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Three-loop corrections to the Lamb shift in muonium and positronium
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We calculate hard spin-independent three-loop radiative corrections to energy levels in muonium and positro-
nium which are due to radiative corrections with polarization insertions in two-photon exchange diagrams. These
corrections could be relevant for the new generation of precise 1S-2S and 2S-2P measurements in muonium and
positronium.
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I. INTRODUCTION

Muonium (Mu = μ+e−) and positronium (Ps = e+e−) are
purely electrodynamic bound states which admit precise mea-
surements and calculations of transition frequencies. For
many years the main emphasis was on the ground state hy-
perfine splitting (see experimental results for muonium in
Refs. [1–4], for positronium in Refs. [5–10], and references
therein). Calculations of high-order corrections to hyperfine
splitting remain an active field of research. One can find some
recent theoretical results of order α2(Zα)5(m/M )m for muo-
nium in Refs. [11–13] (see also the reviews in Refs. [14–16]).
Hyperfine splitting in muonium serves as the best source
for extracting a precise value of the electron-muon mass
ratio [17]. New contributions to hyperfine splitting in positro-
nium of order α7m were calculated recently in Refs. [18–26]
(see also the reviews in Refs. [27–29]).

Transition frequencies 1S-2S [30–33] and the classical
Lamb shift 2S-2P [34,35] in muonium which were measured
some time ago were somewhat on the back burner for a while.
In recent years a lot of experimental efforts shifted to these
energy intervals. A new generation of 1S-2S measurements
in muonium is currently planned [36–38]. The goal of the
phase 1 of the MU-MASS experiment at PSI is to reduce the
experimental uncertainty to below <100 kHz (40 ppt), and at
phase 2 it is planned to reduce it below 10 kHz (4 ppt) [36].
The goal of the J-PARC experiment is to achieve experimen-
tal uncertainty about 10 kHz (4 ppt) [38]. This is a 1000
times improvement in comparison with the previous mea-
surements [36]. The classical Lamb shift in muonium 2S-2P
was recently measured [39] to be 1047.2(2.3)stat(1.1)syst MHz
which is an order of magnitude smaller uncertainty than the
best previous measurement [35]. The goal of this ongoing
experiment is to reduce the experimental uncertainty to about
a few tens of kHz.
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Transition frequencies 1S-2S in positronium were mea-
sured a long time ago [40,41], and the uncertainty achieved
in the last experiment is 2.4 ppb. New experiments are ongo-
ing at ETH Zurich and at UC Riverside [42,43] and at the
University College London [44]. The goal is to reduce the
experimental uncertainty to about 0.5 ppb [42]. Results of a
precise measurement of the fine structure in positronium were
recently reported [45].

The muonium atom is similar to hydrogen and purely quan-
tum electrodynamic corrections in both cases are the same.
Nonrecoil radiative corrections to hydrogen energy levels can
be used for muonium as well. The difference between hydro-
gen and muonium arises in the consideration of recoil and
radiative-recoil corrections. These corrections in hydrogen
strongly depend on the proton structure, do not reduce to pure
QED, and require accounting for strong interactions. This
makes the hydrogen problem more challenging and reduces
the theoretical accuracy of these corrections. For example, the
theory of hyperfine splitting (HFS) in the ground state of hy-
drogen has a relative theoretical uncertainty about 1 ppm [46],
while the theoretical uncertainty of a similar HFS in muonium
is about 15 ppb [17] and admits further reduction. High ac-
curacy in muonium is achieved because due to the absence
of the strong interaction effects, higher-order spin-dependent
radiative-recoil contributions admit purely electrodynamic
calculations. Positronium is also a purely electromagnetic
bound state, which admits high-precision calculations of the
energy levels.

Inspired by the experimental progress on measurements
of 1S-2S and 2S-2P transitions in muonium and positronium
we calculate hard three-loop spin-independent contributions
to the energy levels. All corrections considered below arise
by insertions of radiative corrections in the skeleton di-
agrams in Fig. 1. These corrections are similar to the
respective spin-dependent corrections to hyperfine splitting
and are generated by the same sets of gauge-invariant dia-
grams [19,19,20,20,47]. In the case of muonium, three-loop
nonrecoil spin-independent contributions generated by these
diagrams were calculated a long time ago [48], and we calcu-
late below the respective radiative-recoil corrections of order
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FIG. 1. Skeleton diagrams.

α2(Zα)5(m/M )m. The skeleton integral for the recoil correc-
tions obtained by subtraction of the nonrecoil contribution has
the form [49]
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where m and M are the electron and muon masses, respec-
tively, mr = mM/(m + M ) is the reduced mass, μ = m/M, λ

is an auxiliary mass of the exchanged photon to be omitted be-
low, n and l are the principal quantum number and the orbital
momentum, respectively, and the dimensionless integration
momentum is measured in units of the electron mass.

Corrections to the Lamb shift of order α7m in positronium
considered below are obtained by the radiation insertions in
the same two-photon exchange diagrams in Fig. 1. The mass
ratio of the constituents in positronium is one and separation
into recoil and nonrecoil corrections does not make much
sense. The skeleton integral for the two-photon exchange dia-
grams in positronium has the form [49]
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II. CALCULATIONS OF GAUGE-INVARIANT
CONTRIBUTIONS

A. Diagrams with one-loop polarization insertions

1. Muonium

Radiative-recoil corrections generated by the diagrams in
Fig. 2 can be obtained from the skeleton expression in Eq. (1)
by the substitution

1

k2
→ 2

(α

π

)
I1(k), (3)

FIG. 2. Graphs with one one-loop polarization insertion.

FIG. 3. Graphs with two one-loop polarization insertions.

where

I1(k) =
∫ 1

0
dv

v2(1 − v2/3)

4 + (1 − v2)k2
(4)

is the one-loop polarization operator.
This contribution was calculated a long time ago [49],
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(5)
where we restored correction of the relative order (m/M )2

omitted in Ref. [49].
The spin-independent radiative-recoil contribution of the

next order in α/π ,
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generated by the diagrams in Fig. 3,1 can be obtained from the
skeleton expression in Eq. (1) by the substitution

1

k2
→ 3

(α

π

)2
k2I2

1 (k), (7)

where 3 is a combinatorial factor which arises due to the three
ways to insert the polarization operator in the skeleton graphs.

The integral in Eq. (6) contains corrections of all orders in
the mass ratio and can be easily calculated numerically with
an arbitrary accuracy,

�E (Mu)
1 = 0.959 540 854(3) . . .

α2(Zα)5

π3n3

m

M
δl0. (8)

One can expand the integral in Eq. (6) up to the first order
in μ = m/M and obtain an analytic result,
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1Diagrams with the crossed exchange photons are omitted in this
figure and other figures below.
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We can calculate higher-order terms in the expansion of the
integral in Eq. (6) in μ which restores agreement between the
numerical factors in Eqs. (8) and (9).

2. Positronium

Corrections of order α7m generated by the diagrams in
Fig. 2 are obtained from the skeleton expression in Eq. (2)
by the substitution in Eq. (7). After calculations we obtain
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B. Diagrams with two-loop polarization insertions

1. Muonium

The spin-independent radiative-recoil contribution gener-
ated by the diagrams in Fig. 4 can be obtained from the
skeleton expression in Eq. (1) by the substitution

1
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→ 2
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π

)2
I2(k), (11)

where the irreducible two-loop polarization has the
form [50,51]
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As the skeleton in Eq. (1) at λ = 0 the momentum integral
with the two-loop polarization insertion is linearly infrared

FIG. 4. Graphs with two-loop polarization insertions.

divergent. In a more accurate calculation the divergence would
be cut off at the characteristic wave-function momentum k ∼
Zα. This divergence reflects the existence of a contribution of
a lower order in Zα (for more details, see Refs. [14,15,49]).
This contribution is well known and to get rid of its remnants
we simply subtract from the integrand the infrared divergent
term

μ

k2
I2(0) = 41

162

μ

k2
. (14)

After subtraction the fully convergent expression for the con-
tribution of the two-loop polarization in Fig. 4 has the form

�E (Mu)
2 = 32(Zα)5m

πn3(1 − μ2)

(α

π

)2(mr

m

)3
∫ ∞

0

dk

k

×
{

I2(k)

[
μ

√
1 + k2

4

(
1

k
+ k3

8

)

−
√

1 + μ2k2

4

(
1

k
+ μ4k3

8

)
− μk2

8

(
1 + k2

2

)

+μ3k2

8

(
1 + μ2k2

2

)
+ 1

k

]
− 41

162

μ

k

}
δl0. (15)

As in the case of one-loop polarization above, the integral
in Eq. (15) contains corrections of all orders in the mass ratio
and can be easily calculated numerically with an arbitrary
accuracy,
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One can expand the integral in Eq. (15) up to the first order in
μ = m/M and obtain an analytic result,
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As in the case of one-loop polarizations we can calculate
higher-order terms in the expansion of the integral in Eq. (15)
in μ which restores agreement between the numerical factors
in Eqs. (16) and (17).
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FIG. 5. Electron-line radiative-recoil corrections.

2. Positronium

The Lamb shift contribution of order α7m in positronium
generated by the diagrams in Fig. 4 is obtained from the
skeleton expression in Eq. (2) by the substitution in Eq. (11).
As in the case of muonium the integral with the two-loop
polarization insertion is linearly infrared divergent. This di-
vergence arises because the integral after substitution contains
also the contribution of order α6m which should be subtracted.
After subtraction the convergent integral has the form
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Calculating this integral we obtain
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C. Diagrams with one-loop electron factor

The contribution to the spin-independent energy shift gen-
erated by the diagrams in Fig. 5 is given by the integral [52]
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4
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where Lμν and Hμν are the electron and muon factors, respec-
tively.

The electron factor is equal to the sum of the self-energy,
vertex, and spanning photon insertions in the electron line,

Lμν = L

μν + 2L�

μν + L�
μν, (21)

and the heavy-line muon factor is given by the expression

Hμν = γμ

P̂ + k̂ + M

k2 + 2Mk0 + i0
γν + γν

P̂ − k̂ + M

k2 − 2Mk0 + i0
γμ, (22)

where P = (M, 0) is the momentum of the muon.
The expression for the energy shift in Eq. (20) contains

both recoil and nonrecoil contributions of order α(Zα)5m.
The nonrecoil correction is well known from the early days
of quantum electrodynamics and subtracting it and preserving

FIG. 6. Graphs with radiative insertions in the electron line and
one-loop polarization in the exchanged photons.

only the linear-in-mass ratio contribution we obtain the inte-
gral for the respective radiative-recoil contribution [52],

�E = (Zα)5
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(23)

Here, ℘(1/k2
0) is a slightly nonstandard principal value inte-

gration prescription (for its precise definition and properties,
see Ref. [52]).

The expression for the spin-independent radiative-recoil
contribution of order α2(Zα)5(m/M )m generated by the dia-
grams in Fig. 6 can be obtained from the Wick rotated integral
in Eq. (23) by the substitution in Eq. (3).

Let us mention that the expression for the energy shift
in Eq. (23) is linearly infrared divergent as 1/γ where γ is
an auxiliary infrared cutoff in integration over k. This linear
infrared divergence arises because the expressions for the
energy shifts in Eqs. (20) and (23) contain not only corrections
of order α(Zα)5 but also the corrections of the previous order
in Zα. The divergent contribution was subtracted in Ref. [52]
in order to obtain an integral representation for the contri-
bution of order α(Zα)5. The Wick rotated integral obtained
from Eq. (23) after the substitution in Eq. (3) contains only
linear-in-mass ratio contributions of order α2(Zα)5 and no
such subtraction is necessary.

Next, we calculate the contributions to the energy shift of
the four diagrams in Fig. 6 in the Yennie gauge,
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(mr
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)3
mδl0.

(24)
Calculations are similar to the ones in Ref. [52], and we obtain

J
P = 2.2619(1), 2J�P = −14.948(1), J�P = 3.4292(1).
(25)

Finally, the total contribution to the Lamb shift of the
diagrams in Fig. 5 is
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3 = −9.2569(2)
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π3n3
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M

(mr
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)3
mδl0. (26)

III. SUMMARY OF RESULTS

Collecting the results in Eqs. (8), (16), and (26) we ob-
tain the total spin-independent radiative-recoil contribution of
order α2(Zα)5(m/M )m to the level shifts in muonium gener-
ated by the three gauge-invariant sets of diagrams in Figs. 3,
and 4 6,

�E (Mu) = −11.4308(2)
α2(Zα)5

π3n3

m

M

(mr

m
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mδl0. (27)
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The contribution to the Lamb shift of order α7m in positro-
nium generated by the diagrams in Figs. 3 and 4 is given by
the sum of the results in Eqs. (10) and (19),

�E (Ps)

=
(

−4 Li4
(

1
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3
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α7m
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δl0. (28)

Numerically the contributions Eqs. (27) and (28) are at the
level of a few tenths of kHz and a few kHz, respectively. They
are too small to be relevant for the results of the ongoing
experiments. However, we expect that these corrections will
become phenomenologically relevant in the future with fur-
ther improvements of the experimental accuracy.

There are six gauge-invariant sets of diagrams with closed
electron loops which arise as radiative corrections to the
two-photon exchange diagrams (see, e.g., Ref. [22]). These
three-loop diagrams generate hard spin-dependent and spin-
independent corrections of order mα7 in muonium and
positronium. Spin-dependent corrections were recently calcu-
lated (see the review in Ref. [53] and references therein). The
calculation of corrections to the Lamb shifts in muonium and
positronium generated by the diagrams in Figs. 3, and 4 6 is a
step on the route to calculations of all hard spin-independent
corrections of order α2(Zα)5(m/M )m in muonium and of
order α7m in positronium. We hope to report results for
the remaining hard contributions of this order in the near
future.
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