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Wigner time delay of particles elastically scattered by a cluster of zero-range potentials
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The Wigner time delay of slow particles in the process of their elastic scattering by compound targets
consisting of several centers modeled by zero-range potentials is studied. It is shown that at asymptotically
large distances from the target, the Huygens-Fresnel interference pattern formed by the spherical waves emitted
by each of the potentials is transformed into a system of spherical waves generated by the geometric center of
the target. These wave functions determine the flow of particles inward and outward through the surface of a
sphere surrounding the target. The energy derivatives of the phase shifts of these functions are the partial Wigner
time delays. General formulas, which establish a relationship between the s-phase shifts in particle scattering
from each of the zero-range potentials and the phase shift in scattering by a cluster of the potentials, have been
obtained. The clusters consisting of two, three, and four centers were considered as model targets. The centers,
equally distant from each other, were assumed to be described by the same delta-function potentials. The partial
Wigner time delays of slow particles scattered by the considered model targets were evaluated. The derived
general formulas were applied to both the processes of electron scattering by atomic clusters trapping electrons
and the processes of π -meson scattering on few-nucleon systems.
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I. INTRODUCTION

It is known that the equations of multiple scattering of
s waves from a set of fixed in space zero-range potentials
reduce to a system of ordinary algebraic equations [1]. The
problem of s waves scattering from two centers was first
addressed in Ref. [2] to verify the correctness of the im-
pulse approximation. A detailed analysis of this problem was
given by Brueckner in [3] where exact solutions of the wave
equation for s scattering of a particle from two-point scatter-
ers have been obtained. The scattering wave function ψk(r)
was presented in [3] as a combination of a plane wave and
two spherical s waves generated by the scattering centers.
The amplitudes of these spherical waves were determined
by the boundary conditions imposed on ψk(r) at the points
where the zero-range potentials of the target are centered.
The asymptotic form of the wave function ψk(r → ∞) deter-
mines the exact elastic scattering amplitude F (k, k′) in closed
form. This method of calculation of the scattering amplitude
in closed form applies to targets with larger than two delta
centers.

Due to the lack of spherical symmetry of a compound
target, the wave function ψk(r) and the scattering amplitude
F (k, k′) cannot be represented as an expansion into a series
of spherical harmonics. However, at asymptotically large dis-
tances from the target, where the target size can be neglected
in comparison with the distance to the observation point, the
pair of Huygens-Fresnel spherical waves generated by the
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point potentials transforms into a system of partial spherical
waves ϕλ(r) with the center located at the geometrical center
of the target. The phase shifts ηλ(k) in the radial parts of these
spherical waves define both the flow of particles inward and
outward through the surface of a sphere surrounding the target
and the particle capture time in the scattering process.

The concepts of time delay and capture time of elastically
colliding particles as quantum dynamical observables known
as EWS time delay were originally introduced by Eisenbud,
Wigner, and Smith in [4–6], respectively. The application
of this scattering characteristic ranges from atomic [7–9] to
nuclear physics, where it is applied in studies of meson and
baryon unstable states [10–12]. The EWS time delay τ (E ) in
particle collisions is defined by the energy E derivative of the
scattering phase shift δ(E ):

τ (E ) = 2h̄
dδ(E )

dE
. (1)

Note that the scattering phase shifts δ(E ) in Eq. (1) are real
for elastically colliding particles.

To calculate the EWS time delay (1) for a particle colliding
with a set of identical zero-range potentials it is necessary
to establish a relationship between the phase shifts δ0(E ) for
the particle scattered from an isolated delta potential and the
phase shift η(E ) for scattering from a multicenter target. One
way of doing it is by using the scattering amplitude function
F (k, k′). This approach was implemented in [13], where the
EWS time delay of slow electrons colliding with a pair of
atoms in the model of nonoverlapping atomic spheres was
calculated. Extension of the approach to three or more centers
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in the target and obtaining the phase shifts η(E ) from the
phase shift δ0(E ), making use of the scattering amplitude
F (k, k′), becomes very complicated.

Demkov and Rudakov in [14] developed a partial wave
method for a nonspherical scatterer that generalizes the
conventional phase method for the spherically symmetric
problem. They formulated variational principles that make it
possible to calculate the above-mentioned partial waves ϕλ(r)
and their phase shifts ηλ(k) by a direct approach without
obtaining the scattering amplitude F (k, k′) in closed form.
It was shown that for the case, when the scatterer can be
represented as a set of N zero-range potentials, the problem
reduces to a purely algebraic one, namely, to inversion of an
Nth-order matrix.

In the present paper, making use of the general formulas
developed in [13–15], we investigate particle scattering from
targets consisting of two, three, and four centers modeled by
zero-range potentials. The outline of our paper is as follows:
In Sec. II, using a simple example of s-wave scattering by a
pair of zero-range potentials, we look upon the transformation
of the diffraction pattern at large distances from the target. In
Sec. III, we derive the general formulas relating the scattering
phase shifts for an isolated delta potential δ0(E ) to the scatter-
ing phase shifts ηλ(k) for targets consisting of two, three, and
four centers. The derived formulas are applied to both electron
scattering by atomic clusters trapping an electron (Sec. IV)
and calculation of the EWS time delays of π mesons scat-
tered by few-nucleon systems (Sec. V). Section VI presents
conclusions.

II. TRANSFORMATION OF THE DIFFRACTION PATTERN

Let us consider s-wave scattering from a pair of zero-radius
potentials separated by distance R (Fig. 1). Suppose the scat-
tering phase shift on each of them is δ0(k). The total amplitude
of the spherical Huygens waves formed in the process of
incident wave scattering from this axially symmetric target at
a point spaced at a distance r from its geometric center is

J (θ ) ∝ 1

kr1
sin(kr1 + δ0) + 1

kr2
sin(kr2 + δ0). (2)

Here the radii r1 and r2 are

r2
1 = R2

4
+ r2 − Rr cos θ, r2

2 = R2

4
+ r2 + Rr cos θ,

where θ is the angle between vectors R/2 and r. The function
J (θ ) is shown in Fig. 2. The curves in Fig. 2 represent the
diffraction pattern profile along a circle with radius r. The
amplitude of the alternating function J(θ ) rapidly decreases
to zero with increasing r/R; that is, the crests of a pair of
Huygens waves are transformed into crests of the spherical
waves generated by the center of the target. The phase shifts of
the radial parts of these waves η(k) determine the cross section
for elastic scattering of a particle from a target formed by a
pair of delta potentials. The formulas connecting the phases
δ0(k) and η(k) are obtained in the next section.

FIG. 1. The s-wave scattering by a pair of zero-range potentials
separated by distance R; r is the position of an arbitrary observation
point.

III. PHASE SHIFTS ηλ(k) FOR PARTICLE SCATTERING
ON COMPOUND TARGETS

According to [14], for the case when the scatterer can
be represented as a superposition of N short-range potentials
centered at points R j , the solution of the scattering problem
is obtained by imposing boundary conditions at these points
(the same as in [3]) on the following partial functions:

ϕλ(r) =
N∑

j=1

Dj
sin (k|r − R j | + ηλ)

|r − R j | , (3)

where k is the particle linear momentum relative to the target.
As a result, we obtain a system of homogeneous equations,
the solution of which determines the set of phase shifts ηλ(k).
Imposing the boundary conditions [15]

ϕλ(r)r→R j ≈ Cj

[
1

|r − R j | + k cot δ0

]
(4)

at the positions R j of N identical zero-range potentials, repre-
senting a target on the wave functions (3), leads to a system of
N homogeneous linear equations for the unknown coefficients
D1, D2 · · · DN .
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FIG. 2. The function J(θ ) as the diffraction pattern profile along
the circle with radius r (dashed curve in Fig. 1).

A. Scattering on a two-center target

The system of equations for a two-center target reads

D1k(cot η − cot δ0) + D2[Ima cot η + Rea] = 0,

D1[Ima cot η + Rea] + D2k(cot η − cot δ0) = 0,
(5)

where a = exp(ikR)/R and R is the distance between the
centers. In the system of equations (5) the number of equations
is equal to the number of the unknowns. Therefore, this system
has a nontrivial solution if and only if its determinant equals
zero: ∥∥∥∥B A

A B

∥∥∥∥ = (A2 − B2) = 0. (6)

Here A = sin(kR + η)/R and B = k(cos η− sin η cot δ0).
Solving (6) for η0(k) we obtain for the case A + B = 0, the
phase shift for particle-target scattering:

cot η0(k) = kR cot δ0(E ) − cos kR

kR + sin kR
. (7)

For the case A–B = 0, the second phase shift reads

cot η1(k) = kR cot δ0(E ) + cos kR

kR − sin kR
. (8)

The phase shifts ηλ(k) in (7) and (8) can be classified by
considering their behavior at k → 0 [14,15]. In this limit,
the particle wavelength λ̄ = 1/k is much greater than the
target size, and the scattering picture should approach a
spherically symmetric one. From Eqs. (7) and (8), we obtain
the asymptotic behavior η0(k → 0) ∼ k and η1(k → 0) ∼ k3,

correspondingly. Thus, the phase shifts (7) and (8) at k → 0
behave similarly to the s- and p-phase shifts in a spherically
symmetric potential. This fact explains the choice of their
indices.

Substituting the zero partial phase η0(k) into Eq. (5), we
obtain the equality D1 − D2 = 0 for the coefficients at the two
first wave functions given by Eq. (3). In the limit r → ∞, we
obtain the following expression for the partial wave ϕ0(r) in
(3):

ϕ0(r → ∞)

∝ D1

[
sin (k|r − R1| + η0)

|r − R1| + sin (k|r − R2| + η0)

|r − R2|
]

r→∞

= 2D1 cos(k′ · R/2)

[
1

r
sin(kr + η0)

]
r→∞

, (9)

where R1 = R/2 and R2 = −R/2; R defines the position
of the target axis in space and vector k′ is particle linear
momentum after scattering.

Repeating the same procedure for the phase shift η1(k), we
obtain the equality D1 + D2 = 0 and the following asymptotic
form for the second partial wave ϕ1(r):

ϕ1(r → ∞)

∝ D1

[
sin (k|r − R1| + η1)

|r − R1| − sin (k|r − R2| + η1)

|r − R2|
]

r→∞

= −2D1 sin(k′ · R/2)

[
1

r
sin

(
kr + π

2
+ η1

)]
r→∞

. (10)

The asymptotic expressions for the radial parts of these
functions (in square brackets) coincide with the asymptotic
behavior of the spherical s and p waves emitted from the
geometrical center of the target, whereas the angle-dependent
coefficients before the square brackets, functions Z0(k′) and
Z1(k′), are analogs of the spherical harmonics. The wave
function of a particle colliding with a nonspherical target
is to be expanded into the Zλ functions. For further details,
see [13], where the explicit expressions for these functions
were obtained. Normalized to the particle unit flow inward
and outward through the surface of a sphere surrounding the
target, the radial parts of the functions (9) and (10) determine
(according to [6]) the EWS time delay of slow particles scat-
tered by the target. In this case, the partial time delays of a
particle scattered by a two-center target are determined by
Eq. (1), in which the scattering phase shift on an individual
center is replaced by the phase shifts η0,1 in (9) and (10).

B. Scattering on a three-center target

Imposing the boundary conditions (4) on the wave func-
tions (3) with N = 3 leads to the following homogeneous
system of linear equations for the mixture coefficients D1, D2,
and D3:

D1k(cot η − cot δ0) + D2(Ima12 cot η + Rea12)

+ D3(Ima13 cot η + Rea13) = 0,

D1(Ima21 cot η + Rea21) + D2k(cot η − cot δ0)

+ D3(Ima23 cot η + Rea23) = 0,
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D1(Ima31 cot η + Rea31) + D2(Ima32 cot η + Rea32)

+ D3k(cot η − cot δ0) = 0. (11)

The following notation is introduced here: ai j =
exp(ikRi j )/Ri j and Ri j = |Ri − R j |. Suppose the delta
centers in the target are located at the vertices of an equilateral
triangle. The side length of the triangle equals the distance
between the centers in the two-center target R = Ri j . The
system of equations (11) has a nontrivial solution if its
determinant equals zero:∥∥∥∥∥∥

B A A
A B A
A A B

∥∥∥∥∥∥ = (A − B)2(2A + B) = 0. (12)

From Eq. (12), we obtain three phase shifts of a particle
scattered from the three-center target. The first of them reads

cot η0(k) = kR cot δ0(E ) − 2 cos kR

kR + 2 sin kR
, (13)

while the second and third are identical:

cot η(1,2)
1 (k) = kR cot δ0(E ) + cos kR

kR − sin kR
. (14)

The last two phases (14) coincide with the phase (8) ob-
tained above for a two-center target.

C. Scattering on a four-center target

Let us consider a four-center target, in which the zero-
range potentials are centered at the vertices of a tetrahedron.
The side length of the tetrahedron equals R as before. The
model targets discussed in Sec. III exhaust all possible config-
urations, in which all center-to-center distances are the same.
Imposing the boundary conditions (4) on the wave functions
(3) with N = 4, we obtain the following equation for the phase
shifts: ∥∥∥∥∥∥∥

B A A A
A B A A
A A B A
A A A B

∥∥∥∥∥∥∥
= (A − B)3(3A + B) = 0. (15)

Solving Eq. (15), we obtain four phase shifts for particles
scattered by a four-center target. The first of them reads

cot η0(k) = kR cot δ0(E ) − 3 cos kR

kR + 3 sin kR
, (16)

and the other three are the same:

cot η(1,2,3)
1 (k) = kR cot δ0(E ) + cos kR

kR − sin kR
. (17)

For all considered targets, only phase shifts η0(k) [Eqs. (7),
(13), and (16)] are different, while the phase shifts with λ = 1
are all the same. At first glance, this is explained by the
equidistant positions of the identical scattering centers, that
is, by the same boundary conditions imposed on the wave
function. Such an idealized design of the considered targets
makes it possible to obtain compact solutions of the problem
of particle scattering by these nonspherical targets.

In the following sections, we apply the derived formulas for
phase shifts to calculate both the cross sections of elastic scat-
tering and EWS time delays of particles scattered by model
targets. The zero-range potential approximation is widely
used in the description of scattering in both atomic and nu-
clear physics. According to [15], making use of a zero-range
potential is the simplest and most natural way in studying the
multiple scattering of an electron from a molecule. The next
section generalizes the results obtained in [13] by considering
quantum mechanical scattering of slow electrons by atomic
clusters and EWS time delay in this process.

IV. ELECTRON ELASTICALLY SCATTERED BY A
CLUSTER OF ATOMS

In this section, we use the atomic system of units (a.u.).
The average effective cross section σ̄ (k) of particles elasti-
cally scattered by a nonspherical target, that is, the total cross
section integrated over all the angles between the vectors k′
and k followed by averaging over all directions of the vector k
in the target reference frame, is determined by the expression
[14]

σ̄ (k) = 4π

k2

∑
λ

sin2ηλ(k). (18)

Here ηλ(k) are the phase shifts obtained above. The index
λ used to number the phase shifts for nonspherical targets,
in the spherically symmetric case, should be replaced by two
indices: l and m. Summation over the magnetic quantum
numbers m leads to the appearance of the factor (2l + 1) in
front of sine in Eq. (18). Then summation is conducted over
the orbital angular momentum l only.

For a two-atom cluster, the average effective cross section
σ̄ (k) has the form

σ̄2(k) = 4π

k2
[sin2η0 + sin2η1]

= 4π

k2
[(1 + cot2η0)

−1 + (1 + cot2η1)
−1

]. (19)

The phase shifts here are determined by Eqs. (7) and (8).
For a three-atom cluster with the phase shifts (13) and (14),

the average cross section is given by the expression

σ̄3(k) = 4π

k2

[
sin2η0 + 2sin2η

(1,2)
1

]

= 4π

k2

[
(1 + cot2η0)

−1 + 2
(
1 + cot2η

(1,2)
1

)−1]
. (20)

The factor of 2 in front of the second term in Eq. (20)
appears since two out of the three scattering phases in (14)
are the same.

For a four-atom target with the phase shifts (16) and (17),
the cross section becomes

σ̄4(k) = 4π

k2

[
sin2η0 + 3sin2η

(1,2)
1

]

= 4π

k2

[
(1 + cot2η0)

−1 + 3
(
1 + cot2η

(1,2)
1

)−1]
. (21)

The factor of 3 in front of the second terms in Eq. (21)
appears due to the multiplicity of 3 of the phase shifts with
λ = 1.
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FIG. 3. The average effective cross section σ̄ (E ) for a particle
elastically scattered by targets with one, two, three, and four delta
centers.

Equations (20) and (21) generalize the results presented in
[13], where the electron scattering cross sections for a cluster
with two carbon atoms were calculated. We assume that the
interatomic distances R in all targets are equal. As a specific
value of R, we chose that to be the distance between carbon
atoms in a molecule C2, namely, R = 2.479 atomic units (a.u.)
(as in [13]). In calculations of phase shifts ηλ(k) (as in [13]),
the phase shift δ0(k) is evaluated as δ0(k) = 2π−1.912k [16].
The results of numerical calculations of the electron scattering
cross sections by multicenter targets are shown in Fig. 3,
where the electron s-scattering cross sections for a single
carbon atom are also presented for comparison. As expected,
the curve for a two-center target, calculated with Eq. (19),
coincides with that obtained in [13] with the optical theorem
[17].

The partial EWS time delay τλ(E ) in electron-target col-
lisions is expressed in terms of the energy derivative of the
scattering phase shift ηλ(E ) [Eq. (1)]. According to the for-
mulas derived above, there are three distinct scattering phase
shifts with λ = 0 given by Eqs. (7), (13), and (16). Another
scattering phase shift with λ = 1 is given by Eq. (8). Numeri-
cal results for partial EWS time delays with these phase shifts
are given in Fig. 4. The curves corresponding to λ = 0 tend
to −∞ as E → 0, while the curve for λ = 1 vanishes in this
limit. All the curves oscillate around the curve that represents
the EWS time delay for a single carbon atom. The curves form
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FIG. 4. The partial EWS time delays of electrons τλ(E ) (in units
of τAt = 2.419 × 10−17 s) in electron collisions with the compound
targets.

a node at electron energy E ≈ 2.75 a.u. Analysis shows that
ηλ(E ) = π/2 in the vicinity of this energy. Oscillations of the
curves are associated with the diffraction terms sin kR/kR and
cos kR/kR in the formulas for the scattering phase shifts. All
the time delays in Fig. 4 are negative. This is understandable
since the considered scattering does not have resonance fea-
tures. A big positive peak can be expected in the vicinity of a
resonance. Indeed, let us assume that the phase δ0(E ) in the
single-center case has an additional term:

δres(E ) ∼= tan−1

[
�/2

Eres − E

]
. (22)

It gives a Breit-Wigner addition to the EWS time delay,
namely,

�
dδ

dE
= �

2

1

(Eres − E )2 + �2/4
. (23)

We discuss the resonance behavior of the scattering phase
shift in the next section.

V. MESON ELASTIC SCATTERING FROM A
FEW-NUCLEON SYSTEM

The zero-range potential model is also widely used to de-
scribe scattering in nuclear physics. For example, it is applied
for multiple scattering of π mesons by nucleons, and scat-
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FIG. 5. The ratios of cross sections σ̄D(k)/2σ0(k) calculated with
formula (19) (solid lines), and σ̄T (k)/3σ0(k) calculated with for-
mula (20) (dashed lines). The meson-nucleon cross section σ0 =
(4π/k2)sin2δ0.

tering of neutrons by nuclei in molecules or crystals [1–3].
We develop the results presented in [3] for the scattering of
slow mesons by two-, three-, and four-nucleon systems and
calculate the corresponding EWS time delays. In this section,
the meson energy is measured in MeV and the time delay in
units of τNuc = h̄/MeV = 6.582 × 10−22 s.

The internucleon distances in all considered targets are
assumed to be equal to the mean internucleon distance in a
deuteron, R = 2.142 fm [18]. The scattering phase shifts of
a meson on an isolated proton and neutron are assumed to
be the same and equal, δ0(E ). Let us apply Eqs. (19)–(21)
for calculation of the cross sections for elastic scattering of
mesons by targets consisting of two, three, and four nucleons
in the zero-range potential model. We assume (as in [3]) the
phase shift δ0(E ) for the case of meson s scattering on an
isolated nucleon to be fixed in Eqs. (7), (8), (13), and (16).
Calculations of the cross sections σ̄D(k) [using Eq. (19)] and
σ̄T (k) [using Eq. (20)] are conducted for δ0(E ) = 20◦, 30 °, or
45 °. The ratios of these cross sections to 2σ0(k) and 3σ0(k),
respectively [σ0 = (4π/k2)sin2δ0 is the meson-nucleon cross
section] are depicted in Fig. 5. As in the case of the deuteron
[3], the processes of multiple scattering of mesons on a triton
essentially contribute to the total scattering cross section at
δ0(k) less than 45 °. After elementary manipulations, one can

show that Eq. (19) coincides with Eq. (5) in [3], obtained using
the optical theorem [17]. The curves for the deuteron in Fig. 5,
therefore, coincide with the curves in Fig. 1 in [3]. Numerical
calculations of the effective cross sections for a four-nucleon
target (21) lead to curves similar to those shown in Fig. 5 for
a deuteron and triton. They are not shown in Fig. 5 to avoid
overloading the picture.

The EWS time delay in the processes of elastic scattering
of slow mesons from the considered targets is determined by
the derivatives of the scattering phases ηλ(k) with respect to
the kinetic energy E of the meson, i.e., by Eq. (1). When
calculating the curves in Fig. 5, we assume the phase shifts
for s scattering from a single nucleon δ0(E ) to be fixed. For
calculation of the partial time delays τλ(k) using Eq. (1),
one needs a relationship between meson wavelength 1/k and
the phase shift δ0(E ). Numerous experimental data for phase
shifts as functions of meson linear momentum k are avail-
able in the literature in the energy range E between tens and
hundreds of MeV. We have chosen the empirical dependence
obtained in [19–21]. The nuclear phase shifts δ0(E ) are fitted
with an analytical function, which incorporates the threshold
behavior (three first terms in the formula below) and a term
that represents the nearest π -nucleon resonance,

tan δ0(E )

q
= b + f q2 + dq4 + x�0ω0q−1

0

ω2
0 − ω2

, (24)

where q is the center-of-mass linear momentum and ω is the
center-of-mass-energy of meson-nucleon collision. Following
[3], we consider the target to be infinitely heavy. The wave
number q = ch̄k in (24) is expressed in units of MeV/c; k
is the meson wave number in fm−1. The constants b, f , and
d measured in the corresponding powers of MeV/c were ob-
tained in [21] (first row of Table II) to achieve the best fit of
the expression (24) to the large set of experimental data. We
also used the resonance parameters x, ω0, q0, and �0, given in
the first row of Table 1 in [19].

The results of the calculations of the phase shifts δ0(E ) (24)
for mesons scattered on the compound targets are presented
in Fig. 6. The scattering phases δ0(E ) are represented by a
monotonically increasing smooth curve, whereas the scatter-
ing phase shifts ηλ(E ) oscillate around this curve. Moreover,
the curves for the phase shifts with λ = 0 and λ = 1 oscillate
in the antiphase. The appearance of these oscillations in the
phases is associated with the diffraction of the meson waves
on the scattering centers of the targets.

The phase shift ηλ(k) is a function of meson momentum
k, which is related to its kinetic energy E by the following
expression [22]:

k =
√

E (E + 2m0c2)

h̄c
= 1

λ̄
, (25)

where ch̄ = 197.326 MeV fm and the π -meson rest mass is
m0 = 139.57 MeV/c2 [22].

The results of the calculation of the partial EWS time
delays of mesons are shown in Fig. 7. It is seen that the
partial EWS time delays as functions of the meson energy
E are oscillating curves. The large portions of the curves are
located in the positive half plane of the coordinate system.
The dominant peaks of the curves correspond to the meson
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FIG. 6. The scattering phase shifts of mesons for all considered
targets.
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FIG. 7. The partial EWS time delays of mesons (in units of
τNuc = h̄/MeV = 6.582 × 10−22 s) as functions of meson energy E.

energy of about 400 MeV. The dependence for λ = 1 turns
out to be in antiphase with the dependencies for λ = 0 at
E > 600 MeV.

VI. CONCLUSIONS

In the present work, we discuss the method of calculation
of the phase shifts and partial EWS time delays for particles
elastically scattered by compound targets modeled by a set
of zero-range potentials. The multicenter target does not have
spherical symmetry. Therefore, the wave function of a scat-
tered particle cannot be represented as an expansion into a
series of spherical harmonics in all space. However, the target
can be considered as a point source of spherical waves at
asymptotically large distances from the scatterer. The phase
shifts of these waves define the scattering cross section for a
nonspherical target. The application of variational principles,
as shown in [14,15], makes it possible to calculate the scat-
tering phases in a system of zero-range potentials from the
partial wave functions (3). Imposing boundary conditions on
these functions results in algebraic equations for the scattering
phase shifts. By analogy with the spherically symmetric case,
there is every reason to believe that the partial wave method
is the most convenient for studying and calculating particle
scattering by nonspherical systems.

The set of model targets considered here makes it possible
to complete the solution of the particle scattering problem.
The scattering phases of particles for all zero-range potentials
are considered the same for all the compound targets. The
targets at the moment of collision are assumed to be motion-
less. The distances between centers in all the targets are to be
equal. The used approximations maximally simplify Eqs. (6),
(12), and (15), and, therefore, the calculation of the scattering
phases shift becomes simple.

It is obvious that the replacement of identical phases δ0(E )
by different ones, or the introduction of different distances R
between scattering centers, transforms the determinants. For
example, along with the considered triangular target configu-
ration, one can consider a linear configuration of the scatterers
with the distance R/2 between the closest centers. For this
target, the equation for the matrix of system (11) reads∥∥∥∥∥∥

B C A
C B C
A C B

∥∥∥∥∥∥ = (A − B)(B2 + AB − 2C2) = 0. (26)

The first phase from this equation coincides with the phase
obtained from Eq. (13). The second and third phases are
obtained from the quadratic equation,

(B2 + AB − 2C2) = 0, (27)

containing another parameter C = sin(kR/2 + η)/R/2. Ana-
lytical expressions for the phases could be easily obtained
from this equation but the formulas are too cumbersome. In
the general case of all different intercenter distances, we have
a cubic equation with roots having a very complicated form.
This is the reason why we do not present the general case here
and limit ourselves by the equidistant configurations allowing
us to obtain compact equations for the phases.

The cross sections of elastic scattering and the EWS time
delays as functions of the intercenter distances have to be

012807-7



AMUSIA, BALTENKOV, AND WOICIECHOWSKI PHYSICAL REVIEW A 105, 012807 (2022)

averaged over the system of the wave functions. However, we
omitted such computations since our goal was to estimate in
the first approximation the magnitude of the EWS time delay
for target systems with few identical centers. It turned out that
the time delays obtained for mesons are of the same order of
magnitude as times considered, for example, in Refs. [11,23].
The existence of the positive time delay peaks in Fig. 7 is

one of the main observations of the present work because a
positive maximum in time delay is the necessary condition
for the existence of resonances. The resonance appearance for
meson scattering on compound targets, as shown in this paper,
is associated with the resonance in meson-nucleon scattering.
Experimental search for resonances and their study is, in our
opinion, an interesting problem.
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