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Thermal corrections to the bound-electron g factor
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The influence of the blackbody radiation field on the g factor of light hydrogenlike ions is considered within
the framework of quantum electrodynamics at finite temperature for bound states. One-loop thermal corrections
are examined for a wide range of temperatures. The numerical results for 1s, 2s, 2p1/2, and 2p3/2 states are
presented. It is shown that for excited states, finite temperature corrections to the bound-electron g factor are
close to the level of current experimental uncertainty even at room temperatures and can be discerned within the
measurements anticipated in the near future.
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I. INTRODUCTION

In the presence of an external magnetic field, the atomic
energy levels are split according to the projection of the total
angular momentum relative to the direction of the field—the
so-called Zeeman effect. In the case of a weak field, the
Zeeman shift is linear in the field strength with the propor-
tionality coefficient termed the g factor. Experiments on the
determination of the bound-electron g factor have reached
extremely high precision in recent years [1]. Up to now,
the most accurate results have been obtained for hydrogen-
like ions, i.e., 12C5+ [2,3], 16O7+ [4], and 28Si13+ [3,5] with
the precision on the level of 10−12. The follow-up measure-
ments in lithiumlike [6–8] and boronlike [9–11] ions are
evolving towards a comparable level of precision. Analyzing
experimental data and the corresponding results from elabo-
rate theoretical calculations, one can determine fundamental
constants and nuclear parameters [12–14]. In particular, the
currently accepted value of the electron mass was obtained
from the analysis of the g-factor measurements in 12C5+ and
28Si13+ ions and the corresponding theory [3,15,16].

To match experimental precision, a rigorous account of
relativistic, QED, and nuclear (including recoil, finite size,
and polarization) effects is needed [17–29]. Even the impact
of the gravitational field of the Earth [30] or instability of
external fields affecting atomic characteristics [31] are inves-
tigated. In addition, in view of the achieved experimental and
theoretical accuracy, it is necessary to describe in detail the
influence of the blackbody radiation (BBR) field, which has
a Planck equilibrium distribution. It is well known that the
BBR field leads to a quadratic ac-Stark shift of energy lev-
els and reduces the lifetimes by inducing electron transitions
between atomic states. These effects are extremely impor-
tant in the spectroscopy of Rydberg atoms, the construction
of atomic clocks, and the determination of frequency stan-
dards [32–35]. The study of the effect of equilibrium radiation
on the characteristics of atomic systems is usually limited to
the quantum-mechanical approach, in which the root-mean-

square field induced by BBR is considered as a perturbation.
In our recent works, bound-state quantum electrodynamics
theory at finite temperature (BS-TQED) has been developed
to calculate the thermal effects in atomic systems [36–39].
Within the framework of this theory and line profile approach
(LPA) [40], various corrections to the transition probabilities
and ionization-recombination cross sections were also calcu-
lated [36,41–44]. In this work, using previously developed
methods for calculating finite temperature effects, we study
thermal one-loop radiative corrections to the g factor of a
bound electron in the presence of BBR.

The paper is organized as follows. In Sec. II, within the
framework of rigorous quantum electrodynamics at finite
temperature and the adiabatic S-matrix formalism, we derive
analytical equations for thermal self-energy radiative correc-
tions to the atomic electron g factor. Then the results of
the numerical evaluation are discussed in Sec. III. Algebraic
transformations used in the calculation are given in the Ap-
pendix. The relativistic units h̄ = c = me = 1 (h̄ is the Planck
constant, c is the speed of light, me is the electron mass;
it is written explicitly in some places for clarity) are used
throughout the paper. The product of the Boltzmann constant
kB and the temperature T is written in relativistic units.

II. ADIABATIC S-MATRIX FORMALISM FOR
EVALUATION OF THERMAL RADIATIVE CORRECTIONS

We consider a bound-electron state |a〉 ≡ |nala jamja〉 char-
acterized by the principal quantum number na, the orbital
quantum number la, the total angular momentum ja, and its
projection mja . It represents the solution of the Dirac equation
for the Coulomb nuclear field with the nuclear charge number
Z . The energy shift of the atomic level Ea in the homogeneous
magnetic field B can be expressed in terms of the four-vector
potential Apert

μ = (0, A),

�Ea = −〈a|eγμApert
μ |a〉 = 〈a|eα · A|a〉, (1)
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where

A = −[r × B]/2 (2)

and r is the radius vector for the electron in the atom. Then,
for the field B directed along the z axis, we find

�Ea = μBgD
a Bmja , (3)

where gD
a is termed the Dirac g factor. For the Coulomb poten-

tial of the pointlike nucleus, gD
a can be obtained analytically,

gD
a = κa

2 ja( ja + 1)
(2κa Ea − 1), (4)

where κa = la(la + 1) − ja( ja + 1) − 1/4 is the relativistic
angular quantum number, and Ea ≡ Enala ja is the Dirac energy.
In turn, Eq. (4) can be presented as an expansion in powers
of αZ [12], with the zeroth-order term given by the Lande
formula (12):

gD
1s1/2

= 2 − 2
3 (αZ )2 − 1

6 (αZ )4 − · · · , (5)

gD
2s1/2

= 2 − 1
6 (αZ )2 − 5

96 (αZ )4 − · · · , (6)

gD
2p1/2

= 2
3 − 1

6 (αZ )2 − 5
96 (αZ )4 − · · · , (7)

gD
2p3/2

= 4
3 − 2

15 (αZ )2 − 1
120 (αZ )4 − · · · . (8)

Introducing the operator of the magnetic moment [18],

μ = e[r × α]/2, (9)

where α is the vector of the Dirac matrices, the energy shift
�Ea (1) can be written in the form

�Ea = −〈a|μ · B|a〉. (10)

In the nonrelativistic limit (αZ � 1) [45], the magnetic mo-
ment is reduced to

μnr = −μB(l + 2s) = −μB(j + s), (11)

where μB = |e|/(2me) is the Bohr magneton, l and s are the
operators of orbital momentum and electron spin, and j =
l + s is the total angular momentum operator. The nonrela-
tivistic limit of the Dirac g factor, termed the Lande g factor, is
found as

gL
a = m−1

ja
〈a| jz + sz|a〉, (12)

where, jz and sz are the z projections of j and s, respectively.
From Eq. (3), it follows that an arbitrary correction �ga to

the g factor can be obtained from the corresponding energy
shift,

�ga = �Ea

mjaμBB
. (13)

Below, we consider radiative corrections for thermal self-
energy to the bound-electron g factor in H-like ions via
Eq. (13). Within the framework of QED theory, the corre-
sponding energy shift �Ea of the unperturbed values Ea is
represented by the three Feynman diagrams in Fig. 1, where,
in contrast to the “zero-vacuum” case (see, for example, [18]),
the ordinary photon propagator is replaced by the thermal one.

X

X

X

(a) (b) (c)

FIG. 1. Feynman diagrams describing the TQED contributions
of the order of α to the bound-electron g factor. The tiny line with
the cross indicates interaction with an external magnetic field. The
double solid line denotes the bound electron in the Furry picture.
The bold wavy line represents the thermal photon propagator.

Following the Gell-Mann-Low theory (adiabatic S-matrix
formalism; see [46,47]), the energy correction is given by

�Ea = lim
η→0+

iη

2

∂
∂e

〈
�0

a

∣∣Ŝη

∣∣�0
a

〉
〈
�0

a

∣∣Ŝη

∣∣�0
a

〉 . (14)

The evolution operator Ŝη is

Ŝη = T

{
exp

[
−ie

∫
d4xe−η|t |Ĥi(x)

]}

= 1 +
∞∑

k=1

(−ie)k

k!

∫
d4xk· · ·

∫
d4x1

× e−η|tk | . . . e−η|t1|T [Ĥi(xk ) . . . Ĥi(x1)], (15)

and T [. . . ] denotes the time-ordered product of interaction
density Ĥi, which is

Ĥi(x) = ĵμ(x)
[
Âμ(x) + Âpert

μ (x)
]
. (16)

Here, Âμ(x) and Âpert
μ (x) are the operators of the photon field

and external perturbation, respectively. The operator of the
electron current in Eq. (16) is defined as follows:

ĵμ(x) = − 1
2 [ψ̂ (x)γ μ, ψ̂ (x)], (17)

where ψ̂ (x) = ψ̂†(x)γ0, ψ̂ (x) is the operator of the fermion
field, and γ μ are the Dirac gamma matrices. Since we are
interested in the one-loop thermal self-energy contributions,
we should take into account the third-order corrections. Ex-
pansion of Eq. (14) in powers of e [48,49] up to the third order
yields

�Ea = lim
η→0+

1
2 iη

{〈
�0

a

∣∣Ŝ(1)
η

∣∣�0
a

〉
+ [

2
〈
�0

a

∣∣Ŝ(2)
η

∣∣�0
a

〉 − 〈
�0

a

∣∣Ŝ(1)
η

∣∣�0
a

〉2]
+ [

3
〈
�0

a

∣∣Ŝ(3)
η

∣∣�0
a

〉 − 3
〈
�0

a

∣∣Ŝ(2)
η

∣∣�0
a

〉〈
�0

a

∣∣Ŝ(1)
η

∣∣�0
a

〉
+ 〈

�0
a

∣∣Ŝ(1)
η

∣∣�0
a

〉3] + · · · }. (18)

Here we are dealing with one-electron atomic systems and,
therefore, the graphs with more than one fermionic line in
the initial and final states are excluded. Since we consider the
linear effect in the magnetic field, we keep only the terms of
the first order in the perturbing potential Âpert

μ .
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Matrix elements of different orders in e up to Ŝ(3)
η are given

by the following expressions. Contribution of the first order:

〈
�0

a

∣∣Ŝ(1)
η

∣∣�0
a

〉 = (−ie)
∫

d4xψa(x)

× e−η|t |γ μApert
μ (x)ψa(x). (19)

The second-order contribution (thermal self-energy):

〈
�0

a

∣∣Ŝ(2)
η

∣∣�0
a

〉 = (−ie)2
∫

d4x1d4x2ψa(x1)

× e−η|t1|γ μ1 Dβ
μ1μ2

(x1, x2)γ μ2 S(x1, x2)

× e−η|t2|ψa(x2). (20)

The third-order matrix elements, corresponding to Figs. 1(a)–
1(c), are given by

〈
�0

a

∣∣Ŝ(3)
η

∣∣�0
a

〉
(a) = (−ie)3

∫
d4x1d4x2d4x3

×ψa(x1)e−η|t1|γ μ1 Dβ
μ1μ3

(x1, x3)e−η|t3|γ μ3

× S(x1, x2)e−η|t2|γ μ2 Apert
μ2

(x2)S(x2, x3)

×ψa(x3) (21)

and 〈
�0

a

∣∣Ŝ(3)
η

∣∣�0
a

〉
(b) = 〈

�0
a

∣∣Ŝ(3)
η

∣∣�0
a

〉
(c)

= (−ie)3
∫

d4x1d4x2d4x3ψa(x1)

× e−η|t1|γ μ1 Dβ
μ1μ2

(x1, x2)

× e−η|t2|γ μ2 S(x1, x2)e−η|t3|

× γ μ3 Apert
μ3

(x3)S(x2, x3)ψa(x3). (22)

Here, ψa(x) = ψa(r)eiEat , ψa(r) is a solution of the Dirac
equation in the state |a〉 with the energy Ea, and ψa(x) =
ψ†

a (x)γ0. The electron propagator S(x1, x2) is

S(x1x2) = i

2π

∫ +∞

−∞
d� e−i�(t1−t2 )

∑
n

ψn(r1)ψn(r2)

� − En(1 − i0)
,

(23)

and the sum over n in Eq. (23) runs over the entire Dirac
spectrum. The thermal photon propagator in coordinate space
representation in the Feynman gauge [36,37] is

Dβ
μν (x1x2) = − gμν

πr12

∫ ∞

−∞
dω nβ (|ω|)sin(|ω|r12)e−i ω(t1−t2 ),

(24)

where nβ (ω) = [exp(βω) − 1]−1 is the photon density num-
ber of the BBR field, β = 1/kBT , and r12 ≡ |r1 − r2|.

The first-order S-matrix element (19) contains the pertur-
bation itself and corresponds to the Feynman diagram with the
magnetic-field interaction only (the tiny line with the cross
in Fig. 1). The resulting energy shift is given by Eq. (3).
The second-order S-matrix element (20) gives the one-loop
self-energy correction, which was described in detail for the
hydrogen atom in [36], and its real part yields an expres-
sion for the thermal ac-Stark shift of energy levels. Finally,

Eqs. (21) and (22) match the three Feynman graphs describing
the thermal self-energy radiative corrections to the magnetic-
field interaction, which is the topic of our present research.

After substitution of Eqs. (19)–(22) into Eq. (18), the total
energy shift of the third order in e can be written as a sum
of vertex [Fig. 1(a)] and wave-function [Fig. 1(b) and 1(c)]
contributions, �Ea = �Ever

a + �Ewf
a . According to [50], the

vertex contribution reads

�Ever
a = Re lim

η→0+
3iη

2
〈�0

a|Ŝ(3)
η |�0

a〉(a), (25)

while the wave-function contribution is given by

�Ewf
a = Re lim

η→0+
3iη

2

(〈
�0

a

∣∣Ŝ(3)
η

∣∣�0
a

〉
(b)

− 〈
�0

a

∣∣Ŝ(1)
η

∣∣�0
a

〉〈
�0

a

∣∣Ŝ(2)
η

∣∣�0
a

〉)
. (26)

Performing integration over time variables and taking the
limit η → 0+ [49], we find, for the vertex part,

�Ever
a = −e3

π
Re

∑
±

∑
n,m

∫ ∞

0
dωnβ (ω)

× 〈am| α
μ
1 α3μ

r13
sin(ωr13)|na〉〈n|αA|m〉

[Ea ± ω − En(1 − i0)][Ea ± ω − Em(1 − i0)]
,

(27)

where
∑
±

denotes the sum of two contributions with + and

− in the energy denominators. A similar evaluation for the
wave-function part gives

�Ewf
a = −2e3

π
Re

∑
±

∫ ∞

0
dωnβ (ω)

×

⎡
⎢⎣∑

n,m
m �=a

〈an| α
μ
1 α2μ

r12
sin(ωr12)|nm〉〈m|αA|a〉

[Ea ± ω − En(1 − i0)](Ea − Em)

− 1

2

∑
n

〈an| α
μ
1 α2μ

r12
sin(ωr12)|na〉〈a|αA|a〉

[Ea ± ω − En(1 − i0)]2

⎤
⎦,

(28)

where the “reference-state” contribution, m = a, is presented
by the second term [51]. Unlike the ordinary zero-vacuum
corrections, expressions (27) and (28) do not have ultraviolet
divergences due to the natural cutoff provided by the distribu-
tion function nβ (ω).

In the nonrelativistic limit (αZ � 1), the integrand
sin(ωr)/r can be expanded into a Taylor series, leading to

〈ab|α
μ
i α jμ

ri j
sin(ωri j )|cd〉

≈ ωδacδbd − ω3

6

(〈a|r2
i |c〉δbd + δac〈b|r2

j |d〉)
− ω〈a|p|c〉〈b|p|d〉 + ω3

3
〈a|r|c〉〈b|r|d〉, (29)

where the relation r2
i j = r2

i + r2
j − 2rir j is taken into account.
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Then, substituting Eq. (29) into Eqs. (27) and (28) and using a transformation between the velocity and length forms of the
electric dipole matrix elements (see the Appendix for details), we obtain the nonrelativistic limit of the vertex and wave-function
contributions,

�Ever
a = −2Be2μB

3π
Re

∑
±

∑
n,m

∫ ∞

0
dωω3nβ (ω)

〈a|r|n〉〈n|vz|m〉〈m|r|a〉
[Ea ± ω − En(1 − i0)][Ea ± ω − Em(1 − i0)]

, (30)

�Ewf
a = −4Be2μB

3π
Re

∑
±

∫ ∞

0
dωnβ (ω)ω3

⎡
⎢⎣∑

n,m
m �=a

〈a|r|n〉〈n|r|m〉〈m|vz|a〉
[Ea ± ω − En(1 − i0)](Ea − Em)

− 1

2

∑
n

〈a|r|n〉〈n|r|a〉〈a|vz|a〉
[Ea ± ω − En(1 − i0)]2

⎤
⎥⎦, (31)

where the notation vz ≡ jz + sz is introduced. Here, the wave
functions in the matrix elements of the numerators should be
understood as solutions of the Schrödinger equation for H-like
ions with pointlike nucleus and an arbitrary nuclear charge Z .
Then, the nonrelativistic energies are independent of orbital
and total angular momenta, i.e., Ea ≡ Ena , and the dependence
of the energy shift on the angular momenta enters via the
angular reduction of nonrelativistic operators in Eqs. (30)
and (31). The scalar product of two coordinate operators in
Eqs. (30) and (31) can be decomposed via spherical com-
ponents as follows: rr′ = ∑

q=0,±1(−1)qrqr′
−q. In the ls jmj

coupling scheme, it can be evaluated with

〈n′l ′s′ j′mj′ |rq|nls jmj〉

= δs′s(−1) j′+ j+l ′+s+1−mj′
(

j′ 1 j
−mj′ q mj

)

× � j′� j�l ′�l

{
l ′ j′ s
j l 1

}

× (−1)l ′
(

l ′ 1 l
0 0 0

)∫ ∞

0
drr3Rn′l ′ (r)Rnl (r), (32)

where Rnl (r) is the radial part of the Schrödinger wave func-
tion, �a = √

(2a + 1), and the usual notation for 3 j symbols
is employed [52]. For the operators jz and sz, we have

〈n′l ′s′ j′mj′ | jz|nls jmj〉
= δn′nδl ′lδs′sδ j′ j

√
j( j + 1)(2 j + 1)(−1) j−1+mj′

×
(

j 1 j′
mj 0 −mj′

)
, (33)

〈n′l ′s′ j′mj′ |sz|nls jmj〉
= δn′nδl ′lδs′s(−1)2 j′+l+s+1−mj′ � j′� j

√
s(s + 1)(2s + 1)

×
(

j′ 1 j
−mj′ 0 mj

){
s l j
j′ 1 s

}
. (34)

After substitution of Eqs. (33) and (34) into Eqs. (30) and (31),
the terms with the off-diagonal matrix elements of vz do
vanish.

For hydrogenlike ions with nuclear charge Z , the para-
metric estimate of Eqs. (30) and (31) can be found by
taking into account that in relativistic units, r ∼ (meαZ )−1,
Ea ∼ me(αZ )2, and

∫ ∞
0 dωωknβ (ω) ∼ (k r.u.

B T )k+1. Then the
g-factor correction (13) is parametrized as follows:

�ga ∼ (kBT )4
r.u.

α5m4
eZ6

. (35)

In particular, the estimation (35) is valid for the a = 1s state,
when the summation runs over the np states and the energy
difference in the denominators of Eqs. (30) and (31) is always
of the order of me(αZ )2. However, for the nala states with na �
2 (e.g., a = 2s), the dominant contribution in the sum over n
arises from the terms with En = Ena . In this case, the following
parametrization is valid:

�ga ∼ (kBT )2
r.u.

αm2
eZ2

. (36)

It should be noted that the quadratic behavior in temperature
given by the formula (36) was predicted earlier for thermal
radiative corrections to the free-electron g factor in [53–55].

Estimation (36) suggests that for 2s and 2p states, which
are already accessible for high-precision g-factor measure-
ments, the thermal self-energy correction can be relatively
large and thus should be carefully investigated. Below we
present the numerical calculations of this correction for 1s,
2s, 2p1/2, and 2p3/2 states according to the formulas obtained
above.

III. RESULTS AND DISCUSSION

The one-loop thermal self-energy correction to the bound-
electron g factor is given by the formulas (30) and (31). To
sum up the entire spectrum in Eq. (30), we use the Schrödinger
finite basis set constructed within the nonrelativistic B-spline
approach, following the ideas presented in Refs. [56,57]. In
our calculations, we also modify the nonrelativistic energies
of 2s and 2p states by including the Lamb shift correc-
tion [58]. Within the framework of the line profile approach,
this can be performed by the accounting of an infinite se-
ries of self-energy and vacuum-polarization insertions into
the internal electron lines of diagrams in Fig. 1. The aris-
ing geometric progression leads to the appearance of the
corresponding Lamb shifts and levels widths in the energy
denominators [40]. As was shown in [36,59], the inclusion
of the Lamb shift slightly changes the BBR-induced ac-Stark
shift in hydrogen. Fine splitting is also taken into account for
the 2p1/2 and 2p3/2 states, where it is important.

Numerical results for the one-loop thermal correction to
the bound-electron g factor according to Eqs. (30) and (31)
are given in Table I for H-like ions with Z = 1, 2, 6. For
the ground 1s state of all the considered ions, we conclude
that the effect is insignificant at cryogenic and room tempera-
tures at the current level of experimental accuracy. However,
it is important to consider within the framework of such
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TABLE I. Numerical values of thermal one-loop self-energy cor-
rections to the g factor of the bound electron.

T (Kelvin) 77 300 1000

Z = 1
�g[1s1/2] 3.42 × 10−20 8.34 × 10−18 1.03 × 10−15

�g[2s1/2] 2.58 × 10−13 3.92 × 10−12 4.37 × 10−11

�g[2p1/2] 1.94 × 10−13 2.94 × 10−12 3.24 × 10−11

�g[2p3/2] 9.68 × 10−14 1.47 × 10−12 1.62 × 10−11

Z = 2
�g[1s1/2] 5.34 × 10−22 1.30 × 10−19 1.61 × 10−17

�g[2s1/2] 6.45 × 10−14 9.79 × 10−13 1.09 × 10−11

�g[2p1/2] 4.84 × 10−14 7.35 × 10−13 8.16 × 10−12

�g[2p3/2] 2.35 × 10−14 3.66 × 10−13 4.78 × 10−12

Z = 6
�g[1s1/2] 7.33 × 10−25 1.79 × 10−22 2.21 × 10−20

�g[2s1/2] 7.18 × 10−15 1.09 × 10−13 1.21 × 10−12

�g[2p1/2] 5.38 × 10−15 8.16 × 10−14 9.07 × 10−13

�g[2p3/2] 2.52 × 10−16 -2.32 × 10−14 1.97 × 10−13

demanding scenarios in the search for new physics [60], as-
suming that the required experimental progress is possible.

The situation is different for the g factor of n = 2 states.
In particular, for the 2s1/2 and 2p1/2 levels, the one-loop
thermal corrections at T = 300 K are on the level of pre-
cision anticipated in the forthcoming experiments [61]. This
contribution is comparable to various previously investigated
higher-order effects, such as the bound-state two-loop QED
contributions [24], in particular, the two-loop virtual light-
by-light scattering [28,29,62]. We note that the results for
the 2s and 2p states are relevant not only for the excited
states of H-like ions, but also for the ground states of Li- and
B-like ions, respectively. In few-electron ions, the values of
the correction may differ significantly due to the screening
effects, but the order-of-magnitude estimation is still valid.
Meanwhile, the Li- and B-like ions are important for various
proposed investigations, in particular, for determination of the
fine-structure constant [63–65].

An equally interesting aspect of such effects is the search
for variations of the fundamental constants: the fine-structure
constant, the gravitational constant, and the proton-to-electron
mass ratio [66–68]. Various phenomenological limits or evi-
dence reported from astrophysics, cosmology, and laboratory
experiments are still under discussion. This interest is periodi-
cally spurred by the “positive” results concerning the variation
of the fine-structure constant α; see, for example, [69]. Never-
theless, the reported results should be interpreted with care:
laboratory experiments have demonstrated especially fast
progress, requiring the consideration of ever smaller effects;
see [70] and discussion therein. Assuming an accurate com-
parison between laboratory and astrophysical experiments, the
correction values are listed in Table I for higher temperatures.

Special attention should be paid to the case of a Z = 6
H-like ion. The experimental measurement of the g factor in

12C5+ ions allows the most precise determination to date of
the electron mass value [3]. The achieved level of experimen-
tal accuracy leads to the electron mass determination with a
relative error of about 10−11. The corrections obtained in the
present work are close to this value and can be considered as
a possible source for future experimental improvements.

IV. CONCLUSION

The bound-electron g factor is a subject of high-precision
measurements and theoretical calculations, which jointly are
able to bring various results of fundamental importance. The
effect of blackbody radiation was previously considered for
binding energies, showing its importance in Rydberg atoms,
atomic clocks, and frequency standards. In this work, we have
investigated one-loop thermal correction for 1s, 2s, 2p1/2,
and 2p3/2 states of light H-like ions. Currently available ex-
perimental values are found to be insensitive to blackbody
radiation. However, the potential importance of this effect for
n = 2 states in future investigations is demonstrated, includ-
ing determination of the fundamental constants and search for
new physics.
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APPENDIX: RELATION BETWEEN LENGTH AND
VELOCITY FORMS OF MATRIX ELEMENTS

In this Appendix, we present the relations between length
and velocity matrix elements employed in Sec. II for the
derivation of the nonrelativistic limit from general relativistic
equations. The Taylor expansion given by Eq. (29) leads to
the product of electron momenta matrix elements in the first
term, which can be converted to the product of space vector
matrix elements. Then, in conjunction with the second term
of Eq. (29), we can obtain the so-called length form of expan-
sion. To do this, we first recall the well-known commutation
relation p = i[Ĥ, r], where Ĥ is the operator of the total
Hamiltonian of the system. In the absence of an external field
for the nonresonant transition from the bound state with the
energy Ea to the virtual intermediate state with the energy En,
the above commutation relation takes the extended form

p = i[Ĥ − Ea ± ω, r], (A1)

where the sign ± depends on the absorption or emission
process under consideration, respectively. Then, taking into
account Eq. (A1), the following expression can be easily
proven:

− ω
∑
±

∑
n,m �=a

〈a|p|n〉〈n|p|m〉〈m|T̂0|a〉
(En − Ea ± ω)(Em − Ea)

= −ω
∑
±

∑
m �=a

[
(Em − Ea ± ω)(±ω)

∑
n

〈a|r|n〉〈n|r|m〉
En − Ea ± ω

− (Em − Ea)〈a|r2|m〉 + 3δam

]
〈m|T̂0|a〉
Em − Ea
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= −ω
∑
±

∑
n,m �=a

[
(±ω)

〈a|r|n〉〈n|r|m〉〈m|T̂0|a〉
En − Ea ± ω

+ ω2 〈a|r|n〉〈n|r|m〉〈m|T̂0|a〉
(En − Ea ± ω)(Em − Ea)

]
+ ω

∑
m

〈a|r2|m〉〈m|T̂0|a〉

= −ω
∑
±

[
(±ω)

∑
n

〈a|r|n〉〈n|rT̂0|a〉
En − Ea ± ω

+ ω2 〈a|r|n〉〈n|r|m〉〈m|T̂0|a〉
(En − Ea ± ω)(Em − Ea)

]
+ ω〈a|r2T̂0|a〉, (A2)

where T̂0 is an arbitrary one-electron Hermitian scalar operator. The relation given by Eq. (A2) is used in the reducible part of
the energy shift given by Eq. (26), when the first terms in the expansion given by Eq. (29) are converted into the length form.
The first two terms in Eq. (A2) can be neglected since they are exactly canceled by the similar contributions arising from the
vertex contribution (27).

For the latter, one can write the following expression:

−ω
∑
±

∑
nm

〈a|p|n〉〈n|T̂0|m〉〈m|p|a〉
(En − Ea ± ω)(Em − Ea ± ω)

= −ω
∑
±

∑
nm

[
(∓ω)

〈a|r|n〉〈n|T̂0|m〉〈m|r|a〉
En − Ea ± ω

+ (∓ω)
〈a|r|n〉〈n|T̂0|m〉〈m|r|a〉

Em − Ea ± ω

+ 2〈a|r|n〉〈n|T̂0|m〉〈m|r|a〉 + ω2 〈a|r|n〉〈n|T̂0|m〉〈m|r|a〉
(En − Ea ± ω)(Em − Ea ± ω)

]

= −ω
∑
±

[
2(∓ω)

∑
n

〈a|r|n〉〈n|rT̂0|a〉
En − Ea ± ω

+ ω2
∑
nm

〈a|r|n〉〈n|T̂0|m〉〈m|r|a〉
(En − Ea ± ω)(Em − Ea ± ω)

]

− 2ω〈a|r2T̂0|a〉, (A3)

which is also obtained with the use of Eq. (A1) and the sum rule
∑
n

|n〉〈n| = 1. After the substitution of Eqs. (A2) and (A3) into

Eqs. (27)–(29), the terms linear in ω in the total energy shift vanish since the wave-function contribution is doubled relative to
the vertex one. Then it is easy to see that only terms proportional to ω3 survive and we arrive at final nonrelativistic equations
for the energy shift given by Eqs. (30) and (31).
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