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Characterization of the continuous transition from atomic to molecular shape
in the three-body Coulomb system
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We present an alternative, univocal characterization of the continuous transition from atomic to molecular
shape in the Coulomb system constituted by two identical particles and a third particle with the opposite charge
as the mass ratio of the particles varies. Applying a marginal-conditional exact factorization to a variationally
optimized wave function, we construct a nonadiabatic potential-energy surface for the relative motion between
the single particle and each of the identical particles in the ground state. The transition is revealed through the
evolution with the mass ratio of the topography of such a surface and of the shapes of the associated marginal and
conditional distributions. Our approach unifies and extends to the nonadiabatic regime the Born-Oppenheimer
and charge-distribution pictures of molecular shape.
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I. INTRODUCTION

At present, thanks mainly to Woolley’s early discussion,
it is widely recognized that the justification of the so-called
molecular structure hypothesis, i.e., the paradigm of modeling
an isolated molecule as a semirigid three-dimensional array
of atoms held together by chemical bonds, inherited from
the classical structural theory of chemistry, is problematic
for a fully ab initio quantum-mechanical theory of molecules
[1–17]. This problem stems from the facts that the molecular
Hamiltonian is entirely and uniquely specified just by the
masses, charges, and spins of all the constituent nuclei and
electrons, without any a priori reference to atoms, bonding,
or geometry, and that the molecular wave function must ex-
hibit the appropriate permutation symmetry for all subsets
of indistinguishable particles [1,10,12–14,17,18]. Thus, prima
facie, to recover such a classical-like description of molecular
structure, auxiliary considerations must be added to the fully
quantal treatment [1,2,4,9,10,13,14,17].

In quantum chemistry, the notion of a classical-like atomic
arrangement, commonly called the molecular shape [2,11],
is recovered from the topography of the Born-Oppenheimer
(BO) potential-energy surface (PES) [13,14], whose isolated
minima define the geometries of the nuclear frameworks of
all the isomers allowed by the molecular formula. Clearly,
this procedure does not explain the molecular shape since this
property is not derived from first principles but is, instead, in-
troduced in a semiempirical manner by presupposing that the
nuclei are distinguishable and largely localized [1,10,13,14].
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Taking for granted the BO approximation, an otherwise
first-principles method for defining atoms and their bonding
in molecules was presented by Langhoff and coworkers (see
Ref. [15] and references therein). Hence, there remains the
challenge of clarifying to what extent and under what condi-
tions the molecular shape emerges [19] in the first place from
a fully ab initio theory, which treats nuclei and electrons on
equal footing [1,2,4,6,9,10,16].

Two main viewpoints about this “molecular-structure co-
nundrum” [7,8] have been advanced. First, molecular shape
is an intrinsic property (i.e., it can be attributed to the iso-
lated system) that either arises only in nonstationary states,
in compliance with position-energy complementarity [1,2],
or emerges in a stationary state from the correlations be-
tween all the constituent particles [4,5,20,21] or originates
from the decoherence induced on the nuclei by their inter-
action with the electrons [22,23]. Second, molecular shape
is an extrinsic property; that is, it either is manifested only
when the system is considered together with its environ-
ment, as a broken-symmetry phenomenon [1,2,10], or arises
from the decoherence induced by the environment on the
entire system [24] or is actualized by the act of measure-
ment performed on the system by an observer [25]. Since
this problem is intimately related to the classical limit of
quantum mechanics, where the quantum peculiarities of par-
ticle delocalization, indistinguishability, and entanglement
disappear, and even to the measurement process, both of
which remain unclear [26,27], some authors are still pes-
simistic about the possibility of a complete bottom-up solution
[16,17,28].

This work pursues a less ambitious goal, namely, a fully
ab initio characterization of the transition from an atomlike
to moleculelike shape in an isolated system in a stationary
state without invoking any internal decoherence mechanism.
We focus on the simplest system for which the property of
molecular shape can be meaningfully ascribed, namely, three
particles interacting through Coulomb forces, with two of
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them being identical and the other one having the opposite
charge, in the nonrelativistic ground state [20,21,29].

Since, strictly speaking, the ordinary notion of shape can-
not be attributed to a quantal object [1,2,4,6–11,16,17], we
had better begin by explaining what we mean by shape in
this context. In Sec. II we make a critical assessment of a
notion commonly adopted in the literature [5,20,21,29] and
then expound, in qualitative terms, on a view that we believe
to be more appropriate in general. Then, in Sec. III A we apply
this view to the three-particle system, exploiting the marginal-
conditional exact factorization (MCEF) of the eigenfunction
introduced earlier [30].

It may be considered a disadvantage of such “pre-BO”
[31] treatment that it has no place for a PES [13,14], such
a construct being very useful as an interpretive tool. In fact, in
Ref. [30] we showed that an exact nonadiabatic PES (NAPES)
[3,32–35] can be rigorously constructed for the electrons in
the He atom and that it has interpretive power, in particu-
lar for making connections with classical structure ideas. In
Sec. III B we apply this development to the three-particle
system, which allows us to treat atoms and molecules on the
same basis, complementing and enriching the discussion on
the emergence of molecular shape.

In Sec. IV we implement our formalism for sequences of
realistic (from H− to H2

+) and model three-particle systems.
As in Refs. [20,21,36,37], we examine the evolution of the
system shape with the mass ratio of the single and double
particles, which allows us to provide an alternative, univo-
cal characterization of the transition from the atomlike to
moleculelike shape.

We close with Sec. V, where we provide concluding re-
marks and perspectives for future developments in this line of
work.

II. THE NOTION OF SHAPE FOR A QUANTAL SYSTEM

Since we can attribute the shape of a classical (macro-
scopic) object ultimately to the spatial distribution of its
constituents in three-dimensional physical space, it may seem
fitting to do the same for a quantal system [5,38]. Such a
quantity is encoded in the spatial probability density, obtained
by marginalizing, i.e., integrating over, the spin variables in
the squared modulus of the eigenfunction in the position rep-
resentation. However, if the system has N particles and their
coordinates are defined with respect to a laboratory frame, the
domain of this density will be a 3N-dimensional configuration
space. If the overall spatial translation is eliminated by a
transformation to a space-fixed frame, as usual, the domain
of this density will be a (3N − 3)-dimensional configuration
space [18].

According to García-Sucre and Bunge [5], the parti-
cle distribution in physical space can be constructed from
the one-particle marginal probability densities defined by
marginalizing the spatial probability density over the coordi-
nates of all the particles but one,

ρi(�q) =
∫ ′

d3N−6q′|�( �Q)|2, (1)

where �Q is a (3N − 3)-vector containing all the coordinates,
�q is a three-vector, and the prime indicates that the integral

is to be performed over the configuration space that excludes
the coordinates of the ith particle. Naturally, if the system
contains a subset of indistinguishable particles, their one-
particle marginal densities will be identical. The maxima of
one such density will indicate the most probable positions of
the particle in physical space. Alternatively, instead of the one-
particle marginal densities the extracule densities, which have
a similar interpretation but are defined in a different way em-
ploying a reference point, commonly the center of mass, can
be utilized [20,21,29,39]. For a state with zero total angular
momentum (S state) each maximum will actually constitute a
two-dimensional spherical shell centered at the center of mass
[20,29] due to the invariance of the Hamiltonian to overall
spatial rotation [18]. These shells, considered independently,
can provide partial information about the shape of the system.
For example, for three-particle systems Mátyus and coworkers
showed that a cut of the extracule density for the two identical
particles is sufficient to characterize the transition from the
atomic to molecular shape [20,21]. (Nevertheless, Ludeña
and coworkers demonstrated that the shape of the extracule
density depends on the reference point selected for its defi-
nition, leaving a degree of ambiguity [36,37].) The particle
distribution is then obtained with [5]

ρ(�q) =
N∑

i=1

ρi(�q), (2)

which fulfills
∫

d3qρ(�q) = N if � is normalized to 1. Ac-
cording to the analysis of García-Sucre and Bunge, the set
of maxima of this density can be taken to define the shape
of the system. In particular, for a semirigid molecule the set
of regions of high nuclear density presumably correspond to
the familiar ball-and-stick model. This view overlooks the
rotational invariance of the Hamiltonian and, with that, the
fact that the shells associated with the maxima in the one-
particle densities of several particles can strongly overlap (for
an example see Ref. [21]). This problem could be dealt with
by a transformation to a molecule-fixed frame, albeit at the
cost of considerable complication [12,18]. In any case, the
one-particle densities can have several maxima, causing all
the possible nuclear arrangements to be mixed up in the parti-
cle distribution, confounding the identification of the different
structural isomers. Hence, such a prescription does not work
in general.

A generally unambiguous concept of shape is straightfor-
ward if we return to the original spatial probability density in
(3N − 3)-dimensional configuration space [4]. The maxima
of this function will correspond to relatively likely configu-
rations. We will refer to the arrangement of such maxima in
the configuration space as the quantal shape of the system.
For simplicity, let us now focus on S states. The nuisance of
the overall rotation can be avoided by employing, from the
start, the interparticle distances as a set of internal coordi-
nates [40–43], which define a relative configuration space of
dimension dim = N (N − 1)/2, in terms of which the Hamil-
tonian is cast automatically into a form manifestly invariant to
overall translation, overall rotation, and coordinate inversion.
(The remaining symmetries of the full symmetry group of the
Hamiltonian are the permutations of the space and spin coor-
dinates within all subsets of identical particles [18].) But still,
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even for a three-particle system (dim = 3), the spatial prob-
ability density will be too complicated, making its analysis
cumbersome. Therefore, it will be convenient to marginal-
ize a chosen set of internal coordinates to obtain a reduced
probability density in a relative configuration space of lower
dimension, which is more amenable to visualization [4]. If this
set is chosen judiciously, the shape of the system can still be
characterized univocally.

For example, in the case of a molecule with Nn nuclei,
marginalization of all the electron-electron and nucleus-
electron distances from the full probability density will yield
a purely nuclear probability density in a relative configuration
subspace of dim = Nn(Nn − 1)/2. Now, the quantal molecu-
lar shape can be defined as the arrangement of the maxima of
this function in the relative nuclear configuration subspace.
Since each maximum defines a nuclear framework corre-
sponding to the classical shape of a possible structural isomer,
the quantal molecular shape comprises all the possible classi-
cal molecular shapes. (However, note that the correspondence
is not necessarily one-to-one. For one thing, if enantiomers
are possible, there will be one maximum associated with every
pair of them. Due to the invariance of the internal Hamiltonian
to coordinate inversion, the eigenfunction can be chosen to
have definite positive or negative parity. In that case, such
a maximum will correspond to the configuration of a super-
position of both enantiomers with positive or negative parity.
This issue is related to the so-called Hund’s paradox [1,27].
Furthermore, if the molecule contains indistinguishable nu-
clei, several configurations arising from the permutations of
such nuclei will correspond to one classical shape.) The form
and breadth of a maximum will contain the information about
the natures and amplitudes of the distortions (“vibrations”) of
the entire corresponding nuclear framework. This notion of
quantal molecular shape in Nn(Nn − 1)/2 relative nuclear con-
figuration subspace conforms with what Claverie and Diner
call “quantum structure” [4] and should be contrasted with the
classical structure usually depicted as a ball-and-stick cartoon,
sometimes with the balls replaced by thermal ellipsoids to
represent the anisotropic vibrations [38]. Nevertheless, the co-
nundrum of why only one of the structural or optical isomers
is observed in chemical experiments, which has elicited so
much debate in the literature [1,2,4,6–11,16,17,19,25,27,28],
still remains.

III. THE MARGINAL-CONDITIONAL EXACT
FACTORIZATION FORMALISM

A. The quantal shape of the three-particle system

Let us now specialize these ideas to our three-particle
system. We consider the charges q1 = q2 = −q3 (according
to charge conjugation invariance, it is immaterial whether
q3 is positive or negative). Thus, the masses m1 = m2 < m3

model an atomlike system, with the identical particles playing
the role of the electrons, whereas the masses m1 = m2 > m3

model a moleculelike system, with the identical particles
playing the role of the nuclei. The only symmetry of the
Hamiltonian that needs explicit consideration is the permu-
tation of the spatial and spin coordinates of particles 1 and

2. We assume that these particles are fermions, so that the
eigenfunction must be antisymmetric under this operation.

For an S state the internal coordinates are r12, r13, r23,
where ri j is the distance between particles i and j [40–43].
They determine the shape and size of the triangle defined
by the positions of the three particles and are independent,
except that they are constrained by the triangle condition
|r13 − r23| � r12 � r13 + r23. The volume element of this con-
figuration space is dV = r12r13r23dr12dr13dr23.

The eigenfunction can be written as the product of a spatial
part, �(r12, r13, r23), and a spin eigenfunction which, in turn,
is the product of a spin function for particles 1 and 2 and a
spin function for particle 3 [44]. Evidently, in this case the
marginalization of the spin variables in the probability density
amounts to working only with the spatial eigenfunction since
the spin eigenfunction is normalized. Hence, the quantal shape
of this system is encoded in the joint distribution function

D(r12, r13, r23) = r12r13r23|�(r12, r13, r23)|2 (3)

(which includes the Jacobian because it is a radial probability
density). We marginalize the distance between the identical
particles r12 to obtain a two-dimensional marginal distribu-
tion (MD) for finding particles 1 and 2 at distances r13 and
r23 from particle 3, respectively, regardless of r12 (here and
henceforth, when we speak of the probability of finding two
particles at a certain distance, we mean within an infinitesimal
neighborhood around that distance),

Dm(r13, r23) :=
∫ r13+r23

|r13−r23|
dr12r12D(r12, r13, r23). (4)

Note that if we marginalized two of the distances, we would
obtain a one-dimensional MD that obviously could not pro-
vide, by itself, information about the shape of the system.
Now, according to Bayes’s product rule, the joint distribution
can be factorized exactly as

D(r12, r13, r23) = Dm(r13, r23)Dc(r12|r13, r23), (5)

where Dc is the conditional distribution (CD) function for
finding particles 1 and 2 at a distance r12, provided they are
found at distances r13 and r23 from particle 3, respectively.
Taking into account the normalization of D,∫ ∞

0
dr13r13

∫ ∞

0
dr23r23

×
∫ r13+r23

|r13−r23|
dr12r12D(r12, r13, r23)

= 1, (6)

and imposing that Dm be normalized in the {r13, r23} configu-
ration subspace,∫ ∞

0
dr13r13

∫ ∞

0
dr23r23Dm(r13, r23) = 1, (7)

imply that Dc is locally normalized at every point of this
subspace,

∫ r13+r23

|r13−r23|
dr12r12Dc(r12|r13, r23) = 1. (8)
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When evaluated at selected points (r13, r23), the CD becomes
a one-dimensional function that can also aid in the analysis. (It
is worth mentioning that Berry and coworkers have employed
two-dimensional CDs defined in an ad hoc way by fixing the
distance between one electron and the nucleus in the joint dis-
tribution to illustrate that two-valence-electron atoms acquire
a moleculelike shape in some states [45].)

B. The nonadiabatic potential-energy surface

The structure of our nonrelativistic three-particle system in
an S state is governed by the internal Schrödinger equation
[40–43]

Ĥ�(r12, r13, r23) = E�(r12, r13, r23). (9)

In atomic units (h̄ = me = e = 1), the spin-free Hamiltonian
reads [42,43]

Ĥ = − 1

2μ12

(
∂2

∂r2
12

+ 2

r12

∂

∂r12

)
− 1

2μ13

(
∂2

∂r2
13

+ 2

r13

∂

∂r13

)
− 1

2μ23

(
∂2

∂r2
23

+ 2

r23

∂

∂r23

)
+ q1q2

r12
+ q1q3

r13
+ q2q3

r23

− 1

m1

r2
12 + r2

13 − r2
23

2r12r13

∂2

∂r12∂r13
− 1

m2

r2
23 + r2

12 − r2
13

2r23r12

∂2

∂r23∂r12
− 1

m3

r2
13 + r2

23 − r2
12

2r13r23

∂2

∂r13∂r23
, (10)

where mi and qi are the mass and charge of particle i,

1

μi j
≡ 1

mi
+ 1

m j
(11)

defines the reduced mass of particles i and j, and, naturally,
ri j = r ji. Note that the first line contains the contributions of
each particle pair to the kinetic energy and the Coulombic
potential energy, while the second line contains the kinetic
couplings between the particle pairs.

We aim at constructing a NAPES for the degrees of free-
dom included in the MD, namely, r13 and r23. The procedure
is analogous to the one presented in Ref. [30], making the
correspondences r1 → r13, r2 → r23, and r12 → r12 and using
the Hamiltonian (10) instead of the fixed-nucleus Hamilto-
nian. Hence, here, we present only the most relevant equations
and interpretations and refer the reader to Ref. [30] for further
details. Following Hunter [32], we introduce the MCEF of the
spatial eigenfunction [30]

�(r12, r13, r23) = ψ (r13, r23)χ (r12|r13, r23) (12)

by defining marginal and conditional amplitudes

ψ (r13, r23) := eiθ (r13,r23 )

×
[∫ r13+r23

|r13−r23|
dr12r12|�(r12, r13, r23)|2

]1/2

≡ eiθ (r13,r23 )〈�|�〉1/2, (13)

χ (r12|r13, r23) := �(r12, r13, r23)

ψ (r13, r23)
, (14)

where, from here onwards, angular brackets express integrals
over r12 with the Jacobian r12. The phase exp[iθ (r13, r23)],
with θ being real, is arbitrary and can be chosen to set the
symmetries of ψ and χ with respect to the exchange r13 ↔ r23

[30,34]. It can be shown that the marginal amplitude must be

a nodeless (and zeroless) function [30,46]; hence, the condi-
tional amplitude remains finite everywhere. Now we can write

Dm(r13, r23) = r13r23|ψ (r13, r23)|2, (15)

Dc(r12|r13, r23) = r12|χ (r12|r13, r23)|2, (16)

which, together with Eqs. (6)–(8), imply the normalization
conditions ∫ ∞

0
dr13r13

∫ ∞

0
dr23r23〈�|�〉 = 1, (17)

∫ ∞

0
dr13r13

∫ ∞

0
dr23r23|ψ |2 = 1, (18)

〈χ |χ〉 = 1. (19)

The local normalization of χ , Eq. (19), guarantees that the
MCEF (12) is unique, within the arbitrary phase mentioned
above [34].

To derive the equations that govern ψ and χ we apply
the variational principle, as follows. First, we set up the con-
strained functional [30,34]

F [�] ≡
∫ ∞

0
dr13r13

∫ ∞

0
dr23r23〈�|Ĥ |�〉

−
∫ ∞

0
dr13r13

∫ ∞

0
dr23r23λ(r13, r23)(〈χ |χ〉 − 1)

− ε

(∫ ∞

0
dr13r13

∫ ∞

0
dr23r23|ψ |2 − 1

)
, (20)

where the first term is the expectation value of the energy, the
second term enforces the local normalization of χ , and the
third term enforces the normalization of ψ , with λ(r13, r23)
and ε being Lagrange multipliers. Then we impose the ex-
tremization condition δF = 0, which yields [30]

[T̂13,23 + U (r13, r23)]ψ (r13, r23) = Eψ (r13, r23), (21)

�̂[ψ]χ (r12|r13, r23) = U (r13, r23)χ (r12|r13, r23), (22)

where

T̂13,23 ≡ − 1

2μ13

(
∂2

∂r2
13

+ 2

r13

∂

∂r13

)
− 1

2μ23

(
∂2

∂r2
23

+ 2

r23

∂

∂r23

)
, (23)
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�̂[ψ] ≡ Ĥ − 1

μ13

1

ψ

∂ψ

∂r13

∂

∂r13
− 1

μ23

1

ψ

∂ψ

∂r23

∂

∂r23

− 1

m1

r2
12 + r2

13 − r2
23

2r12r13

(
1

ψ

∂ψ

∂r13

∂

∂r12

)
− 1

m2

r2
12 + r2

23 − r2
13

2r12r23

(
1

ψ

∂ψ

∂r23

∂

∂r12

)

− 1

m3

r2
13 + r2

23 − r2
12

2r13r23

(
1

ψ

∂ψ

∂r23

∂

∂r13
+ 1

ψ

∂ψ

∂r13

∂

∂r23
+ ∂2ψ

∂r13∂r23

)
, (24)

and the notation �̂[ψ] indicates that this operator depends on
ψ (r13, r23). The eigenvalues E and U (r13, r23) are related to
the Lagrange multipliers and to each other by [30]

E = ε =
∫ ∞

0
dr1r1

∫ ∞

0
dr2r2λ(r13, r23), (25)

U (r13, r23) ≡ λ(r13, r23)

|ψ (r13, r23)|2 − T̂13,23ψ (r1, r2)

ψ (r13, r23)
. (26)

We have conveniently arranged Eqs. (21) and (22) to
expose their analogy with the BO vibrational and clamped-
nuclei electronic equations, respectively: r12 and {r13, r23} are
analogous to the electronic and nuclear coordinates, respec-
tively; �̂[ψ] and T̂13,23 are analogous to the clamped-nuclei
Hamiltonian and the nuclear kinetic-energy operator, respec-
tively; χ and ψ are analogous to the electronic and vibrational
eigenfunctions, respectively; and U (r13, r23) is analogous to
the BO PES, which is the sought-after NAPES. It must
be kept in mind that, due to the uniqueness of the MCEF,
there can be only one marginal (vibrational) eigenfunction
with total energy E associated with this NAPES, in con-
trast to the BO case, where the same PES can support a
number of vibrational states with different total energies.
It is very significant that our two main interpretive tools,
the MD and the NAPES, turn out to be rigorously related
by Eq. (21) together with Eq. (15). In fact, we can regard
Eq. (21) as a Schrödinger equation with potential U (r13, r23)
and eigenfunction

√
Dm(r13, r23)/r13, r23. This NAPES can

be interpreted as the effective potential acting between the
single particle and each of the two identical particles in the
mean field of the relative motion between the two identical
particles. We emphasize that such an effective potential is
exact, in contrast to the BO approximation, where to account
for nonadiabatic effects at least two PESs must be coupled.
In particular, for an atomlike system Eq. (21) has the form
of an exact central-field model, with U (r13, r23) being the
effective radial potential [30]. The definition of our NAPES
is in the same spirit as those of Hunter [32] and Gross
and coworkers [34,35], which use the full molecular Hamil-
tonian, but differs from that of Wilson [3,33], which uses
the electronic Hamiltonian. Besides their use as interpretive
tools for structural problems, Gross and coworkers have used
time-dependent NAPESs extensively for the interpretation
of coupled electron-nuclear dynamics under time-dependent
fields (see, e.g., Ref. [35]).

IV. CALCULATIONS AND DISCUSSION

We studied the atomlike-moleculelike transition of the
ground state along a sequence of systems composed of three
singly charged fermions. Such a state ought to be a singlet

(S = 0) with respect to the total spin of the two identical
particles, which implies that the spatial eigenfunction (12)
must be symmetric with respect to the exchange r13 ↔ r23.
We set θ ≡ 0, so that both ψ and χ are also symmetric [see
Eqs. (13) and (14)].

We considered the sequence of realistic, albeit most of
them are exotic, systems H− (e−e− p+), Mu− (e−e−μ+), Ps−

(e−e−e+), Mu+
2 (μ+μ+e−), H2

+ (p+ p+e−), where Ps stands
for positronium (e+e−). [Note that Ps− and Ps+

2 (e+e+e−) are
equivalent for our purposes.] He (e−e−α2+) is not included
in this sequence since the alpha particle is doubly charged.
We discussed its NAPES and distribution functions in de-
tail in Ref. [30]. Here, we make reference to this system
when it helps illuminate the discussion. Since in the sequence
(e±, μ±, p±) the mass changes too abruptly, in order to visu-
alize the transition in a smoother way we also considered a
series of model systems within a relatively narrow range of
the parameter R ≡ ms/md , where ms and md are the masses of
the single and double particles, respectively.

From a practical standpoint, solving the nonlinear system
of Eqs. (21) and (22) does not seem any easier than solving the
original Schrödinger equation (9) [47,48]. Since we use these
equations for the purposes of analysis, not to obtain solutions
of the latter, our strategy consists of extracting approximate
marginal and conditional amplitudes from a variationally op-
timized wave function using Eqs. (13) and (14) and then
evaluating the NAPES by

U (r13, r23) = 〈χ |�̂[ψ]|χ〉, (27)

in accordance with Eq. (22).
We employed the trial function of Flores-Riveros and

Rivas-Silva [49]

�(r13, r23, r12) = N (e−αr13−βr23 + e−βr13−αr23 )

× e−γ (r12−u0 )2
rl

12, (28)

where α, β, γ , u0 ∈ R+, and l ∈ Z0+ are variational param-
eters and N is the normalization factor. We selected this
simplistic trial function because it is amenable to a clear
physical interpretation. Namely, for atomlike systems the first
factor has the form of the Hylleraas unrestricted (different
orbitals for different electrons) ansatz for the two-electron
atom [40]. On the other hand, to interpret this factor for
moleculelike systems let us take α as the larger of the two
exponential parameters. Then, when α is sufficiently larger
than β so that the exponentials that contain β remain close
to 1 in the range where the accompanying exponentials con-
taining α decay to nearly zero, the function resembles the
simple linear combination of atomic orbitals–molecular or-
bital (LCAO-MO) approximation, 1s1(r13) + 1s2(r23), of the
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TABLE I. Optimized variational parameters in the trial function (28) for the realistic systems. α, β, γ , and u0 are given in atomic units.

R = ms/md α β γ β/γ u0 l

He 7294 2.20740 1.41173 0.03253 43.4 4.45774 0
H− 1836 1.07324 0.47322 0.00957 49.4 11.49397 0
Mu− 206.8 1.06758 0.46882 0.00957 49.0 11.41274 0
Ps− 1.000 0.52109 0.15209 0.00744 20.4 8.18378 0
Mu2

+ 0.004836 1.11320 0.21525 1.32386 0.16 1.76860 2
H2

+ 0.000540 1.12988 0.21672 4.87807 0.044 1.93988 2

1σg MO [44]. The second factor is a ground-state harmonic-
oscillator-type eigenfunction that describes vibrational motion
along r12 about the equilibrium distance u0. For atomlike
systems it plays the role of a Gaussian geminal correlation
factor, while for moleculelike systems it represents the har-
monic vibration of the nuclei. The third factor introduces
anharmonicity into that motion when l > 0. Moreover, the
evolution of the variational parameters with R aids in the
characterization of the transition, as follows. The overall ex-
tension of the system is controlled by β: the smaller the
value of β is, the larger the extension is. On the other
hand, the relative localization of the two identical particles
within a given system is controlled by γ : the larger γ is,
the higher the localization is. We can claim that the degree
of this localization, in comparison with the overall extension,
is indicative of the atomlike or moleculelike character of the
system since we know that the interelectronic motion in the
atom is relatively loose, whereas the internuclear motion in
the molecule is relatively rigid. Therefore, we can employ
the ratio β/γ as a diagnostic of the progress of the transi-
tion along the sequence of systems. In particular, we expect
this ratio to decrease as the system becomes more molecule-
like.

A further advantage of the trial function (28) is that all of
our calculations can be done analytically, which we achieved
with the aid of Wolfram Mathematica 12.0 [50]. Nevertheless,
the expressions are extremely formidable, so we will not show
them here.

Table I displays the optimal values of the variational pa-
rameters for the sequence of realistic systems (He is included
for comparison purposes). It is seen that for the atomic sys-
tems Mu− and H− (R � 1) α  2β, with α > 1. A common
interpretation of this relationship is that the atom has an inner
electron suffering a negative screening, which makes it more
strongly bound than the outer electron suffering a positive
screening [39,40]. On the other hand, for the molecular sys-
tems Mu2

+ and H2
+ (R � 1) α  5β, in accordance with

the LCAO-MO interpretation given above. (For H2
+, it is

pertinent to note that our results for α, β, and u0 are close
to the values α = 1.24 bohr−1, β ≡ 0, and Re = 2.00 bohrs
obtained from the simple LCAO-MO treatment [44].) Finally,
for Ps− (R = 1) α  3.4β, so this system can be expected to
be somewhat intermediate between atomic and molecular. In
addition, for systems with R > 1 or R < 1, it is found that
l = 0 or l = 2, respectively, which means that in the atomic
systems the interelectronic motion is harmonic, whereas in
the molecular systems the internuclear motion is anharmonic.
Furthermore, it is seen that along the sequence β/γ decreases

(recall that He does not belong in this sequence), as predicted
above, and that for the atomic systems β/γ � 1, whereas for
the molecular systems β/γ � 1.

Table II presents the expectation value of the energy
obtained from the trial function (28) and the “exact” nonrela-
tivistic energy for the realistic systems. The level of agreement
is sufficient for our largely qualitative analysis. Employing
more accurate trial functions (see, e.g., Ref. [29]) does not
produce any relevant qualitative changes in the features of
the NAPESs, MDs, and CDs that will be discussed below, as
demonstrated in Ref. [30] (a similar observation was made for
the extracule densities in Ref. [21]) and might instead obscure
the interpretation.

Table III shows the optimal values of the variational pa-
rameters for the sequence of model systems, characterized
by R = ms since the mass of the double particle was kept at
md = 1 atomic unit. It is observed that as R goes from 2.000
to 0.150 (a much smaller range than the one considered in
Table I), the ratio α/β goes smoothly from 3.0 to 4.6, the same
increasing trend seen in Table I, associated with the transition
from the atomlike to moleculelike shape. In addition, for the
atomlike systems (R > 1) the equilibrium “interelectronic”
distance u0 increases slightly with the mass of the “nucleus”
ms. This is due to the fact that as the nucleus becomes less
mobile, it is a little less effective at screening the electrons
from one another. On the other hand, for the moleculelike
systems (R < 1) the equilibrium “internuclear” distance u0

decreases rather strongly with the mass of the “electron” ms.
This is due to the fact that as the electron becomes less mobile,
it is more effective at binding the nuclei. Moreover, it can be
seen that across the transition β/γ decreases monotonically
(from 27.3 to 11.3), as expected from the previous discussion.

Table IV displays the expectation value of the energy for
the model systems. It is observed that as the mass of the
single particle decreases, 〈E〉 increases monotonically; that is,
the system becomes less stable. This can be attributed to the
increase in the contribution of the single particle to the kinetic
energy [see Eq. (10)].

Figure 1 shows the NAPESs for the sequence of realistic
systems, and Table II contains data about the relevant topo-
graphical features of these surfaces. It is appreciated that for
H−, Mu−, and Ps− they resemble that for He discussed in
Ref. [30]. In particular, they exhibit two perpendicular basins,
separated by a ridge along the r13 = r23 diagonal which goes
asymptotically to zero. A classical interpretation of the topog-
raphy of such a surface implies that the minima correspond to
two broken-symmetry indistinguishable equilibrium configu-
rations (so-called versions [18]) with an inner electron and an
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TABLE II. Realistic systems. Eexact is the “exact” energy (the sources of these values can be found in Ref. [49]); 〈E〉 is the energy
expectation value; Ue, U ‡, and (r13,e, r23,e) are the energy of the minima, the energy of the saddle point, and the coordinates of a minimum (the
coordinates of the other minimum are obtained by interchanging these values) in the NAPES, respectively; and (r13,m, r23,m) are the coordinates
of the maximum (r13,m = r23,m) or one of the maxima (r13,m �= r23,m; the coordinates of the other maximum are obtained by interchanging these
values) in the MD. All values are given in atomic units.

Eexact 〈E〉 Ue U ‡ r13,e, r23,e r13,m, r23,m

He −2.903 −2.902 −7.601 −7.286 0.26, 0.43 0.61, 0.61
H− −0.527 −0.525 −1.594 −0.992 0.48, 12.09 1.54, 1.54
Mu− −0.525 −0.523 −1.586 −0.986 0.49, 12.03 1.55, 1.55
Ps− −0.262 −0.260 −0.792 −0.416 0.99, 11.72 3.26, 3.31
Mu2

+ −0.585 −0.583 −3.829 −2.065 0.35, 2.20 0.76, 1.99
H2

+ −0.597 −0.596 −7.544 −4.484 0.25, 2.05 0.75, 1.71

outer electron [39,40]. The saddle point that separates the two
basins along the minimum-potential-energy path corresponds
to a symmetric configuration with the two electrons on the
same orbit. On the other hand, the NAPESs for Mu2

+ and
H2

+ exhibit two nearly parallel basins originating at relatively
narrow wells and separated by a plateau centered at the r13 =
r23 diagonal that approaches zero asymptotically. Interest-
ingly, when the internuclear repulsion is removed from �̂ [see
Eqs. (24) and (27)], these NAPESs change very little, in con-
trast to the atomic case, where removal of the interelectronic
repulsion from �̂ causes the ridge to disappear [30]. In a clas-
sical interpretation of this topography, the minima correspond
to two versions of a broken-symmetry equilibrium configura-
tion, where one of the nuclei orbits the electron more closely
than the other. These two minima are separated by a saddle
point that corresponds to a symmetric configuration with the
two nuclei remaining at the same distance from the electron.
Evidently, for a moleculelike system this NAPES provides
explicit information about the relative motion between each
nucleus and the electron, with the internuclear motion aver-
aged out, in contrast to the customary BO potential-energy
curve, which provides explicit information about the internu-
clear motion in the mean field of the electron [44].

To envision classical motion over such a NAPES, only
trajectories with total energy 〈E〉 ( E ) are allowed. In ad-
dition, since the wave function (28) is symmetric with respect
to the exchange r13 ↔ r23, such motion must be constituted

TABLE III. Optimized variational parameters in the trial func-
tion (28) for the model systems. α, β, γ , and u0 are given in atomic
units. l = 0 in all cases.

R = ms α β γ u0

2.000 0.69797 0.23174 0.00850 8.20320
1.750 0.66546 0.21561 0.00836 8.05929
1.500 0.62658 0.19699 0.00810 8.02482
1.250 0.57969 0.17637 0.00801 7.95740
1.000 0.52109 0.15209 0.00744 8.18378
0.750 0.44661 0.12358 0.00685 8.59581
0.500 0.34870 0.08771 0.00608 9.49008
0.375 0.28541 0.07078 0.00501 11.38755
0.250 0.21056 0.04927 0.00390 14.45530
0.150 0.13915 0.03016 0.00266 19.74359

by in-phase breathings of the orbits at all times. For example,
in the atomic case a straight trajectory running along a basin
is permitted, as it corresponds to one orbit breathing along
ri3 with the other one frozen at r j3 = const. In the molecular
case, on the other hand, a straight trajectory running along
a basin involves an in-phase breathing of both orbits since
the basins run nearly along diagonals, which corresponds to a
symmetric vibrational mode. In both cases, as the total energy
lies above the saddle point (see Table II), the two versions can
actually interconvert via trajectories that cross the r13 = r23

diagonal (a so-called degenerate rearrangement [18]). In the
atomic case the asymptotic limit along a basin (r j3 = const,
ri3 → ∞) would correspond to ionization with the other elec-
tron’s orbit frozen, while in the molecular case the asymptotic
limit along a basin (r13, r23 → ∞) would correspond to a
complete breakup of the system, but these limits are, in fact,
unreachable since the state is bound.

Figure 1 also displays the corresponding MDs for the re-
alistic systems, and Fig. 2 shows the MD for the He atom for
comparison purposes. It is helpful to imagine Dm “sitting” on
U . It is seen that for He, H−, and Mu− such a distribution
is unimodal, with its maximum located on the diagonal, i.e.,
with both electrons on the same orbit, whereas for Mu2

+

TABLE IV. Model systems. 〈E〉 is the energy expectation value,
(r13,m, r23,m) are the coordinates of the maximum (r13,m = r23,m) or
one of the maxima (r13,m �= r23,m; the coordinates of the other max-
imum are obtained by interchanging these values) in the MD, and
SD is the second derivative at the maximum or at the middle point
between the two maxima of the MD cuts in Fig. 4. All values are
given in atomic units.

R = ms 〈E〉 r13,m, r23,m SD

2.000 −0.346 2.43, 2.43 −0.002059
1.750 −0.330 2.55, 2.55 −0.001446
1.500 −0.311 2.72, 2.72 −0.000821
1.250 −0.288 2.94, 2.94 −0.000320
1.000 −0.260 3.26, 3.31 0.000022
0.750 −0.223 3.39, 4.40 0.000250
0.500 −0.174 3.84, 6.47 0.000274
0.375 −0.144 4.46, 8.43 0.000170
0.250 −0.106 5.73, 11.92 0.000071
0.150 −0.070 8.39, 17.44 0.000018
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FIG. 1. NAPESs (left column) and corresponding MDs (right
column) for the realistic systems. (a) H−, (b) Mu−, (c) Ps−, (d) Mu2

+,
and (e) H2

+. All quantities are given in atomic units.

and H2
+ such a distribution is bimodal, with each maximum

located more or less on top of a well (see Table II). Hence,
the symmetry breaking implied by the NAPES topography is
frustrated in the quantal shape of the atomlike systems (that
is, there is no inner-outer separation of the electrons), while

FIG. 2. MD for the He atom. All quantities are given in atomic
units.

FIG. 3. CDs for the realistic systems evaluated at the maximum
or one of the maxima of the corresponding MD for the atomlike or
moleculelike cases, respectively.

it is manifested in the quantal shape of the moleculelike sys-
tems. (Interestingly, a similar symmetry breaking arises in a
fictitious model of He as the interelectronic repulsion is
enhanced [30].) Evidently, this symmetry breaking in the
moleculelike systems is far from sharp, in the sense that con-
figurations in which one of the nuclei orbits the electron closer
than the other are only slightly preferred over configurations
in which both nuclei are on the same orbit. The fact that the
probability of finding the electron at the same distance from
the two nuclei is less than the probability of finding it closer
to one of the nuclei is in accordance with the well-known
characteristics of the covalent bond in H2

+ [44]. In the case
of Ps−, the MD turns out to be slightly bimodal (see Table II);
that is, this system is more moleculelike than atomlike, despite
the topography of its NAPES. Moreover, the MD for Ps− is
more spread out than those of H− and Mu− since Ps− is more
weakly bound, and the MD for He is much more compact than
those for H− and Mu−, as the nucleus of the former is doubly
charged, whereas the nuclei of the latter are singly charged.
These results are in general qualitative agreement with the
behavior of the extracule densities reported in Ref. [21]. We
must point out that the symmetry breaking in the classical
structure implied by the topography of the NAPES and in
the quantal shape of the MD is topological [20], in contrast
to the symmetry breaking associated with a quantum phase
transition across a critical point in the eigenspectrum of the
system [51].

Because of the marginalization over r12, the NAPES and
MD do not provide explicit information about the correlation
between the two identical particles. This kind of informa-
tion can be retrieved from the CD (16). However, the latter
provides radial information, while it is more revealing to
examine the angular behavior. Therefore, we transformed
Dc(r12|r13, r23) into Dc(θ12|r13, r23), where θ12 is the angle
between the lines joining each of the identical particles with
the single particle, by means of the relation r12 = (r2

13 + r2
23 −

2r13r23 cos θ12)1/2. Figure 3 shows the CDs for the realistic
systems, evaluated at the maximum or one of the maxima
(r13,m, r23,m in Table II) of the corresponding MD for the
atomic or molecular cases, respectively. For the atomic sys-
tems, H− and Mu−, the CDs are almost identical and increase
monotonically from the collinear nucleus-electron-electron
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FIG. 4. Cuts of the MDs through the line perpendicular to the
diagonal (r13 = r23) and passing through the maximum or maxima
for the model systems (see Table IV). r is the distance from the
diagonal. All quantities are given in atomic units.

(θ12 = 0) configuration to the collinear electron-nucleus-
electron (θ12 = π ) configuration. The minimum at θ12 = 0
reveals the so-called Coulomb hole. The probability of finding
the electrons at zero separation is identically zero because the
MD maximum is on the r13 = r23 diagonal and hence
the Jacobian present in Eq. (16) r12 = 0 when θ12 = 0.
For the molecular systems, Mu2

+ and H2
+, the CDs have

a maximum at  90◦ and  110◦, respectively; that is, at
this point in the {r13, r23} subspace the most probable con-
figuration is bent. The probability of finding the system in
the collinear nucleus-nucleus-electron configuration (θ12 = 0)
now cannot be identically zero because the MD maxima are
off the r13 = r23 diagonal, although for H2

+ it is practically
zero. For Ps−, the CD is monotonic, albeit much flatter than
those of H− and Mu−, indicating that this system is more
delocalized, in accordance with the larger extension of its MD
(see Fig. 1). These results are in general qualitative agreement
with the angular densities reported in Ref. [21], except that
there that of Ps− appears slightly nonmonotonic, but care must
be taken with a direct comparison since those quantities and
our CDs are defined differently. In particular, the CDs shown
in Fig. 3 are evaluated at specific points of the {r13, r23} sub-
space; their behaviors at other points are different, although
not drastically [30].

In Fig. 1 the change in behavior from atomlike to molecule-
like is too sudden due to the abrupt change in the mass ratio
(see Table I). In order to visualize the transition in a smoother
fashion Fig. 4 displays cuts of the MDs through the line
perpendicular to the diagonal r13 = r23 and passing through
the single maximum (R > 1) or both maxima (R < 1) for
the series of model systems (see Table IV). It is seen that
as R = ms decreases, such a cut becomes more spread out
and that at around R = 1 it smoothly changes shape from
unimodal to bimodal. To characterize more quantitatively this
transition, we evaluated the second derivative (SD) at the
middle point of each cut since, when the curvature at this point
is negative or positive, the distribution is unimodal or bimodal,
respectively. The results are presented in Table IV and plotted
in Fig. 5, where the continuous nature of the transition from

FIG. 5. Second derivatives at the middle points of the cuts in
Fig. 4.

atomlike (R > 1, SD < 0) to moleculelike (R < 1, SD > 0)
can be clearly appreciated. The sign change occurs at R  1
(e.g., Ps−), which can be taken to mark the boundary between
the two types of behaviors. Below R ≈ 0.6 the magnitude
of SD decreases towards zero because the cuts become very
spread out.

In Fig. 6 we show the NAPESs and the full MDs for
selected model systems. According to Fig. 5, R = 2 is the
most atomlike system considered, and R = 0.65, 0.15, 0.05
are moleculelike, with R = 0.65 possessing the highest SD
value. It is appreciated how the topography of the NAPES
gradually deforms, with the basins initially being close to-
gether and perpendicular and at the end being more separated
and considerably stretched into the diagonal directions (when
making a comparison with Fig. 1, be aware of the different
scales). Correspondingly, the MD gradually becomes more
extended, with its shape at the same time changing from uni-
modal to bimodal, with the humps more clearly differentiated
and located on top of the wells in the NAPES.

V. CONCLUSIONS AND OUTLOOK

After very briefly reviewing the status of the molecular
structure conundrum [1–11,16,19,25,27] and stating our view
about the concept of shape for an isolated quantal system,
we presented an alternative characterization of the continuous
emergence of molecular shape in prototypical three-particle
Coulomb systems as a response to the variation of the particle
masses solely from the correlations between all the particles
being treated on equal footing.

Our analysis was based mainly on the behaviors of the
two-dimensional nonadiabatic potential-energy surface and
the marginal distribution of the distances between the single
particle and each of the two identical particles, constructed
rigorously by means of a marginal-conditional exact factor-
ization of a variationally optimized internal wave function.
The analysis was further aided by an examination of the
evolution of the variational parameters and the conditional
distribution of the angle defined by the two identical particles
and the single particle. The classical interpretation of the
topography of such a surface implies two broken-symmetry
indistinguishable equilibrium structures, where both identi-
cal particles move around the single particle along separate
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FIG. 6. NAPESs (left column) and corresponding MDs (right column) for selected model systems. (a) R = 2.00, (b) R = 0.65, (c) R =
0.15, and (d) R = 0.05. All quantities are given in atomic units.

orbits. Such topological symmetry breaking is frustrated in
the atomlike systems but preserved in the moleculelike ones,
as revealed by the continuous transition from the unimodal
to bimodal shape of the quantal marginal distribution. The
conditional distribution, evaluated at selected points of the
{r13, r23} subspace, turns from monotonic to nonmonotonic
with a single maximum across the transition.

The unimodal-bimodal transition has already been ob-
served in cuts of the one-particle extracule densities employed
in Refs. [20,21,29]. Our characterization has two advantages:
First, it is univocal, as it does not rely on the definition of

a reference point, in contrast to the one-particle extracule
densities, where the bimodality is lost for certain choices of
reference points [36,37]. Second, it permits a unified treatment
of atoms, molecules, and any other collection of quantum par-
ticles in terms of the potential-energy-surface concept, which
has proven to be a very powerful interpretive tool in quantum
chemistry.

For a three-particle system, three alternative marginal-
conditional factorizations are possible that will generate one
different two-dimensional nonadiabatic potential-energy sur-
face and two nonadiabatic potential-energy curves, which,
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together with their corresponding marginal and conditional
distributions, can be employed to discuss related issues of
particle correlation and the nature of the Born-Oppenheimer
approximation. In addition, hyperspherical coordinates [52]
constitute an attractive alternative to the interparticle distances
because the hyperradius R and the angles α and θ12 are directly
related to the size and the shape of the system, respectively.
These investigations are underway in our laboratory.

It has been discovered that certain doubly excited states
of two-electron atoms can be empirically modeled in terms
of collective rotational- and bendinglike motions of the elec-
trons, analogous to the rovibrational motions of a linear
ABA molecule [53] (Ref. [45] reviews this development).
In addition, it has been predicted that other doubly excited

states of two-electron atoms adopt classical-like configura-
tions with both electrons on the same side of the nucleus
(so-called frozen-planet states) [54]. Moreover, it is known
that molecules in highly excited vibrational states can become
fluxional. (For a unified review of these three aspects see
Ref. [55]). It is very desirable to develop a unified view of
these types of systems [55]. We feel that our methodology
will be capable of achieving this goal.
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