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Classical and semiclassical calculations of state-selective cross sections for
electron capture and excitation in Be4+ + H(2s) collisions
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A computational study of Be4+ + H(2s) collisions has been carried out. Two computational models have
been employed: the classical trajectory Monte Carlo (CTMC) method and the numerical solution of the
time-dependent Schrödinger equation (GTDSE). The integral n and nl partial cross sections for H excitation
and electron capture, obtained with both methods, are compared at two energies: 20 and 100 keV/u. It is
shown that the CTMC, with an improved hydrogenic initial distribution, provides excitation cross sections
in good agreement with the numerical calculation for excitation to H(n) with n > 3. The agreement between
the corresponding nl partial cross sections from both methods is less satisfactory at 100 keV/u, where there
is a transition from the low-energy mechanism that involves an increase of the populations with l , and the
high-energy mechanism, where the dipole-allowed transitions are dominant. The electron capture cross sections
calculated with the CTMC method do not depend on the initial distribution and show a reasonable agreement
with the GTDSE ones, which supports the use of the CTMC method to calculate electron capture cross sections
into highly excited levels and total cross sections. The mechanism of the electron capture process is discussed
and CTMC calculations of the ionization process are also presented.
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I. INTRODUCTION

Collisions between multiply charged ions and hydrogen
atoms are relevant in tokamak plasmas. In particular, the
measurement of impurity densities is usually carried out by
applying the charge-exchange recombination spectroscopy
(CXRS) technique [1], where a fast beam of H atoms is
injected in the plasma. The atoms collide with the plasma ions,
X q+, giving rise to the electron capture (EC) processes:

X q+ + H → X (q−1)+(nl ) + H+. (1)

The EC yields X (q−1)+ in excited states, the emission of which
is employed to determine ion densities [2]. The method re-
quires accurate cross sections for the EC processes. In this
respect, a recent work [3] has pointed out significant differ-
ences in Ar densities obtained from two sets of EC cross
sections. On the other hand, the collisions between beam
atoms and plasma particles can excite the H atoms. It is well
known that the cross sections for EC from H(2s) are large
and a small fraction of excited H can significantly modify
the effective emission coefficients employed in CXRS [4,5].
The accurate determination of EC cross sections for collisions
with excited H is therefore required. The application of the
CXRS diagnostics also requires the knowledge of beam den-
sities that can be obtained by means of the beam emission
spectroscopy. The application of this technique is based on
collisional-radiative models, the accuracy of which also relies
on that of the underlying atomic data [6], including cross
sections for excitation and ionization in H collisions with
plasma ions. Collisions with Be ions are particularly relevant

because Be is a plasma facing material of tokamaks, which has
motivated new calculations of state-selective cross sections
[7–9]. In this respect, collisions of Be4+ ions with H are the
benchmark systems of the Coordinated Research Project of
the IAEA Data for Atomic Processes of Neutral Beams in
Fusion Plasma.

In this paper we discuss the accuracy of two methods to cal-
culate collision cross sections: the classical trajectory Monte
Carlo (CTMC) and a semiclassical method based on the nu-
merical solution of the time-dependent Schrödinger equation
(GTDSE). The CTMC [10] has been applied in several works
to calculate EC total and partial cross sections. In the CTMC
the electron wave function is replaced by a classical distri-
bution made up of an ensemble of electron trajectories. The
original method (m-CTMC) employs an initial microcanoni-
cal distribution formed by trajectories with the energy of the
initial quantal level. The microcanonical momentum distribu-
tion is exact, but the tail of the quantal radial distribution is
not correctly described. Alternative initial distributions have
been proposed that improve the radial distributions without
significantly modifying the momentum distribution [11–13].
In this respect, we have constructed the hydrogenic distri-
butions of this paper as explained in Ref. [14]. The CTMC
method with a hydrogenic initial distribution (h-CTMC) has
been successfully applied to calculate ionization, and total
and state-selective EC cross sections for collisions of several
multicharged ions with H(1s) [14–18]. In general, the CTMC
is a fast method, particularly useful to calculate partial EC
cross sections to populate very excited states. The application
of the CTMC method to collisions with H(n = 2) has been
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considered in Refs. [18,19]; these works pointed out that the
differences between h-CTMC and m-CTMC cross sections for
EC and ionization are smaller than those found for collisions
with H(1s). Recently, Ziaeian and Tőkésy [7] have reported
EC cross sections for Be4+ + H(2l ) calculated using the m-
CTMC method.

Excitation cross sections in collisions of multiply charged
ions with H(1s) have been studied in several works. Janev
and Presnyakov [20] proposed a scaling law based on the
application of the dipole approximation, the validity of which
was discussed in Refs. [21–23]. Suarez et al. [24] calculated
the cross sections for the excitation cross sections

X q+ + H(1s) → X q+ + H(nl ), (2)

with n � 6, for collisions with X q+ = Li3+, Ne10+, Ar18+,
using both h- and m-CTMC. They compared the results with
those from a one-center expansion in terms of spherical Bessel
functions, previously used in Ref. [25]. They found that the
m-CTMC systematically underestimates the excitation cross
sections. The h-CTMC showed better agreement with the
one-center expansion. In the present paper we consider the
application of these two CTMC treatments to Be4+ collisions
with H(2s).

The GTDSE method involves the numerical solution of
the eikonal equation, which is formally identical to the time-
dependent Schrödinger equation. Numerical methods have
been previously applied to ion-atom collisions in several
works [26–28]. In these calculations, the initial collision wave
function is evaluated in the points of a three-dimensional (3D)
lattice, which is then propagated in time. We have applied the
GTDSE method to collisions of Be4+ with H(1s) [29], where
we checked the accuracy of other treatments and estimated the
uncertainties of the EC cross sections. The recent calculation
of Antonio et al. [9] using a different semiclassical model has
reported EC cross sections in good agreement with those of
Ref. [29]. In the present paper we have extended the method to
evaluate excitation cross sections. In practice, the calculation
involves the use of two reference frames, one with the H
fixed on the origin, to calculate excitation cross sections, and
another one, with the Be nucleus on the origin, to calculate
EC cross sections, as previously applied for ion-molecule
collisions [30]. In general, the systematic application of the
GTDSE to obtain cross sections is not feasible since it requires
large memory allocation and lengthy time propagations, par-
ticularly for collisions involving excited states. Therefore, our
aim is to apply the method for some energies to check the
accuracy of the CTMC and other calculations.

Besides excitation and EC, we have calculated ionization
cross sections. In this case, we have carried out only CTMC
calculations, which in previous calculations have been shown
to correctly describe the ionization mechanism at the collision
energies of the present paper.

The paper is organized as follows: In Sec. II we summarize
the GTDSE and CTMC methods. In Sec. III we present n-
and nl partial cross sections for excitation, and in Sec. IV
we present the partial cross sections for electron capture. In
Sec. V we discuss our results for total cross sections for
excitation, electron capture, and ionization. A summary of
the paper is presented in Sec. VI. Atomic units are employed
unless otherwise stated.

II. METHODS

A. The GTDSE method

At the energies considered in this paper one can employ
the semiclassical impact parameter approximation, where the
nuclei follow rectilinear trajectories defined by R(t ) = b + vt ,
with b the impact parameter and v the relative velocity. The
electronic motion is then described by the wave-function
�(r, t ) solution of the semiclassical equation[

Hel − i
∂

∂t

∣∣∣∣
r

]
� = 0 (3)

with the electronic Hamiltonian

Hel[r, R(t )] = −1

2
∇2

r + VH + VBe + 4

R
(4)

where r is the electron position vector, and VH and VBe are the
potentials for the electron interaction with both nuclei.

In the treatment of Be4+ + H(2s) collisions, the H nucleus
is initially on the origin of the laboratory reference frame
with Ẑ‖v̂ and X̂‖b̂, and Ŷ is perpendicular to the collision
plane. The origin of the electronic coordinates is also in the H
nucleus. At large internuclear separations, the wave function
is a linear combination of the atomic orbitals φ2s and φ̃2p, with
φ̃2p a p orbital in the direction of the internuclear vector R:

φ̃2p = b

R
φ2px + vt

R
φ2pz. (5)

The perturbation responsible for the Stark mixing of the n = 2
orbitals is

HS = −Qr · R̂
R2

, (6)

where Q = 4 is the projectile charge. The integration of (3) in
the {φ2s, φ̃2p} basis with lim

t→−∞ �(r, t ) = φ2s e−iE2t leads to

�s(r, t ) = (cos ξφ2s + i sin ξ φ̃2p) e−iE2t , (7)

where

ξ (t ) = Qμ

bv

[
tan−1

(vt

b

)
+ π

2

]
. (8)

E2 is the energy of the level H(n = 2), and

μ =< φ2s|r · R̂|φ̃2p >= 3a0. (9)

The numerical integration starts at a distant point of the tra-
jectory, Z0 = vt0, where the electron transfer is negligible,
the two-state approximation is valid, and therefore the wave
function is �s(r, t0).

In the present paper, we have employed the parallel
GRIDTDSE package [31], modified in Refs. [29,32], to solve
numerically Eq. (3). The wave function � is evaluated at the
points of a 3D Cartesian lattice. The lattice representation of
the electronic wave function is a vector � solution of the
matrix equation

H� = (T + V )� = i�̇. (10)

V is a diagonal matrix that stores the values of the potential
VBe + VH at the grid points, while the kinetic-energy matrix,
T , is a nondiagonal sparse matrix that is obtained by apply-
ing the finite differences method (see Ref. [33]), considering
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TABLE I. Soft-core parameters εH and εBe [Eq. (11)] employed
for different grid densities.

�q (a.u.) εH εBe

0.2 (G1) 3.66 × 10−3 5.19 × 10−3

0.4 (G2) 1.12 × 10−3 8.89 × 10−3

a stencil of ns = 15 neighboring grid points. Equation (10)
is time integrated by applying the second-order differences
method with time steps of the order of 10−2 a.u., during
which the electron-nuclei Coulomb attraction terms are ap-
proximately constant.

The extension of the grid is taken as −Lmax � q �
Lmax, q = x, z and 0 � y � Lmax, where we have taken ad-
vantage of the symmetry of the Hamiltonian upon reflection in
the collision plane (XZ). The present calculations were carried
out with a broad box of Lmax = 80 a0. Such an extension
allows the description of the Be3+ orbitals up to the quantum
level n � 11. As a final remark, according to the uncertainty
principle, the time step employed in the time integration is
directly related to the grid spacing [34]. Therefore, as the
description of the wave function in the spatial coordinates
improves with increasing density, shorter time steps must be
employed.

In practice, as in previous numerical treatments [28], a soft-
core approximation is introduced to allow the integration near
the Coulomb singularity. The potentials are

VH(r, R(t )) = − 1

(r2 + εH)1/2
,

VBe(r) = − 4

(|r − R|2 + εBe)1/2
, (11)

and the soft-core parameters εH,Be � �q have been optimized
by fitting the atomic energies for each grid density (Table I),
with deviations smaller than 1% from the exact energies. In
order to avoid unphysical reflections at the walls of the box,
we have introduced the mask function [32,35]:

M(r) =
∏

i=1,3

{
exp{−α(|qi|−Lmax+δ)2} if Lmax − |qi| < δ

1 elsewhere

with δ = 3.0 a0 and α = 0.002 a−2
0 . As pointed out in previ-

ous works [36,37], mask functions used in grid schemes are
directly related to complex absorbing potentials.

The original reference system, with the origin on the pro-
ton, allows us to evaluate excitation probabilities. In the limit
t → ∞, part of the initial electron density has been removed
by electron capture and ionization, and in the numerical treat-
ment is absorbed by the mask function. The probability of
finding the H atom in a given state �H

nlm is

PH
nlm = lim

t→∞
∣∣〈�H

nlm

∣∣�〉∣∣2
. (12)

As in previous applications [30], we calculate the electron
capture cross sections by moving the origin of the electron
coordinate system to the Be nucleus. In our calculations, the
origin is changed at Z1 = vt1 = −30 a0, when the EC process
has not started yet. After changing the origin, we carry out the

numerical integration with the initial condition:

�(r, t1) = �H(R1 − rBe) exp
(
iv · rBe − 1

2v2t1
)

(13)

that includes a plane-wave translation factor. Here the function
�H has been obtained by propagating �s(r, t0) from t0 to t1
with the origin on the H nucleus, and R1 = b + vt1. During
the numerical calculation that starts at t = t1, the Be4+nucleus
remains fixed at the origin and the H+ follows the straight-line
trajectory. The electron density, initially attached to the H+
nucleus, is partially transferred to Be4+. In the limit t → ∞,
the H+ has left the box, and the electron density inside it
corresponds to electron capture. The remaining electron den-
sity, which is absorbed by the mask functions, includes the
density that is joined to the H+ after the collision, the ionizing
density, and the capture into excited states of Be3+, which
cannot be described by the finite extension of the lattice. The
EC probabilities are

PBe
nlm = lim

t→∞
∣∣〈�Be

nlm

∣∣�〉∣∣2
(14)

where �Be
nlm are the Be3+ wave functions.

The integral cross sections for excitation and capture are
then obtained as

σnlm = 2π

∫ ∞

0
bPnlmdb, (15)

where Pnlm are the excitation [Eq. (12)] or EC [Eq. (14)]
probabilities. The probabilities, Pnl , and cross sections, σnl ,
for transition into the subshell nl are

Pnl =
+l∑

m=−l

Pnlm, σnl =
+l∑
−l

σnlm (16)

and analogously, for the transition to shell n,

Pn =
n−1∑
l=0

Pnl , σn =
n−1∑
l=0

σnl . (17)

To follow the time evolution of the collision wave function
it is useful to introduce the projections 〈φH

nlm|�〉| for excita-
tion, and |〈φBe

nlm|�〉| for EC. The functions

ζ H,Be
nl (t ) =

+l∑
m=−l

∣∣〈φH,Be
nlm

∣∣�〉∣∣2
(18)

for projection on a given subshell will be employed in Secs. III
and IV to discuss the mechanisms of these processes.

B. The CTMC method

The eikonal CTMC method has been explained in previous
works. Essentially, we assume rectilinear nuclear trajectories
as in the GTDSE method, and we describe the electronic
motion by a classical distribution ρ(r, p, t ). Initially, ρ is a mi-
crocanonical distribution function, ρm(r, p), in which all the
electron trajectories have the energy, ε, of the initial state of
the target atom. The distribution has been discretized in terms
of N = 2 × 106 noninteracting trajectories and the Hamilton
equations have been integrated from tini = −500/v a.u. up
to tfin = 1000

v
a.u. We have checked the convergence of the

total and partial cross sections with respect to the statistics

012811-3



A. JORGE, CLARA ILLESCAS, AND L. MÉNDEZ PHYSICAL REVIEW A 105, 012811 (2022)

and the integration time. In particular, the long collision time
ensures that the calculation correctly takes into account the
Stark mixing.

We have also employed a hydrogenic initial distribution.
The hydrogenic distribution [11] is constructed as a linear
combination with constant coefficients of microcanonical dis-
tributions with different energies, εk:

ρh(r, p) =
∑

k

akρ
m
k (r, p). (19)

The coefficients of the combination are obtained [11,14,38]
by imposing that the average energy is equal to that of the
corresponding quantum level, ε. It is also ensured that the
distributions included in the combination fulfill the conditions
[39,40]

[(n − 1/2)(n − 1)n]1/3 < nk � [(n + 1/2)(n + 1)n]1/3,

l

n
<

lc
nk

� l + 1

n
, (20)

where, in atomic units, n2
k = − Z2

2εk
and lc is the classical value

of the electronic angular momentum. These conditions permit
us to divide the phase space into adjacent nonoverlapping
bins associated to the quantum numbers n and l . In practice,
the use of the hydrogenic distribution improves the results
with respect to those of the microcanonical calculation for
electron capture and ionization processes, and n partial elec-
tron capture cross sections for relatively large n in ion-H(2s)
collisions (see Refs. [29,41]). Previous calculations [18,19]
show that the improvement is less important for collisions
with H(n = 2, 3) than for collisions with H in the ground state.
In the present paper, we have carried out the calculations for
collisions with H(2s) by including in the initial distribution
only the trajectories with lc fulfilling (20) with l = 0.

III. EXCITATION CROSS SECTIONS

A. Excitation in Be4++ H(1s) collisions

We have considered the reactions

Be4+ + H(1s) → Be4+ + H(nl) (21)

by applying the GTDSE method. Since the extension of the
initial 1s orbital is smaller than that of the 2s orbital, we have
employed a box of Lmax = 40 a0 (80 a0 for collisions with
2s), but a higher density �q = 0.2 a0 is required to accurately
represent the initial wave function. This grid was previously
employed for the calculation of electron capture cross sections
in Ref. [29]. The cross sections are compared with previous
calculations in Fig. 1. Good agreement is found with previous
close-coupling calculations, and the agreement is less satis-
factory with the calculation of Rodríguez and Miraglia [42]
at low energies, as expected for a perturbative calculation.
We find a remarkable agreement with the nl-resolved cross
sections obtained in the one-center expansion of Errea et al.
[25], which supports the application of the GTDSE method
for calculating excitation cross sections. We do not include
in this illustration the CTMC results since, as explained in
Ref. [24], the m-CTMC underestimates the excitation because
of the already mentioned difficulty of the microcanonical dis-
tribution that does not reproduce the tail of the quantal radial

0 100 200
E (keV/u)
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1

σ 
(1

0-1
6  c

m
2 )

0.1

1

σ 
(1

0-1
6  c

m
2 )

2p 2s

3p
3d

3s

n=3
n=2

FIG. 1. Total cross sections for H excitation in collisions of Be4+

with H(1s). (− • −), GTDSE calculations; �, eikonal impulse ap-
proximation [42] (− − −−), one-center close-coupling calculation
[25]; (− · −), molecular orbital calculation [44]; (· · ·), QTMC-KW
calculation [43].

distribution. In contrast, the h-CTMC overestimates the cross
section because of the large contributions of trajectories near
the upper limit of the 1s bin in (20). The recent results of
Ref. [43] for excitation into 2s and 2p overestimate those from
the semiclassical calculations.

The nl partial cross sections of Fig. 1 show that in general
the dipole-allowed transition to l = 1 is dominant. It can be
noted that the cross section for excitation into H(2s) is identi-
cal to that for the inverse process:

Be4+ + H(2s) → Be4+ + H(1s), (22)

but the result plotted in Fig. 1 is more accurate than that
obtained in the calculation of Sec. III B, starting from the
2s orbital, because the higher grid density of the calculation
provides a better description of the 1s orbital.

B. Excitation in Be4++ H(2s) collisions

The cross sections σn for the excitation reactions

Be4+ + H(2s) → Be4+ + H(n) (23)

are displayed in Fig. 2 for two collision energies. The CTMC
method allows us to consider excitations to very high n,
while the length of the box (Lmax = 80 a0) precludes accurate
computation of the cross sections for excitation into n > 5
with the GTDSE method. However, some conclusions can
be drawn from the comparisons. The GTDSE and h-CTMC
agree for n = 4, 5, which supports the accuracy of both re-
sults. As already explained for the excitation n = 1 → n = 2,
the h-CTMC calculation overestimates the cross section for
the excitation reactions n = 2 → n = 3 because the electron
trajectories near the limit of the classical n = 2 bin lead to
an artificial increase of the excitation. Nevertheless, the
m-CTMC cross section 2s → n = 3 does not exhibit this un-
physical behavior, but the incorrect description of the tail of
the radial distribution yields a general underestimate of the
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FIG. 2. Total cross sections for excitation in collisions of Be4+

with H(2s). (− • −), GTDSE calculations; �, m-CTMC; �, h-
CTMC.

excitation cross sections, similar to that found in previous
calculations [23,24]. In conclusion, the GTDSE is useful to
check the accuracy of the CTMC calculations and is the only
calculation that provides an accurate value of the n = 2 →
n = 3 cross section. For excitation into n � 4 the h-CTMC
method is appropriate.

We show in Figs. 3 and 4 the nl resolved excitation cross
sections, σnl , for the two energies of Fig. 2. Although the
h-CTMC calculation overestimates the cross section for ex-
citation into n = 3, the l distribution is similar to that found
in the other calculations and we have included the h-CTMC
cross sections in these figures. At E = 20 keV/u, we find
a general good agreement between GTDSE and h-CTMC
values of σ4l and σ5l while the m-CTMC underestimates these
cross sections. The cross sections σ3l of Fig. 3 show that the
dipole-forbidden transition to 3d is dominant, as previously
found in the calculation of Ref. [42]. Analogously, our calcu-
lations of σnl for n � 4 lead to l distributions with maxima
at l = 3 or 4. Also, the nl partial cross sections for n > 6,
calculated only with the CTMC method and not shown in the
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FIG. 3. Total cross sections for excitation to H(nl) in collisions
of Be4+ with H(2s) at E = 20 keV/u. •, GTDSE; �, m-CTMC; �,
h-CTMC.
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FIG. 4. Total cross sections for H excitation to H(nl) in collisions
of Be4+ with H(2s) at E = 100 keV/u. Symbols as in Fig. 3.

figure, have maxima at l = 4. It can be noted that the results of
Ref. [45] for H+ + H collisions also indicated the breakdown
of the dipole selection rule.

The comparison of Figs. 3 and 4 points to a shift of the l
distributions to lower values of l as E increases. In particular,
the maximum of the σ3l is found at l = 1 for E = 100 keV/u.
We observe in Fig. 4 that the CTMC calculations yield σnl for
n � 4 with a plateau for 1 � ł � 3, while the GTDSE results
exhibit two local maxima at l = 1 and 3. At both energies the
cross sections σn0 are relatively small, which is an expected
result since these subshells have only one state. With respect
to the comparison of the results with the three methods, the nl
partial cross sections at E = 100 keV/u do not show a clear
indication of the accuracy of the three calculations, but we
think that the agreement of GTDSE and h-CTMC n partial
cross sections for n = 4, 5, together with the known limitation
of the m-CTMC method, suggest that the h-CTMC is more
accurate to calculate the cross sections for excitation into nl
subshells with n > 3.

The semiclassical calculation provides the transition prob-
abilities and the projections of the collision wave functions on
the atomic orbitals, as functions of Z = vt (the history of the
collision). In this respect, to better understand the populations
of the subshells 4l with l = 1, 2, and 3, we have plotted these
two parameters in Figs. 5 and 6. In Fig. 5, we show the
opacity functions bP4l (b) [Eq. (12)] at the two energies of the
present calculation. We highlight, on the one hand, how the
higher cross section for l = 1 at 100 keV/u comes mainly
from the higher probability at large impact parameters. On
the other hand, we highlight how the probabilities of popu-
lating the l = 2 and 3 states are similar at the two impact
energies, but shifted to the left (making the l = 1 subshell
the most probable for high b) at 100 keV/u. To understand
how the different states are populated during the collision,
we plot in Fig. 6 the functions ζ H

nl (t ) of (18). We display in
Fig. 6 the populations of the initial 2s − 2p states, as well
as those of l = 1, 2 (and 3) for n = 3 and 4 and b = 24 a0.
The l = 0 populations have not been included for the shake of
clarity. First, we want to draw attention to the crossing point
between ζ H

20(t ) and ζ H
21(t ) for 20 keV/u. As it can be seen, this
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crossing point does not occur at 100 keV/u for this impact
parameter. For all the shells considered, the l = 1 populations
are dominant for those impact parameters where there is no
crossing point between ζ H

20(t ) and ζ H
21(t ). At E = 20 keV/u

this does not happen at any b, while for 100 keV/u we find this
crossing point for b � 20 a0. Before the crossing point, the np
populations are also the largest ones for each n, indicating that
the 2s → np are the most important ones. When the crossing
point appears, the excitation takes place mainly from the 2p
orbitals, and the main excitation transition is 2p → 3d . One
can notice in Fig. 6 that the 4 f state is more rapidly populated
than the 4d . The 3d subshell is at the same time populating the
4 f and taking most of the l = 2 contribution coming from 2p.

Another significant fact is that for 20 keV/u the statistical
behavior (increasing probability for increasing l’s) is still im-
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collisions of Be4+ with H(2s), calculated with the h-CTMC method
for four collision energies (20, 100, 200, and 500 keV/u), as indi-
cated in the figure.

portant while this effect is less significant for 100 keV/u, and
we can start seeing the perturbative behavior which should be
dominant for higher impact velocities. When the perturbative
regime starts being dominant we can expect the l = 1 state
to be the most populated, as well as the disappearance of
the differences between l = 2 and 3. The two peaks in the
nl-excitation cross sections for 100 keV/u (Fig. 4) can be seen
as the result of the dying of the statistical regime while the
perturbative regime struggles to be born.

We find a similar behavior of the h-CTMC partial cross
sections at 100 keV/u. Although the two maxima for l = 1
and 3 can be slightly distinguishable in σ5,6l (Fig. 4), they are
clear for n > 7, not shown in the figure. To further illustrate
the transition between the more statistical distribution to the
perturbative behavior, we show in Fig. 7 the h-CTMC values
for σnl at four impact energies: 20, 100, 200, and 500 keV/u.
In this figure not only are the two maxima for l = 1 and
3 more clearly shown for 100 keV/u, but also the expected
maximum at l = 1 (and decreasing σnl for higher l’s) appears
for 200 keV/u, and is definitely clear at 500 keV/u, as ex-
pected. The extension of the h-CTMC calculation to higher
energies thus confirms the proposed mechanism.

IV. ELECTRON CAPTURE PARTIAL CROSS SECTIONS

We have calculated the cross sections for the electron cap-
ture reactions

Be4+ + H(2s) → Be3+(nl ) + H+ (24)

using the GTDSE method and the CTMC with both micro-
canonical and hydrogenic initial distributions. The compari-
son between the n partial cross sections is shown in Fig. 8.
The GTDSE calculation supports the classical calculation for
n � 11, with a somewhat better agreement with the h-CTMC.
The box size used in the GTDSE calculation precludes the
calculation for n � 11, but the agreement with the CTMC
calculation allows us to use the latter to provide cross sections
at high n. It can be noted that the maximum cross section
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appears at the same nmax for the three calculations (nmax = 5
for E = 20 keV/u, nmax = 4 for E = 100 keV/u).

The partial nl cross sections are displayed in Figs. 9
(E = 20 keV/u) and 10 (E = 100 keV/u). The agreement
between the two methods is remarkable, although slight shifts
of the maxima of the l distributions are noticeable. At E = 20
keV/u we find the maxima of the cross sections at lmax = 5
for n > 7 and lmax = n − 1 for n < 7 in both methods. At
E = 100 keV/u, we obtain lmax = 4 in the CTMC calculation
and lmax = 3 in the GTDSE one for n � 6. These partial cross
sections are qualitatively similar to that found in Ref. [18] for
collisions of C6+ and N7+ with H(n = 2), and lmax approaches
the value q3/4 suggested in Ref. [39], at E = 100 keV/u. We
have also checked that the nl partial cross sections of Ref. [7]
are practically identical to those of our m-CTMC calculation
for n = 2–4.
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FIG. 9. nl partial total cross sections for electron capture in
collisions of Be4+ with H(2s) at E = 20 keV/u. (− • −), GTDSE
calculations; �, m-CTMC calculation; �, h-CTMC calculation.

To further discuss the mechanism of the EC process, we
have considered, as for the excitation reactions, the corre-
sponding histories of the collision obtained in the GTDSE
calculation. As in our previous discussion of the excitation
reaction, we have studied the time evolutions of ζ Be

nl (t ) of
Eq. (18). At E = 100 keV/u (Fig. 11), we find that the capture
starts in the neighborhood of the point of closest approach
t = 0. For each b, the EC probability on a given n is mainly
determined by the values of ζ Be

nl (t = 0) with a redistribution
between the different nl subshells in the collision way out,
where the transitions take place with �l = ±1. The time
evolution clearly shows that the maxima of ζ Be

nl (t = 0) are in
general obtained for the value of l which leads to a maximum
of the radial components Rnl of the orbitals φnlm at rBe = b.
To further analyze this point, we consider the functions ζ Be

nl of
Eq. (18); they can be expressed as

ζ Be
nl =

+l∑
m=−l

∣∣〈φBe
nlm

∣∣�〉∣∣2 =
〈
�

[ +l∑
m=−l

∣∣φBe
nlm

〉〉
φBe

nlm

∣∣]�

〉
= 〈�|Pnl |�〉. (25)

Writing the orbitals as products of radial functions and spherical harmonics, we obtain

Pnl� =
∫

dr r2Rnl (r
′)Rnl (r)

+l∑
m=−l

∫
d�Ylm(�′)Ylm(�)�(r,�), (26)

where we have simplified the notation by writing r ≡ rBe. Using the addition theorem for the spherical harmonics,

Pnl� = (2l + 1)

4π

∫
dr r2Rnl (r

′)Rnl (r)
∫ 2π

0
dφ

∫ π

0
dθ sin θPl (cos γ )�(r, θ, φ), (27)

where

cos γ = cos θ cos θ ′ + sin θ sin θ ′ cos(φ − φ′), (28)

and Pl is a Legendre polynomial.
Near the point of closest approach, the function � is not

very different from the initial 2s orbital, and the maximum
value of � is found in the H nucleus. Therefore, the maximum
projection is obtained for the value of l that has a maximum

of Rnl in the H nucleus. We have found some exceptions to
this general rule at relatively large impact parameters, where
the largest maximum of Rnl corresponds to low l’s, and the
statistical weight 2l + 1 is important; for instance, for b = 7
and n = 4, the values of R4l (r = b) for l = 0–2 are larger than
that of R43(r = b) while ζ43(t ≈ 0) is larger than the other ζ4l .

The collision histories at E = 20 keV/u show that the
EC process starts at t < 0 as expected for a more adiabatic
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transition that involves the polarization and delocalization of
the initial wave function, but the distributions between the nl
subshells follow a behavior similar to that described at high
energies.

V. TOTAL CROSS SECTIONS

We plot in Fig. 12(a) our h-CTMC total EC cross sec-
tions. The m-CTMC cross sections are indistinguishable from
the h-CTMC, and the very small differences are illustrated
at E = 20 and 100 keV/u in panels (b) and (c). The good
agreement between the EC results with both distributions for
ion collisions with H(n = 2) has been previously pointed out
in Refs. [18,19], and is consistent with the small differences
between the partial cross sections of Sec. IV. Our total CTMC
cross sections also show very good agreement with the recent
CTMC calculation of Ref. [7]. However, we find noticeable
differences with the Atomic Orbital Close Coupling calcula-
tion of Igenbergs [46], which may be due to an overpopulation
of the excited levels of Be3+ in that calculation, as previously
found in Ref. [29]. To further analyze the accuracy of the
classical and semiclassical calculations, we have plotted in
Fig. 12 our GTDSE results. The limited extension of the box
precludes calculation of the EC cross sections into Be3+(n >

11); however, the good agreement with the CTMC partial
cross sections allows us to estimate the total cross section by
adding the GTDSE cross section for EC into Be3+(n � 11)
and the h-CTMC cross sections into Be3+(n > 11). The es-
timates shown in Figs. 12(b) and 12(c) indicate that, at these
energies, the differences between both calculations are smaller
than 13% and these differences can be traced back to those
for the n values near the maxima of the n distributions of
Fig. 8. We have checked that the uncertainties due to the final
integration time (Z = 100 a0) of the n partial cross sections
are smaller than 1% in the GTDSE calculation.

The accurate calculation of total cross sections for exci-
tation is difficult with all the available methods. The semi-
classical calculations, either the close-coupling calculations
[24] or the numerical methods, provide the partial cross sec-
tions for excitation into low n shells, but not for populating

high n levels. In contrast, the h-CTMC overestimates the cross
section for excitation into H(n = 3), leading to an inaccurate
total cross section. In order to estimate the total cross section
for H(2s) excitation, we have combined the results of both
calculations. Taking into account that GTDSE and h-CTMC
show good agreement for n = 4, 5 (Fig. 2), we have estimated
the total cross section by adding the GTDSE partial cross
sections for n = 3, 4, 5 and the h-CTMC ones for n > 6. The
results for E = 20 and 100 keV/u of Fig. 12(a) show the
importance of the excitation process that becomes dominant
at E = 100 keV/u.

The GTDSE method does not provide an accurate total
cross section for ionization because the electronic flux that
leaves the box (in practice is removed by the mask function)
includes ionization but also excitation into high n levels and
electron capture, and these contributions cannot be separated.
In contrast, the CTMC method easily provides these cross sec-
tions. Moreover, as already found in previous works [18,19],
the known difficulties of the initial microcanonical distribu-
tion are not relevant for collisions with excited targets, and
m-CTMC and h-CTMC agree. The two CTMC results are
almost indistinguishable in Fig. 12, with differences between
both calculations of about 5%. The cross sections tabulated in
Ref. [46] are very small. This underestimate is similar to that
found for C6+ + H collisions in Ref. [18].

VI. SUMMARY AND CONCLUSIONS

We have carried out a computational study of Be4+ +
H(2s) collisions by employing a semiclassical method
(GTDSE), where the eikonal equation is solved numerically
in a 3D grid, and the CTMC method. In the application of
the GTDSE method we have started the numerical integration
at a distant point Z0 = −80 a0, where a perturbative two-state
approximation is valid and the collision wave function is given
by the Stark mixing of 2s and 2p orbitals. We have carried out
two separate GTDSE calculations. In the first one, the origin
of electron coordinates is placed on the H nucleus, and allows
us to calculate excitation cross sections; in the second one,
the origin is placed on Be4+, and yields electron capture cross
sections.

The CTMC method is comparatively very fast and we
have started the integration of the electron trajectories at
very large distances, and checked the convergence with re-
spect to the initial integration time. The CTMC calculations
start from an initial distribution for n = 2, and, to determine
the probabilities for electron capture, excitation, and ioniza-
tion in collisions with H(2s), we divide the phase space in
nonoverlapping boxes, as explained in Ref. [40]. We obtain
the probabilities for collisions with H(2s) from the subset
of trajectories that initially lie in the l = 0 box. The CTMC
calculation provides total and partial cross sections for all
processes simultaneously, but the standard microcanonical
initial distribution has important limitations, in particular, for
collisions with H(1s), which have motivated us to perform
calculations with both the microcanonical (m-CTMC) and the
hydrogenic (h-CTMC) initial distributions.

In order to check the usefulness of the GTDSE method to
calculate excitation cross sections, not considered in previous
studies, we have calculated cross sections for excitation of

012811-8



CLASSICAL AND SEMICLASSICAL CALCULATIONS OF … PHYSICAL REVIEW A 105, 012811 (2022)

-10 0 10
0

0.001

0.002

0.003

0.004
b = 1.5 a.u.

0 10 20

b = 4 a.u.

-10 0 10 20
0

5e-05

0.0001

0.00015

0.0002

0.00025

b = 7 a.u.

-10 0 10
0

0.0005

0.001

0.0015

0.002

0.0025ζ nl

B
e (t

)

0 10 20

vt (units of a
0
)

-10 0 10 20
0

0.0001

0.0002

0.0003

0.0004

0.0005

n = 4

n = 6

l = 2

l = 2
l = 2

l = 2

l = 3 l = 3

l = 3
l = 3

l = 1

l = 1 l = 1

l = 1

l = 4

l = 4

l = 5

l = 5

l = 3

l = 3

FIG. 11. Time evolution of ζ Be
nl (t ) [Eq. (18)] as functions of vt for E = 100 keV/u, and the values of b and n indicated in the figure.

H(1s) [Eq. (21)]. Our results show a very good agreement
with previous close-coupling results. The GTDSE has been
then applied to check the CTMC excitation cross sections
from H(2s) at two energies (E = 20 and 100 keV/u). We find
that the m-CTMC underestimates the n partial cross sections,
while the h-CTMC shows a reasonable agreement for excita-
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FIG. 12. (a) Total cross sections for excitation, electron capture,
and ionization in Be4+ + H(2s) collisions. The comparison of elec-
tron capture total cross sections calculated using GTDSE, h-CTMC,
and m-CTMC methods at E = 20 and 100 keV/u is presented in
panels (b) and (c), respectively.

tion into H(n = 4, 5), which supports the application of this
method to calculate excitation cross sections into high n-lying
excited levels, which are very difficult to accurately compute
with close-coupling or lattice semiclassical treatments.

The analysis of the transition probabilities and the time
evolution of the electron wave function in the GTDSE cal-
culation provides some insight into the mechanism of the
excitation process in ion collisions with H(2s). This mecha-
nism has two main ingredients: (1) the 2s − 2p Stark mixing
and (2) the transitions from 2s and 2p to excited nl subshells,
which take place following the �l = ±1 selection rule. As
the energy increases, the Stark mixing becomes less important
and the population of states with l � 2 decreases. At relatively
low velocities, the nl partial cross sections increase with l with
a statistical behavior for l < 4, but the sequential mechanism
requires more than two steps for the excitation to l � 3, which
leads to a decrease of the corresponding cross sections.

The cross sections for EC from H(2s), calculated with
m-CTMC and h-CTMC, show good agreement, as previously
found for collisions of multicharged ions with H(n = 2). This
result, together with the satisfactory agreement of CTMC and
GTDSE results, supports the validity of the widely applied m-
CTMC method for EC from excited targets. The nl partial EC
cross sections exhibit a similar behavior to that for collisions
of other ions with H(n = 2) with a shift to lower l′s of the
maximum of the l distribution, as the energy increases.
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