14.33531881

9 3P0
9Be −14.3325449(3) 73 720.577 ± 0.066
∞Be −14.3334448

9 3P1
9Be −14.3325449(3) 73 720.580 ± 0.066
∞Be −14.3334448

9 3P2
9Be −14.3325449(3) 73 720.589 ± 0.066
∞Be −14.3334448

aEJ = EJ − E exp
J , where experimental E exp

J energies of Be taken from NIST [1].
bGround state energy of 9Be Eg = Enrel + α 2E shift

rel +α 3EQED +α 4EHQED obtained for 16000 basis; QED terms ln k0 taken from Ref. [16].
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TABLE IV. Fine EJ -EJ ′ splitting (in cm−1) of the lowest eight 3PJ

states of 9Be. The calculated energy differences are compared with
the experiment [1].

Basis E1 − E0 E2 − E1

2 3PJ

7000 0.650 2.381
8000 0.650 2.381
9000 0.650 2.381
Expt. 0.615 ± 0.090 2.335 ± 0.080

3 3PJ

7000 0.096 0.358
8000 0.096 0.358
9000 0.096 0.358
Expt. 0.0 ± 0.120 0.367 ± 0.120

4 3PJ

7000 0.038 0.133
8000 0.038 0.133
9000 0.038 0.133
Expt. 0.0 ± 0.230 0.0 ± 0.170

5 3PJ

8000 0.019 0.064
9000 0.019 0.064
10 000 0.019 0.064
Expt. 0.0 ± 0.240 0.0 ± 0.280

6 3PJ

8000 0.011 0.036
9000 0.011 0.036
10 000 0.011 0.036
Expt. 0.020 ± 0.140 0.0 ± 0.120

7 3PJ

8000 0.007 0.022
9000 0.007 0.022
10 000 0.007 0.022
Expt. 0.010 ± 0.150 0.0 ± 0.130

8 3PJ

8000 0.004 0.014
9000 0.004 0.014
10 000 0.004 0.014
Expt. −0.010 ± 0.160 −0.010 ± 0.130

9 3PJ

9000 0.003 0.010
10 000 0.003 0.010

In our previous work [25] we estimated the error arising
from not including the effect of the coupling between the
n 3P states and the most closely lying n 1P states due to
the spin-orbit interactions. Considering the very good conver-
gence of the quantities used in the present work to calculate
the SO interactions and based on the error analysis presented

in our previous work [25], we estimate the uncertainties in the
calculated splitting to be about 10−3 cm−1. The experimental
uncertainties are much higher [1].

Finally, in Table IV, the differences between the energies
of the n 3P1 and n 3P0 states and the n 3P2 and n 3P1 states for
n = 2, . . . , 9, calculated in this work are presented. The cal-
culated values are compared with the available experimental
data [1]. As one can see, apart from perhaps the two lowest
levels, the experiment is rather incomplete and imprecise.
The differences calculated for the two lowest levels are well
within the experimental uncertainties. One can also see that
the calculated energy differences are very well converged with
the number of ECGs.

VII. SUMMARY

This work presented high-accuracy calculations of the
eight lowest 3P energy levels of beryllium. Large explicitly
correlated all-electron Gaussian basis functions were used to
expand the spatial parts of the wave functions of the stud-
ied states. The nonlinear parameters of the Gaussians were
variationally optimized for each state by the minimization of
the total nonrelativistic energy of the state. The optimization
employed the energy gradient determined with respect to the
parameters. The nonrelativistic energies were augmented with
the leading relativistic and QED corrections. The main focus
of the work was the calculations of the splitting of the 3P en-
ergy levels arising from the spin-orbit magnetic interactions,
i.e., the fine structure of the energy levels. For the few avail-
able experimental values of the splitting, the calculated results
fall well within the experimental error brackets. For the levels
for which the splitting has not been measured or has been
measured imprecisely, the present results may provide useful
information to future experiment remeasurement attempts.

In future work, the approach used in this work will be ap-
plied to states of larger atomic systems with a wider range of
the L and S quantum numbers. Future work will also be done
on extending the capability of the present approach to include
algorithms to calculate the off-diagonal SO interactions, as
well as the hyperfine interactions.
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