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We perform valence, core-core, and core-valence nonrelativistic configuration-interaction (CI) calculations on
the states belonging to the 3s23pn configuration with n = 2, 3, and 4, for P+(3P, 1D, 1S), P(4S◦, 2D◦, 2P◦), and
P−(3P, 1D, 1S) species, respectively. Excitation energies, ionization potential, and electron affinities related to
these states were calculated using orbital basis sets up to � = 12 and corrected with relativistic contributions. We
also carry out relativistic CI calculations for the fine structure splitting of the sublevels 3P0,1,2 and 3P2,1,0 in P+

and P−, respectively, and both 2D◦
3/2,5/2 and 2P◦

1/2,3/2 in P, using orbital basis sets up to � = 3. Systematic studies
on the convergence of both nonrelativistic and relativistic CI calculations for each electronic state show the
energy contributions corresponding to each CI excitation level. Our results for the excitation energies, ionization
potential, and electron affinity of the (3s23p3)4S◦ ground state, as well as fine structure splittings, are in very
good agreement with the experiment and give reliability to the predicted electron affinities of the (3s23p3)2D◦

and 2P◦ excited states of 1135(1) meV and 1040(1) meV, respectively.

DOI: 10.1103/PhysRevA.105.012809

I. INTRODUCTION

In contrast to neutral atoms and cations, anions have only
a limited number of stable states. These states are often
correspond to ground states which are energetically below
the ground states of the parent neutral atom. On the other
hand, there are metastable states of anions with relatively long
lifetimes which are energetically above the ground states of
the neutral parent atom and lie below the continuum with
the same LS symmetry and parity [1]. Often such metastable
states are corresponding to excited discrete states. Most of
the stable states can be identified to a certain accuracy with
different ab initio methods, e.g., the Hartree-Fock (HF),
multiconfiguration Hartree-Fock (MCHF), configuration in-
teraction (CI), and other many-body techniques. Extra care
should be exercised with metastable states for reasons outlined
below.

In addition to the fact that metastable states are difficult to
observe experimentally, theoretical work on metastable states
or even stable ones of the anion involves many difficulties not
encountered in the corresponding neutral and cations states.
One of the main difficulties is often the ability of the sig-
nificant electron-electron interaction to change the electronic
orbitals upon the binding of an additional electron to the neu-
tral atom. Furthermore, the wave function expansion grows
too rapidly with each step toward incorporating configurations
from higher excitation levels. Another source of difficulty is
the diffusion of the spatial extent of the outermost orbitals, and
this in turn requires an extra linear combination of primitive
functions to represent the atomic orbitals. Despite high CPU
time and slow convergence of radial expansion problems in
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the CI method, both nonrelativistic and relativistic CI regimes
fall within the realm of one of the most accurate ab initio
methods for it to offer a clear way to define a systematic
approach. In the present paper, we will employ the CI method
to calculate the energy levels of 4S◦, 2D◦, and 2P◦ states of
the neutral phosphorus, P(3s23p3), and the 3P, 1D, and 1S
states in both P+(3s23p2) and P−(3s23p4) ions. The impor-
tance of studying P comes from its relative abundance, and
it is regarded as an indicator of possible life in other parts of
the universe [2]. P+ is of particular interest because it has a
silicon-like electronic configuration. The spectra of P+ and P
are well known experimentally [3–6] and calculated at a cer-
tain level of accuracy [7,8]. On the other hand, the (3s23p4)3P
ground bound state in P− is well observed experimentally. The
electron affinity (EA) of the (3s23p3)4S◦ ground state was first
reported by Andersson et al. [9] to 746.68(6) meV, and then it
was updated to be 746.607(10) meV by Peláez et al. [10]. The-
oretically, many studies using a variety of traditional quantum
chemical methods have been done to predict the binding en-
ergy of the 3P ground stable state [11–14]. The landmark
ab init io and density functional calculations augmented with
core-valence contribution done by de Oliveira [15] predicted
the EA of the 4S◦ ground state to 742.64 meV, which agrees
well with the experiment. However, the difference between
the de Oliveira et al. result and the experiment is more than
4 meV. On the other hand, an early investigation carried out
by Bunge et al. [16] revealed the existence of both excited
metastable (3s23p4) 1D and 1S states against autoionization.
Their work, however, does not give explicit numerical values
of the binding energies of these states with respect to (3s23p3)
2D◦ and 2P◦ parent states, respectively. The metastable 1D and
1S states are formed from the corresponding excited neutral
parents 2D◦ and 2P◦ states, respectively. However, it should
be mentioned that the formation of the 3P state could readily
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be observed, and no indication of the formation of the 1D and
1S states has been found in any of the experiments carried out
so far [10]. In an LS-coupling scheme, the 1D term cannot
autoionize to the continuum of the bound 4S◦ term of the
neutral P. Likewise, the 1S term cannot autoionize to the
continua associated with either the 4S◦ or 2D◦ term. The
autoionization becomes possible only when the magnetic
interactions are taken into account. However, radiative tran-
sitions by an electric dipole without spin change are allowed
into lower bound [17–21] or continuum [22,23] states includ-
ing resonances [24].

The purpose of this paper is to calculate excitation energy
(EE), ionization potential (IP), and EA related to P+(3P, 1D,
and 1S), P(4S◦, 2D◦, and 2P◦), and P−(3P, 1D, and 1S). Fur-
thermore, the fine structure splitting of the neutral and ionic
states of P are calculated within the framework of relativistic
CI up to an excitation level equal to the number of valence
electrons outside an inactive core. Predictions of EE, IP, and
EA require calculation of energy differences between the
corresponding states; one may define an inactive core and
consider only the correlation among the valence electrons.
However, including core-core and core-valence correlation is
crucial to achieve accurate predictions of atomic properties
with respect to the corresponding experimental data.

In Sec. II we review the main features of nonrelativistic
CI method including the generation of configuration lists,
and the construction of the CI wave function for valence,
core-core, and core-valence correlations. We also describe
the procedure to obtain energy-optimized atomic orbitals to
within prescribed accuracy starting from a small set of primi-
tive functions. In Sec. III we give a summary of the theoretical
background of the employed relativistic CI method. In Sec. IV
we summarize and discuss the numerical results of the dif-
ferent correlation energy contributions and the corresponding
EEs, IP, EAs, and fine structure splitting. Finally, Sec. V gives
concluding remarks.

II. THE NONRELATIVISTIC CALCULATIONS

Three sets of nonrelativistic CI calculations are reported
in the present paper. One set concerns the valance correlation
energies of the 3P, 1D, and 1S terms in both P+(3s23p2) and
P−(3s23p4), and 4S◦, 2D◦, and 2P◦ terms in P(3s23p3). The
other two sets of CI calculations concern both core-core and
core-valence correlation energy contributions.

A. The CI wave function

In the nonrelativistic CI method, the wave function �μ of
an atomic bound state labeled μ can be expressed as a linear
combination of configuration state functions (CSFs) FgK with
total quantum numbers L, ML, S, MS (in the LS coupling
scheme) and of the same parity

�μ =
Kx∑

K=1

gK∑
g=1

FgKCgK , (1)

where K and g labels are for configuration and degenerate
element, respectively, and Kx and gK keep track of the highest
values. K and g, respectively, and CgK are expansion coeffi-

cients. Each CSF is obtained upon application of a symmetric
projection operator O(�, γ ) [25] for all pertinent symme-
try operators � and a given irreducible representation γ , as
successively orthogonalized symmetric projections of Slater
determinants; i.e., FgK may be expressed as linear combination
of nK Slater determinants DiK ,

FgK = O(�, γ )
g∑

i=1

DiK bg
i =

nK∑
i=1

DiK cg
i . (2)

The program AUTOCL [26–28] was used to generate
all CSFs associated with single (S), double (D), triple (T ),
quadruple (Q), quintuple (Qn), and sextuple (Se) electron
excitation from a given single or multireference configuration.
The full CI (FCI) space of an atomic state can be achieved by
including all CSFs generated from S-, D-, T -excitations, etc.,
up to a maximum number of electrons in the system within
reasonably one electron basis set representation. When the
CI wave function includes CSFs restricted to excitations
from valence orbitals, we define the valence (VV) correlation
model. If the CI wave function includes CSFs limited to exci-
tations from core orbitals, we define the core-core (CC) cor-
relation model. The remaining correlation is the core-valence
(CV) correlation model, which covers CSFs created by excita-
tions from combination of both core and valence orbitals, with
the restriction of allowing at most five holes in the core at the
SD excitation level. It is noteworthy that CC excitations gen-
erate much larger configurations lists than the corresponding
VV and CV excitations. In the nonrelativistic CI approach,
Schrödinger’s equation can be written in matrix form, in
terms of a column vector of expansion coefficients Cμ, an
interaction matrix H, and the variational upper bound FCI
energy EFCI

μ ,

HCμ = EFCI
μ Cμ. (3)

The nonrelativistic energy Enr
μ (exact eigenvalue of

Schrödinger’s equation) is related to EFCI
μ through the

relation [29],

Enr
μ = EFCI

μ + �EOBI
μ + �ECI

μ , (4)

where �EOBI
μ is the error due to orbital basis incompleteness

[17,30], and �ECI
μ represents the truncation energy error due

to any simplification to the FCI computation effected in the
evaluation of Enr

μ . Calculation of FCI energy even with a
small system is computationally intractable due to the vast
number of the CI size, which increases progressively with
higher excitation levels. Therefore, the CI space should be
reduced in some way, and hopefully both the approximate CI
wave function and the corresponding CI energy are as close as
possible to the exact values. To manage large CI expansions,
we use the following procedure. First, a priori selected CI
(SCI) with truncation energy error [31] takes place to reduce
the CI size; however, the outcome CI space may still be huge
for direct CI and needs to be further truncated into a selected
space (S-space). Second, the program ATMOL [32] has the
ability to perform CI by parts (CIBP) [33,34] in which the
S-space is partitioned into several subspaces
(S0, S1, S2, . . . , Sr) of dimensions (d0, d1, d2, . . . , dr),
respectively. Here S0 is the reference space in which all
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CI coefficients are always variational, and all other subspaces
Si, i = 1, 2, . . . , r will be taken up variationally one after the
other. The theoretical basis of a priori SCI with truncation
energy error and CIBP has been widely discussed elsewhere
[31,33,34], and we will not go into its details here.

B. Orbital basis set

In this work, the radial part Rn� of the one electron wave
function is chosen to be a linear combination of energy-
optimized Slater-type orbitals (STOs),

Rn�(r) =
∑

k

ank�

(2ξk�)(nk�+1/2)

[(2nk�)!]1/2
r (nk�−1) e(−rξk� ), (5)

where n and � are the principal quantum number and the
orbital quantum number, respectively. The parameters ank�

and ξk� in Eq. (5) are the orbital expansion coefficients and the
nonlinear parameter orbital exponent, respectively. For each
irreducible representation (irrep) of LS symmetry, a new STO
is introduced in the form of a set of trial primitives (Nt ). Nt

optimization processes are dispatched simultaneously, where
orbital exponents within a given irrep are reoptimized in the
sense to obtain the lowest energy for single or multireference
CISD. The choice of the primitive STOs for given atomic
orbitals and a given state plays a crucial role later in all CI
convergence stages for VV, CC, and CV calculations. In the
VV calculation of both P+(3P, 1D, and 1S) and P(4S◦, 2D◦,
and 2P◦), we started by approximating the occupied orbitals,
1s, 2s, and 3s by ten STOs of s-type, and both 2p and 3p
orbitals by eight STOs of p-type, and set up to satisfy the
HF energy [35] of the considered state. For P−(3P, 1D, and
1S), the initial orbital basis are augmented with additional
reoptimized six STOs of d-type, four STOs of f -type, and two
STOs of g-type, to describe the diffuse charge of the negative
ion states. Thereafter, the orbital space of VV wave function
is extended to include all CSFs at SD excitations outside the
neon fixed core up to the orbital harmonic � = 12, where the
orbital basis are automatically optimized until saturation is
reached within a prescribed threshold of energy decrements
(cutoff = 5 μhartree); one can reach reasonable convergence
for a certain type of orbital symmetry. It is important to point
out that only CSFs interacting directly with their correspond-
ing reference configuration (HF configuration) are retained
in the CISD level during automatic optimization. These “HF
interacting spaces” [36] yield the largest contributions to the
correlation energy and furthermore reduce CPU time for auto-
matic optimization. These composite energy-optimized STO
basis sets were eventually used to compute the correspond-
ing variational upper bound valence energies up to CISDTQ,
CISDTQQn, and CISDTQQnSe for P+(3P, 1D and 1S), P(4S◦,
2D◦, and 2P◦), and P−(3P, 1D, and 1S), respectively. Likewise,
both CC and CV calculations employed the same initial orbital
STO representation of VV calculations except that automatic
optimization run over CSFs belonging to configuration lists
of CC and CV. In this investigation, we maintain systematic
proceeding of the calculation in which each excitation level
incorporates the same maximum number of virtual orbitals for
each species. Table I presents the number of energy-optimized
STOs per each orbital symmetry (column 4) for each term
(column 2) of P+, P, and P− species (column 1). According

to Table I, the CC correlation calculation displays the largest
number of STOs among both VV and CV correlation.

One of the methods to assess the quality of the wave
functions is the analysis of the angular energy pattern of
convergence, which provides prior simulation of the quality of
the energy-optimized STOs and consequently the final form of
the total wave function. We do not report here the tables that
display the pattern of convergence. However, our study on the
CISD energy of VV contribution with increasing angular mo-
mentum up to �=12 for 3P, 1D, and 1S terms of P+ shows that
the angular energy pattern of the excited 1S term is the most
rapid convergence among 3P and 1D terms. Therefore, energy
optimization for the 1S term is finished with 68 STOs, while it
takes 73 and 77 additionally built STOs for 3P and 1D terms,
respectively, as indicated in Table I. On the other hand, the
angular energy pattern of both CC and CV contributions of the
same terms are much slower than that of the VV contribution,
and this reflect the larger number of STOs basis for both CC
and CV calculations. Vice versa, in VV calculation of P, the
excited 2P◦ term exhibited the slowest angular energy conver-
gence pattern with respect to both 4S◦ and 2D◦ terms. When
going to both CC and CV correlation calculations, the excited
2P◦ term shows instabilities upon STOs automatic optimiza-
tion. The instabilities of angular energy convergence can be
attributed to the choice of the initial STOs basis. However, if
we change or modify our initial basis of one-electron orbitals,
we observe that at a certain level of precision, the resulted
basis set suffers approximate linear dependence instead. For
P−, the pattern of the 3P term displays the most rapid energy
convergence with respect to the pattern of both the 1D and 1S
term; however, the 1S term has the smallest CISD size among
both 3P and 1D terms. The effect of truncation of the virtual
VV, CC, and CV correlation space represented by orbital basis
incompleteness (column 6) is obtained as an extrapolation of
the last eight values of the nonrelativistic CISD energy up to
� = 400, as a function of the angular momentum of the energy
functional,

�E (�) =
∑

i

[
Ei(�) − Epatt

i (�)
]2

, (6)

where Epatt
i (�) is based on Schwartz’s law [37] and Epatt

i (�) =
a◦(� + δ)−4, in which a◦ and δ are adjustable parameters.

III. THE RELATIVISTIC CALCULATIONS

Detailed accounts of the relativistic CI method have been
discussed by Bunge and coworkers [38–40], and we will
mention only the outline of the method. The starting point
for N-particle relativistic calculations is the combination of
one-electron Dirac Hamiltonian hD and electron-electron in-
teraction Vi j ,

H =
N∑

i=1

hD(i) +
N∑

i> j

Vi j . (7)

For an electron moving in Coulomb potential of stationary-
point nucleus of charge Z , hD (in atomic units) is then

hD = cα · p + (β − 1)c2 − Z

r
. (8)

012809-3



ADNAN YOUSIF HUSSEIN PHYSICAL REVIEW A 105, 012809 (2022)

TABLE I. STO basis sets per orbital symmetry, total number of STOs, and the corresponding orbital basis incompleteness error (in
μhartrees) of various correlation calculations at CISD approximation for P+ (3P, 1D, and 1S), P (4S◦, 2D◦, and 2P◦), and P− (3P, 1D,
and 1S).

Species Term Correlation STOs set No. of STOs �EOBI

P+ 3P VV 12s 12p 8d 8 f 6g 5h 5i 4k 4l 3m 2n 2o 2q 73 −45
CC 16s 15p 13p 12 f 10g 10h 9i 8k 7l 5m 5n 4o 3q 117 −76
CV 14s 13p 11d 10 f 9g 8h 6i 6k 5l 3m 2n 1o 1q 89 −40

1D VV 12s 12p 8d 8 f 7g 5h 5i 5k 4l 4m 3n 2o 2q 77 −46
CC 16s 16p 13d 13 f 11q 10h 9i 8k 7l 5m 5n 4o 3q 120 −81
CV 14s 13p 11d 10 f 9g 7h 6i 6k 5l 3m 2n 1o 1q 88 −44

1S VV 12s 11p 8d 6 f 6g 5h 5i 4k 3l 3m 2n 2o 1q 68 −41
CC 11s 13p 14d 9 f 8g 7h 7i 7k 5l 5m 5n 4o 3q 98 −93
CV 11s 12p 10d 8 f 7q 6h 6i 3k 3l 2m 1n 1o 1q 71 −53

P 4S◦ VV 12s 12p 9d 8 f 7g 6h 5i 5k 4l 4m 3n 2o 2q 79 −70
CC 15s 15p 13d 12 f 10g 10h 9i 8k 7l 5m 5n 4o 3q 116 −98
CV 14s 14p 12d 10 f 9g 8h 7i 6k 5l 3m 3n 1o 1q 93 −91

2D◦ VV 13s 12p 10d 8 f 7g 6h 6i 5k 5l 4m 4n 3o 2q 85 −83
CC 15s 15p 13d 12 f 10q 10h 9i 8k 6l 5m 5n 4o 3q 115 −75
CV 13s 13p 12d 10 f 9g 8h 7i 6k 5l 3m 3n 1o 1q 91 −81

2P◦ VV 11s 12p 11d 10 f 7g 6h 6i 6k 5l 5m 4n 3o 2q 88 −87
CC 9s 11p 12d 9 f 4q 3h 2i 2k 1l 1m 1n 1o 1q 57 −81
CV 10s 11p 12d 11 f 7q 6h 5i 3k 3l 1m 1n 1o 1q 72 −96

P− 3P VV 12s 12p 11d 8 f 7g 7h 6i 6k 5l 5m 4n 3o 3q 89 −125
CC 13s 15p 13d 12 f 10g 10h 9i 8k 6l 5m 5n 4o 3q 113 −103
CV 11s 13p 12d 10 f 9g 8h 7i 6k 5l 3m 3n 1o 1q 89 −89

1D VV 13s 13p 10d 9 f 7g 7h 6i 6k 5l 5m 4n 4o 3q 92 −111
CC 15s 17p 12d 13 f 11g 10h 9i 8k 7l 5m 5n 4o 3q 119 −127
CV 12s 14p 13d 10 f 9g 8h 7i 6k 5l 3m 3n 1o 1q 92 −76

1S VV 13s 13p 11d 9 f 7g 7h 7i 6k 5l 5m 4n 4o 3q 94 −116
CC 11s 14p 11d 10 f 9g 9h 7i 7k 6l 5m 5n 4o 3q 101 −97
CV 11s 13p 12d 11 f 9g 8h 7i 6k 5l 3m 2n 1o 1q 89 −66

In fully relativistic theory, Breit interaction is the most
important correction; therefore, Vi j in Eq. (7) can be modified
as the sum of the usual Coulomb electron-electron repulsion
r−1

i j and Breit interaction Bi j . In our work the latter is treated
via variational calculation,

Vi j = r−1
i j + Bi j, (9)

Bi j = −1

2

( �αi · �α j

ri j
+ (�αi · �ri j )(�α j · �ri j )

r3
i j

)
. (10)

The basis of the one-electron wave function known as the
double primitive (DP) basis can be defined as normalized
Dirac bispinors [41] embracing 2m-dimensional nirr irre-
ducible representations,

φ
(i+m)
n� jm j

= 1

r

⎛
⎝ Pn� j (r)Yκmj

−i Qn�′ j (r)Y−κmj

⎞
⎠, i = 1, 2, . . . , ix(� j),

(11)

m =
nirr∑
(� j)

ix(� j), (12)

where Pn� j (r) and Qn�′ j (r) are the upper and lower compo-
nents of the radial wave function, respectively, and Yκmj is the
usual spherical spinor in the �s j coupling scheme. In order to
set up a counterpart CI wave function suitable for relativis-

tic calculations, CSF is taken to be an eigenfunction of the
total angular momentum J2 with eigenvalue h̄2J (J + 1), ex-
pressed as a linear combination of Slater determinants, which
in turn is composed of DP basis. Hence one could obtain
equations similar to Eqs. (1) and (2), in jj-JM rather than
LS-coupling. Representation of Eq. (7) in terms of finite-size
DP basis yields an eigenvalue problem of dimension N (2m)
corresponding to complete spectrum of H , i.e., including
both positive N+(m) and negative-energy N−(m) N-particle
states,

HCi = EiCi, i = 1, 2, . . . ,N (2m). (13)

Let us denote the matrix of the no-pair Hamiltonian [42,43]
with H+ of dimension N+(m), and the corresponding energy
with E+

i . The difference between the dimensions of H and H+
is defined as N−(m),

N−(m) = N (2m) − N+(m). (14)

The interleaving theorem [44] for finite-size Hermitian
matrices yields the corollary,

E+
i � Ei+N− , i = 1, 2, . . . ,N+. (15)

Hence, the eigenvalues Ei+N− of the full and invariant repre-
sentation of H are an upper bound to the eigenvalues E+

i of the
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TABLE II. LS terms of P+(3s23p2), P(3s23p3), and P−(3s23p4) species expressed in terms of j j-configuration, number of negative and
positive-energy states, target eigenvalue, and STO basis sets per orbital symmetry.

Species Term J Configuration N− N+ Target eigenvalue STO set

P+ 3P 0 (3s23p2 + 3s23P2) 6643 1932 N− + 1 11s 9p 9P 7d 7D 5 f 5F
1 (3s23p3P) 8710 2509 N− + 1 11s 9p 9P 7d 7D 5 f 5F
2 (3s23P2 + 3s23p3P) 11 446 3391 N− + 1 11s 9p 9P 7d 7D 5 f 5F

1D 2 (3s23P2 + 3s23p3P) 11 446 3391 N− + 2 11s 9p 9P 7d 7D 5 f 5F
1S 0 (3s23p2 + 3s23P2) 6643 1932 N− + 2 11s 9p 9P 7d 7D 5 f 5F

P 4S◦ 3/2 (3s23P3 + 3s23p 3P2 + 3s23p23P) 31 105 8949 N− + 1 11s 9p 9P 7d 7D 5 f 5F
2D◦ 3/2 (3s23P3 + 3s23p 3P2 + 3s23p23P) 31 105 8949 N− + 2 11s 9p 9P 7d 7D 5 f 5F

5/2 (3s23p 3P2) 11 886 3459 N− + 1 11s 9p 9P 7d 7D 5 f 5F
2P◦ 1/2 (3s23p 3P2) 11 117 3247 N− + 1 11s 9p 9P 7d 7D 5 f 5F

3/2 (3s23P3 + 3s23p 3P2 + 3s23p23P) 31 105 8949 N− + 3 11s 9p 9P 7d 7D 5 f 5F

P− 3P 2 (3s23p23P2 + 3s23p3P3) 48 990 14 101 N− + 1 9s 9p 9P 7d 7D 6 f 6F
1 (3s23p3P3) 13 263 3855 N− + 1 9s 9p 9P 7d 7D 6 f 6F
0 (3s23P4 + 3s23p23P2) 14 500 4179 N− + 1 9s 9p 9P 7d 7D 6 f 6F

1D 2 (3s23p23P2 + 3s23p3P3) 48 990 14 101 N− + 2 9s 9p 9P 7d 7D 6 f 6F
1S 0 (3s23P4 + 3s23p23P2) 14 500 4179 N− + 2 9s 9p 9P 7d 7D 6 f 6F

corresponding no-pair Hamiltonian H+. Thus, Eq. (13) can be
rewritten as a sets of the two-eigenvalue problem,

HC j = EjC j, j = 1, 2, . . . ,N−, (16)

HCN−+i = EN−+iCN−+i, i = 1, 2, . . . ,N+. (17)

Solutions of Eq. (17) are stable upon any variations. Thus,
only after jumping over the lower N− eigensolutions of
Eq. (16) do we find a genuine variational theorem valid for the
remaining higher-lying eigenvalues encompassing the ground
and all excited eigenstates, all of them with positive energies
EN−+i which are an upper bounds to the eigenvalues E+

i . In
nonrelativistic calculations, the HF wave function is made up
of a single LS-coupling configuration. However, in relativistic
calculations the wave function should be j j-coupling. Thus, a
linear combination of several j j-coupling configurations may
be required to represent a single LS-coupling configuration.
In this work, the upper component of the radial functions Pn� j

of the Dirac bispinor is chosen to be a linear combination of
generalized Dirac-STOs [34],

Pn� j (r) =
∑

k

ank� j r (γ+nk� j−1)e(−ξk� j r), (18)

where γ = [κ2 − (αZ )2]1/2 � 1
2 , viz., Z � 118, and both

ank� j and ξk� j are taken from the corresponding STO basis
optimized up to � = 3 at the nonrelativistic SD excitation
level. The generalized Dirac-STO basis set is used to ex-
tract positive-energy natural orbitals at the valence relativistic
CISD level of approximation. Later we use this to perform
relativistic CI valence calculation up to the SDTQ(QnSe) level
of approximation. Table II displays the j j-multireference
configuration for the states under consideration, number of
negative and positive-energy states, target eigenvalue, and the
number of STOs per each orbital symmetry. For instance,
the present basis set (11s 9p 9P 7d 7D 5 f 5F ) of the sub-
level J = 0 belongs to the 3P term of P+, yields N+ = 1932
positive-energy state, and N− = 6643 negative-energy state;
thus the first (ground) bound state is the target eigenvalue

of order 6644. The second (first excited) bound J = 0 state
corresponding to the 1S term is the target eigenvalue of or-
der 6645. In Table II upper and lower case letters are for
j = � + 1/2 and j = � − 1/2 orbitals, respectively. Note that
the reported calculations use point nucleus and speed of light
c = 137.03599976(50).

IV. RESULTS AND DISCUSSION

A. Excitation energies of the 1D and 1S states of P+(3s23p2)

In Table III we list different contributions of nonrelativistic
CI energies of VV, CC, and CV, in addition to relativistic
differential energy contribution (�R) for the states 3P, 1D, and
1S of P+(3s23p2). The contributions to the excitation energies
EE(1D-3P) and EE(1S-3P) are illustrated with systematically
increasing of excitation level up to SDTQ. The results of
numerical HF [45] are added up for comparison with our
corresponding finite basis set HF. At the Hartree-Fock level
of approximation, a large discrepancy is seen between theory
and experiment of 2440 cm−1 and 6295 cm−1 for EE(1D0-3P0)
and EE(1S0-3P0), respectively. As seen in Table III, more and
more VV correlation is included progressively when going
from the SD to SDTQ excitation level. The nonrelativistic CI
energy given in Eq. (4) has been estimated at the SDTQ level
for VV calculation, lying both 1D and 1S at 8622(1) cm−1 and
21 341(1) cm−1, respectively, with respect to 3P. However,
VV calculations still yield EEs less than the experiment by
roughly 250 cm−1 and 230 cm−1 for both EE(1D-3P) and
EE(1S-3P), respectively. The differential CI energy contribu-
tions of both CC and CV correlations have been estimated
as the difference between the nonrelativistic CI energies for
each of SD, SDT, and SDTQ levels with respect to the
HF energy associated with each term. As shown in Table III,
the CC correlation contributions are negative for EE(1D-3P),
i.e., smaller EE, and positive for EE(1S-3P). When going from
SD up to the SDTQ excitation level, the CC contribution
exhibited maximum change of −7 cm−1 and 31 cm−1 for both
EE(1D-3P) and EE(1S-3P), respectively. In contrast to CC
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TABLE III. Nonrelativistic CI energy contributions of VV correlation, differential CI energy contributions of both CC and CV correlations,
and differential relativistic CI energy contributions �R (in hartrees) of 3P, 1D, and 1S states in P+(3s23p2), with systematic increase of
excitation level, and the corresponding excitation energies, EE (in cm−1).

Correlation Approximation 3P 1D 1S EE(1D-3P) EE(1S-3P)

HF −340.349774114 −340.298188461 −340.222785416 11 321.742 27 870.798
Numerical HF −340.34977577 −340.29818989 −340.22278732 11 321.792 27 870.743

VV CISD −340.443810825 −340.404301644 −340.346649834 8671.263 21 324.373
CISDT −340.445339411 −340.406026918 −340.347664765 8628.095 21 437.107
CISDTQ −340.445514965 −340.406228859 −340.348281107 8622.304 21 340.365
Enr −340.445560108 −340.406275202 −340.348322129 8622(1) 21 341(1)

CCa CISD −0.378087333 −0.378520785 −0.377675691 −95.132 90.345
CISDT −0.378618889 −0.379068289 −0.378310773 −98.632 67.623
CISDTQ −0.378866810 −0.379324425 −0.378571553 −100.435 64.801
�E nr

cc −0.378943023 −0.379405786 −0.378664580 −102(3) 61(3)

CVa CISD −0.049340124 −0.049188872 −0.048909855 33.196 94.433
CISDT −0.049509987 −0.049398745 −0.049121165 24.415 85.337
CISDTQ −0.049595021 −0.049517326 −0.049248040 17.052 76.154
�E nr

cv −0.049635152 −0.049561428 −0.049301554 16(2) 73(2)

�R DHFa −0.847706925 −0.846109348 −0.844137207 350.628 783.463
CISDb −0.847438232 −0.846304000 −0.846324147 248.935 244.513
CISDTc −0.847923331 −0.846362427 −0.847398365 342.579 115.217
CISDTQd −0.847923575 −0.846357118 −0.847458477 343.798 102.077
�Er −0.847923575 −0.846357118 −0.847458477 344(3) 102(3)

Predicted 8880(9) 21 577(9)
Experimente 8882.31 21 575.63

aThe corresponding energies can be calculated by adding the respective HF energy.
bThe corresponding energies can be calculated by adding the respective nonrelativistic CISD energy.
cThe corresponding energies can be calculated by adding the respective nonrelativistic CISDT energy.
dThe corresponding energies can be calculated by adding the respective nonrelativistic CISDTQ energy.
eRef. [5].

correlation, the CV correlation shows positive contributions to
both EE(1D-3P) and EE(1S-3P). Moreover, when going from
SD up to SDTQ excitation, both EE(1D-3P) and EE(1S-3P)
display a maximum change of 17 cm−1 and 21 cm−1, re-
spectively. However, both CC and CV contributions to each
of EE(1D-3P) and EE(1S-3P) show a decrease with respect
to the excitation level. The extrapolated nonrelativistic energy
limit for CC and CV have been estimated, and the correspond-
ing differential energy contributions are labeled as �Enr

cc and
�Enr

cv , respectively. Even with CC and CV contributions taken
into account, the nonrelativistic theory is not always sufficient
to achieve better agreement with the experiment. Relativistic
effects are expected to be rigorous. According to spectro-
scopic data [5], the term 3P has two states with J = 1 and J =
2 that appear, respectively, at 164.90 cm−1 and 469.12 cm−1

above that with J = 0, so that J = 0, the lowest state, defines
the reference state of P+(3s23p2). The �R, are obtained as
the difference between relativistic CI valence energy and the
corresponding nonrelativistic CI energy calculated at the va-
lence level of approximation. For instance, the result of �R
at CISD level of calculation of the 3P state is obtained as
the difference between the relativistic CISD valence energy
of the lowest level (J = 0) calculated with a basis set of 11s
9p 9P 7d 7D 5 f 5F and the corresponding nonrelativistic
CISD of VV calculation with a basis set of 11s 9p 7d 5 f . The
term DHF represents the differential energy contribution of

the self-consistent multireference Dirac-Hartree-Fock, while
the term �Er represents the relativistic correction up to higher
excitation level of the valence calculation rounded to zero
decimal places. The predicted EEs were obtained by adding
both final differential contributions �Enr

cc and �Enr
cv of CC

and CV, respectively, as well as �Er , together with the corre-
sponding VV energy contribution. The predicted EE(1D-3P)
and EE(1S-3P) became 8880(9) cm−1 and 21 577(9) cm−1,
respectively, which are in excellent agreement with the most
accurate experimental data of Martin et al. [5]. The estimated
accuracy are given within parentheses.

B. Excitation energies of the 2D◦ and 2P◦ states of P(3s23p3)

As in Table III, in Table IV we summarize our calcu-
lated CI energies for 4S◦, 2D◦, and 2P◦ states in P(3s23p3),
and their corresponding contributions to both EE(2D◦-4S◦)
and EE(2P◦-4S◦). In VV calculations, both EE(2D◦-4S◦) and
EE(2P◦-4S◦) have their maximum contributions at SD excita-
tion level and gradually decreases toward SDTQQn excitation.
The EE(2D◦-4S◦) obtained at the VV level up to SDTQQn
is 11 365(1) cm−1 and shows satisfactory agreement with
experiment. However, the calculated EE(2P◦-4S◦) is less than
the experiment by 95 cm−1. The effect of both CC and CV
correlation display a negative contribution to EE(2D◦-4S◦) and
stabilized at −59(4) cm−1 and −49(2) cm−1, respectively.
Similarly, the CC and CV contributions to EE(2P◦-4S◦) are
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TABLE IV. Nonrelativistic CI energy contributions of VV correlation, differential CI energy contributions of both CC and CV correlations,
and differential relativistic CI energy contributions �R (in hartrees) of 4S◦, 2D◦, and 2P◦ states in P(3s23p3), with systematic increase of
excitation level, and the corresponding excitation energies, EE (in cm−1).

Correlation Approximation 4S◦ 2D◦ 2P◦ EE(2D◦-4S◦) EE(2P◦-4S◦)

HF −340.718780588 −340.648869576 −340.603301824 15 343.694 25 344.659
Numerical HF −340.71878085 −340.64887043 −340.60330382 15 343.564 25 344.278

VV CISD −340.826970375 −340.774336028 −340.740120132 11 551.904 19 061.425
CISDT −340.831390261 −340.779299893 −340.744941758 11 432.514 18 973.253
CISDTQ −340.831994253 −340.780185239 −340.746848963 11 370.764 18 687.231
CISDTQQn −340.832008259 −340.780211300 −340.747128608 11 368.118 18 628.930
E nr −340.832078624 −340.780295051 −340.747216046 11 365(1) 18 625(1)

CCa CISD −0.376229512 −0.376935749 −0.376793435 −155.001 −123.767
CISDT −0.376933709 −0.377379020 −0.377415769 −97.734 −105.800
CISDTQ −0.377208282 −0.377520488 −0.377606662 −68.521 −87.434
CISDTQQn −0.377264530 −0.377554242 −0.377641641 −63.584 −82.766
�E nr

cc −0.377363268 −0.377629745 −0.377723003 −59(4) −79(4)

CVa CISD −0.050367037 −0.050726900 −0.049786446 −78.981 127.425
CISDT −0.050554944 −0.050866979 −0.050343270 −68.484 46.457
CISDTQ −0.050669276 −0.050917503 −0.050607488 −54.480 13.561
CISDTQQn −0.050711237 −0.050944327 −0.050660931 −51.157 11.041
�Enr

cv −0.050803073 −0.051025809 −0.050757502 −49(2) 10(2)

�R DHFa −0.846078551 −0.846301510 −0.846604041 −48.934 −115.332
CISDb −0.846579024 −0.847005531 −0.845318022 −93.607 276.758
CISDTc −0.846702841 −0.847045774 −0.845817755 −75.265 194.254
CISDTQd −0.846748580 −0.846285642 −0.8459345406 101.603 178.661
CISDTQQne −0.846754407 −0.846281076 −0.846005969 103.884 164.263
�Er −0.846754407 −0.846281076 −0.846005969 104(3) 164(3)

Predicted 11 361(10) 18 720(10)
Experimentf 11 361.02 18 722.71

aThe corresponding energies can be calculated by adding the respective HF energy.
bThe corresponding energies can be calculated by adding the respective nonrelativistic CISD energy.
cThe corresponding energies can be calculated by adding the respective nonrelativistic CISDT energy.
dThe corresponding energies can be calculated by adding the respective nonrelativistic CISDTQ energy.
eThe corresponding energies can be calculated by adding the respective nonrelativistic CISDTQQn energy.
fRef. [5].

stabilized at −79(4) cm−1 and 10(2) cm−1, respectively. The
contribution of relativistic effect �R is taken between the
lowest 2D◦

3/2 and 2P◦
1/2 sublevels with respect to 4S◦

3/2. A final
relativistic correction �Er is obtained at CISDTQQn level
of positive contributions of 104(3) cm−1 and 164(3) cm−1 to
both EE(2D◦ − 4S◦) and EE(2P◦ − 4S◦), respectively. When
CC and CV contributions and �Er are added together
to the VV calculations, the predicted EE(2D◦ − 4S◦) and
EE(2P◦ − 4S◦) are 11 361(10) cm−1 and 18 720(10) cm−1,
respectively, which are both in excellent agreement with the
experiment.

C. Ionization potential and electron affinity of the (3s23p3)4S◦

ground state

In Table V we listed the results of the (3s23p2) 3P state in
Table III and (3s23p3) 4S◦ state in Table IV together with the
corresponding CI energy contributions of (3s23p4) 3P state.
Table V also displays our calculated ionization potential
IP(3P-4S◦) and electron affinity EA(4S◦-3P) of (3s23p3)4S◦
ground state at different excitation levels. These are com-
pared with best previous calculated results of ionization

potential of Koga et al. [46] and electron affinity of de
Oliveira et al. [15], as well as the corresponding experi-
mental data [3,10]. The VV calculation exhibits very good
convergence to about 1 meV for the last two excitation
levels of both IP and EA, leading to excellent prediction
of EA of 748.0(1) meV at CISDTQQn(Se) with respect to
the experimental value of 746.607(10) meV [10]. However,
the calculated IP is 10 517.8(1) meV, still higher than ex-
periment by 31 meV. On the other hand, inclusion of CC
contribution reduces the calculated IP and EA at all exci-
tation levels leading to −43.0(4) meV and −25.0(4) meV,
respectively, at SDTQ(QnSe). In contrast to CC, the con-
tribution of CV is positive and leads to 32.0(3) meV and
18.0(3) meV at CISDTQ(QnSe) for IP and EA, respectively.
The relativistic correction to IP shows a negative contribution
at all excitation levels up to CISDTQ(Qn). In contrast to IP,
the relativistic correction to EA,varies between negative and
positive and then becomes stable at a relatively small value
of 2 meV. The predicted IP and EA are 10 474.8(9) meV
and 743.0(9) meV, in very good agreement with respect to
experiment of 10 486.77(03) meV [3] and 746.607(10) meV
[10], respectively.

012809-7



ADNAN YOUSIF HUSSEIN PHYSICAL REVIEW A 105, 012809 (2022)

TABLE V. Nonrelativistic CI energy contributions of VV correlation, differential CI energy contributions of both CC and CV correlations,
and differential relativistic CI energy contributions �R (in hartrees) of (3s23p2) 3P, (3s23p3) 4S◦, and (3s23p4) 3P states, with systematic
increase of excitation level, and the corresponding ionization potential IP (in meV) and ground state electron affinity EA (in meV).

Correlation Approximation E(3P) E(4S◦) E(3P) IP(3P-4S◦) EA(4S◦ − 3P)

HF −340.349774114 −340.718780588 −340.698650006 10 041.182 −547.781
Numerical HF −340.34977577 −340.71878085 −340.69887346 10 041.144 −541.708

VV CISD −340.443810825 −340.826970375 −340.845827722 10 426.307 513.135
CISDT −340.445339411 −340.831390261 −340.855476153 10 504.984 655.411

CISDTQ −340.445514965 −340.831994253 −340.859275751 10 516.642 742.368
CISDTQ(Qn) −340.832008259 −340.859418690 10 517.023 745.876

CISDTQ(QnSe) −340.859440643 746.474
Enr −340.445560108 −340.832078624 −340.859565884 10 517.8(1) 748.0(1)

CCa CISD −0.378087333 −0.376229512 −0.375143837 −50.554 −29.542
CISDT −0.378618889 −0.376933709 −0.375914241 −45.856 −27.741

CISDTQ −0.378866810 −0.377208282 −0.376133862 −45.131 −29.236
CISDTQ(Qn) −0.377264530 −0.376247235 −43.600 −27.682

CISDTQ(QnSe) −0.376332409 −25.364
�E nr

cc −0.378943023 −0.377363268 −0.376435633 −43.0(5) −25.0(5)

CVa CISD −0.049340125 −0.050367037 −0.051038683 27.944 18.276
CISDT −0.049509987 −0.050554944 −0.051193026 28.435 17.363

CISDTQ −0.049595021 −0.050669276 −0.051227633 29.232 15.193
CISDTQ(Qn) −0.050711237 −0.051344730 30.373 17.238

CISDTQ(QnSe) −0.051373141 18.011
�Enr

cv −0.049635152 −0.050803073 −0.051462368 32.0(3) 18.0(3)

�R DHFa −0.847706925 −0.846078551 −0.846201214 −56.373 3.338
CISDbb −0.847438232 −0.846579024 −0.846122736 −23.380 −12.416
CISDTc −0.847923331 −0.846702841 −0.846123580 −33.211 −15.763

CISDTQd −0.847923575 −0.846748580 −0.846584197 −31.973 −4.473
CISDTQ(Qn)e −0.846754407 −0.846796078 −31.815 1.134

CISDTQ(QnSe)f −0.846822653 1.857
�Er −0.847923575 −0.846754407 −0.846822653 −32.0(4) 2.0(4)

Predicted 10 475(1) 743(1)
Best previous calculation 9989.92g 742.64h

Experiment 10 486.77(03)i 746.607(10)j

aThe corresponding energies can be calculated by adding the respective HF energy.
bThe corresponding energies can be calculated by adding the respective nonrelativistic CISD energy.
cThe corresponding energies can be calculated by adding the respective nonrelativistic CISDT energy.
dThe corresponding energies can be calculated by adding the respective nonrelativistic CISDTQ energy.
eThe corresponding energies can be calculated by adding the respective nonrelativistic CISDTQQn energy.
fThe corresponding energies can be calculated by adding the respective nonrelativistic CISDTQQnSe energy.
gRef. [46].
hRef. [15].
iRef. [3].
jRef. [10].

D. Electron affinities of the (3s23p3)2D◦ and 2P◦ excited states

Table VI displays different energy contributions of both
2D◦ and 2P◦ states of P(3s23p3), and both 1D and 1S states of
P−(3s23p4) together with the corresponding electron affinities
EA(2D◦-1D) and EA(2P◦-1S) at different levels of excitation.
As seen in Table VI, EA(2P◦-1S) is negative at HF level,
corresponding to unbound 1S state in contrast to the corre-
sponding numerical HF result. A positive EA(2P◦-1S) is first
obtained after inclusion of SD excitation. A further significant
increase of energy contribution of VV with excitation level
up to SDTQQn(Se) gives the crucial contribution to both
EA(2D◦-1D) and EA(2P◦-1S). In general, both CC and CV

contributions exhibit relatively slow change (increasing or
decreasing) of electron affinities of both 2D◦ and 2P◦ states
with respect to the SDTQ through SDTQQnSe excitation
level. The relativistic correction at CISDTQQnSe displays a
relatively large negative contribution of −238.0(4) meV for
EA(2D◦-1D) with respect to −33.5(4) meV for EA(2P◦-1S).
The predicted values of both EA(2D◦-1D) and EA(2P◦-1S) are
1135(1) meV and 1040(1) meV, respectively. In the present
case, where no experimental data are known, we can reveal
that the binding energy of the 1D2 excited state is 1016 meV
above the ground state 3P2, and the 1S1/2 excited state is
located 1007 meV above the 1D2 excited state.
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TABLE VI. Nonrelativistic CI energy contributions of VV correlation, differential CI energy contributions of both CC and CV correlations,
and differential relativistic CI energy contributions �R (in hartrees) for (3s23p3) 2D◦, 2P◦ states, and (3s23p4) 1D, 1S states, with systematic
increase of excitation level, and the corresponding excited state electron affinities, EA1 and EA2 (in meV).

Correlation Approximation E(2D◦) E(2P◦) E(1D) E(1S) EA1 EA2

HF −340.648869576 −340.603301824 −340.659749579 −340.603233726 296.060 −1.853
Numerical HF −340.64887043 −340.60330382 −340.66006740 −340.60349728 304.685 52.643

VV CISD −340.774336028 −340.740120132 −340.814800809 −340.774044288 1101.103 923.124
CISDT −340.779299893 −340.744941758 −340.824770512 −340.779976422 1237.319 953.342
CISDTQ −340.780185239 −340.746848963 −340.828950102 −340.786034078 1326.960 1066.282
CISDTQQn −340.780211300 −340.747128608 −340.829005947 −340.786754545 1327.770 1078.277
CISDTQQn(Se) −340.829030331 −340.786804799 1328.434 1079.645
E nr −340.780295051 −340.747216046 −340.829141879 −340.786921063 1329.2(1) 1080.4(1)

CCa CISD −0.376935749 −0.376793435 −0.376853906 −0.375985644 −2.227 −21.981
CISDT −0.377379020 −0.377415769 −0.377537615 −0.376473787 4.316 −25.632
CISDTQ −0.377520488 −0.377606662 −0.378391374 −0.376756455 23.698 −23.135
CISDTQQn −0.377554242 −0.377641641 −0.378427581 −0.376788536 23.765 −23.214
CISDTQQn(Se) −0.378486506 −0.376827615 25.368 −22.150
�E nr

cc −0.377629745 −0.377723003 −0.378613647 −0.376925051 26.7(5) −21.7(5)

CVa CISD −0.050726900 −0.049786446 −0.050972071 −0.050885907 6.971 29.918
CISDT −0.050866979 −0.050343270 −0.051311212 −0.051051725 12.088 19.278
CISDTQ −0.050917503 −0.050607488 −0.051480618 −0.051187943 15.323 15.794
CISDTQQn −0.050944327 −0.050660931 −0.051555620 −0.051198447 16.634 14.626
CISDTQQn(Se) −0.051569774 −0.051223770 17.019 15.315
�E nr

cv −0.051025809 −0.050757502 −0.051646260 −0.051290134 17.0(3) 14.5(3)

�R DHFa −0.846301510 −0.846601796 −0.868107335 −0.922849652 593.367 2074.750
CISDb −0.847005531 −0.845318022 −0.841594253 −0.839103908 −147.248 −169.095
CISDTc −0.847045774 −0.845817755 −0.840893652 −0.845758157 −167.408 −1.622
CISDTQd −0.846285642 −0.845934541 −0.837570909 −0.844628673 −237.140 −35.534
CISDTQQne −0.846281076 −0.846005969 −0.837548285 −0.844853856 −237.631 −31.351
CISDTQQn(Se)f −0.837542819 −0.844813203 −237.780 −32.457
�Er −0.846281076 −0.846005969 −0.837542819 −0.844813203 −238.0(4) −33.5(4)
Predicted 1135(1) 1040(1)

1EA(2D◦-1D).
2EA(2P◦-1S).
aThe corresponding energies can be calculated by adding the respective HF energy.
bThe corresponding energies can be calculated by adding the respective nonrelativistic CISD energy.
cThe corresponding energies can be calculated by adding the respective nonrelativistic CISDT energy.
dThe corresponding energies can be calculated by adding the respective nonrelativistic CISDTQ energy.
eThe corresponding energies can be calculated by adding the respective nonrelativistic CISDTQQn energy.
fThe corresponding energies can be calculated by adding the respective CISDTQQnSe energy.

E. Theoretical fine structure splittings

In Table VII we present our relativistic energies calcu-
lated at DHF approximation and at relativistic CI valence

approximation up to SDTQ excitation level for the sublevels
3P0,1,2 in P+(3s23p2). Furthermore, Breit contributions are
analyzed by including the operator variationally. We compare

TABLE VII. Relativistic energies (in hartrees) of the sublevels 3P0,1,2 in P+(3s23p2), with systematic increase of excitation level, and the
corresponding fine structure splitting �J (in cm−1).

Approximation E(J = 0) E(J = 1) E(J = 2) �J1,0 �J2,0

DHF −341.197481039 −341.197085457 −341.195599653 86.82 412.92
CISD −341.287603133 −341.286543254 −341.285718071 232.62 413.72
CISDT −341.289471841 −341.288649775 −341.287229339 180.42 492.17
CISDTQ −341.289559479 −341.288737178 −341.287316834 180.47 492.20
CISDTQ+Breit −341.219668830 −341.218886815 −341.217546699 171.63 465.75
Experimenta 164.90 469.12

aRef. [5].
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TABLE VIII. Relativistic energies (in hartrees) of the sublevels 2D◦
3/2,5/2 and 2P◦

1/2,3/2 in P(3s23p3), with systematic increase of excitation
level, and the corresponding fine structure splittings �J (in cm−1).

Approximation J = 3/2 J = 5/2 �J5/2,3/2

DHF −341.495171086 −341.494887831 62.17
CISD −341.612778199 −341.612081768 152.85
CISDT −341.617048799 −341.616872385 38.72
CISDTQ −341.617808217 −341.617722722 18.76
CISDTQQn −341.617817149 −341.617734542 18.13
CISDTQQn+Breit −341.547967285 −341.547896814 15.47
Experimenta 15.61

Approximation J = 1/2 J = 3/2 �J3/2,1/2

DHF −341.449905865 −341.450033352
CISD −341.578378798 −341.579973022
CISDT −341.584405053 −341.584490415
CISDTQ −341.585884655 −341.585692469 42.18
CISDQQn −341.585912613 −341.585792008 26.47
CISDTQQn+Breit −341.516063827 −341.515956683 23.52
Experimenta 25.3

aRef. [5].

the calculated fine structure splitting �J1,0 (column 5) and
�J2,0 (column 6) with the available measurements [5]. Our
calculated relativistic CI energies up to CISDTQ without Breit
interaction corrections give fine structure splitting agreeing
with the experimental results within 91% to 95% for �J1,0

and �J2,0, respectively. In general, the inclusion of the Breit
contribution often raises the total absolute energy. However,
inclusion of Breit interaction shifts the agreement up to 96%
and 99% for both �J1,0 and �J2,0, respectively.

Table VIII reports in two blocks the relativistic CI valence
energies up to the CISDTQQn excitation level for the sub-
levels 2D◦

3/2,5/2 and 2P◦
1/2,3/2, in P(3s23p3), together with the

corresponding fine structure splitting �J5/2,3/2 and �J3/2,1/2,
respectively. In the upper half of Table VIII, we compare our
calculated �J5/2,3/2 of 2D◦

3/2,5/2 with the experiment. A maxi-
mum reduction of the calculated �J5/2,3/2 toward convergence
with the experiment occurs when triple excitations included
in the configuration list yield a reduction of 132 cm−1 with
respect to CISD. Also, inclusion of quadruple excitation rep-
resents the crucial effect to converge with the experiment.
Inclusion of the Breit interaction contribution at CISDTQQn
approximation yields 15.47 cm−1, which is in excellent agree-
ment with experiment. The second half of Table VIII displays
the corresponding results for 2P◦

1/2,3/2. Results of �J3/2,1/2

calculated at DHF up to the CISDT level of approximation
display negative values (blank lines) illustrating the difficulty
of getting reliable relativistic CI results for fine structure
splittings at low excitation level of valence approximation.
In contrast to 2D◦

3/2,5/2, inclusion of quintuple excitation to
the relativistic CI valence calculation of 2P◦

1/2,3/2, shows the
crucial effect to �J3/2,1/2, leading to very good agreement of
26.47 cm−1 with respect to experiment of 25.3 cm−1 [5]. Un-
fortunately, this agreement is slightly broken when including
Breit interaction, which reduces �J3/2,1/2 by about 3 cm−1.

Table IX shows the relativistic CI valence energies of
J = 2, 1, and 0 levels belonging to the 3P ground term of
P−(3s23p4), and the corresponding fine structure splittings

�J1,2 and �J0,2, calculated at different levels of approxima-
tion from DHF through CI up to the SDTQQnSe excitation
level. As seen from Table IX, there is systematic reduction
of both �J1,2 and �J0,2 contributions with the excitation
level. Our calculated relativistic CI valence energies up to
CISDTQQnSe without Breit interaction corrections give fine
structure splittings that agree with the experiment [10] within
91% to 98% for �J1,2 and �J0,2, respectively. However, in-
clusion of Breit interaction shifted the agreement to 95% and
97% for both �J1,2 and �J0,2, respectively.

V. SUMMARY AND CONCLUSIONS

We report on valence, core-core, and core-valence non-
relativistic CI calculations as well as relativistic CI valence
calculations, and their contributions to excitation energies,
ionization potential, and electron affinities of both ground
and excited states related to 4S◦, 2D◦, and 2P◦ states of
neutral phosphorus, P(3s23p3), and the 3P, 1D, and 1S
states in both P+(3s23p2) and P−(3s23p4) ions. Furthermore,
the fine structure splittings of the (3s23p2)3P0,1,2 sublevel
in P+, (3s23p3)2D◦

3/2,5/2, and 2P◦
1/2,3/2 sublevels in P and

(3s23p4)3P2,1,0 sublevel in P− are calculated within the frame-
work of relativistic CI valence approximation. The present
paper provides explicit data for the contribution of valence,
core-core, and core-valence in addition to relativistic effects
as a function of excitation level. Core-core together with core-
valence shows how much more demanding such calculations
are even though the effect from the core is dominant. Our
calculated excitation energies and ionization potential are in
very good agreement with the available experimental data.
Furthermore, the excellence of our predicted ground state
electron affinity as well as the fine structure splitting with
their corresponding experimental data provides motivation to
accept the validity of the predicted electron affinities of both
2D◦ and 2P◦ excited states in P(3s23p3).
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TABLE IX. Relativistic energies (in hartrees) of the sublevels 3P2,1,0 in P−(3s23p3), with systematic increase of excitation level, and the
corresponding fine structure splitting (in cm−1).

Approximation E(J = 2) E(J = 1) E(J = 0) �J1,2 �J0,2

DHF −341.544851220 −341.544120350 −341.543990343 160.47 188.94
CISD −341.682067533 −341.680780605 −341.680707464 282.45 298.50
CISDT −341.690135046 −341.688970875 −341.688936705 255.51 263.01
CISDTQ −341.693068985 −341.691963874 −341.691889874 242.54 258.79
CISDTQQn −341.693142287 −341.692146043 −341.691981194 218.65 254.83
CISDTQQnSe −341.693228645 −341.692317970 −341.692001315 197.68 269.37
CISDTQQnSe+Breit −341.623347419 −341.622479036 −341.622182637 190.58 255.64
Experimenta 181(2) 263(2)

aRef. [10].
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