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In this work, a derivation and implementation of the relativistic time-dependent configuration-interaction
singles (RTDCIS) method is presented. Various observables for krypton and xenon atoms obtained by RTDCIS
are compared with experimental data and alternative relativistic calculations. This includes energies of occupied
orbitals in the Dirac-Fock ground state, Rydberg state energies, Fano resonances, and photoionization cross
sections. Diagrammatic many-body perturbation theory, based on the relativistic random phase approximation,
is used as a benchmark with excellent agreement between RTDCIS reported at the Tamm-Dancoff level. Results
from RTDCIS are computed in the length gauge, where the negative energy states can be omitted with acceptable
loss of accuracy. A complex absorbing potential, that is used to remove photoelectrons far from the ion, is
implemented as a scalar potential and validated for RTDCIS. The RTDCIS methodology presented here opens
for future studies of strong-field processes, such as attosecond transient absorption and high-order harmonic
generation, with electron and hole spin dynamics and other relativistic effects described by first principles via
the Dirac equation.
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I. INTRODUCTION

Attosecond physics aims to unravel the electron motion
and coherence in atoms and molecules. A major contribu-
tion to this field was the study of valance-shell electrons
in krypton ions made by Goulielmakis et al. in 2010 [1].
In this pioneering experiment, the motion of electrons was
characterized by means of attosecond transient absorption
spectroscopy (ATAS) [2]. Since then, ATAS has been widely
used in different scenarios. For example, to reconstruct the
time-dependent two-electron wave packet of an excited he-
lium atom [3], to investigate the instantaneous ac Stark shift
[4], to control the line shapes of Fano resonances [5], and
to probe inner-valance transitions in neon [6,7] and in xenon
[8]. In addition, autoionizing states of different noble gases
have been studied theoretically within the framework of ATAS
[9–11]. The theory and derivation of strong-field ATAS can be
found in the following review [12].

Weak-field ATAS calculations including spin-orbit effects
have been performed by Baggesen et al. [13] and by Kol-
basova et al. [14]. A relativistic many-body approach was
used to describe the bound states and the hole transitions, in
krypton and in xenon, with dynamics computed using time-
dependent perturbation theory. Strong-field ATAS studies so
far have been based on ad hoc relativistic theory, although the
importance of spin-orbit coupling was established already by
the first ATAS experiment [1]. Pabst et al. have pioneered this
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subject by solving the time-dependent Schrödinger equation
(TDSE), within the time-dependent configuration-interaction
singles (TDCIS) method [15], with spin-orbit effects incor-
porated to the hole orbitals by hand. This was done by
performing a recoupling of the hole angular momentum � and
spin s to a total hole angular momentum j and then adjusting
its energy to match experimental values, while no corre-
sponding recoupling was performed for the particle states.
Recently, two-component time-dependent R-matrix calcula-
tions are possible with the RMT code [16,17], which has been
used, for example, to resolve the electron spin dynamics in
krypton with a combination of parallel- and cross-polarized
laser pulses [18].

Regarding the lack of a relativistic transient absorption the-
ory that handles laser fields beyond the perturbative regime,
we have decided to develop a general relativistic ATAS
method to study heavy elements in strong fields. The first
step in our development was the derivation of the relativistic
transient absorption theory based on the time-dependent Dirac
equation (TDDE) [19]. Once the equations of the relativistic
transient absorption theory have been validated, the next step
is to solve the many-electron TDDE. As this is not a trivial
task, in our opinion, it merits its own attention. Thus, the
aim of the present paper is to discuss the approximations
we have applied in order to solve the many-electron TDDE.
As a compromise between computational cost and accuracy,
a relativistic formulation of the TDCIS method (i.e., RTD-
CIS), has been chosen for our purpose. The development of
RTDCIS was carried out following the implementation of
the TDCIS method done by Rohringer et al. [20] and by
Greenman et al. [21]. The main difference between RTDCIS
and TDCIS is that, in the former method, the atomic orbitals
are four-component spinors obtained by solving the relativis-
tic Hartree-Fock equations (also known as the Dirac-Fock
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equations), while in the latter method, the atomic orbitals
are obtained from a nonrelativistic Hartree-Fock calculation.
In consequence, as in TDCIS, the different hole excitation
channels are going to be coupled by the presence of the
electron-electron interaction term in the relativistic Hamilto-
nian and by the action of external fields [22]. Thus, RTDCIS
is not a single-active electron model because many-body or
multichannel effects are included in the theory. The advantage
of using RTDCIS is the possibility to have access to the fine
structure of the atomic spectra beyond the perturbative regime
without the necessity of including an ad hoc Pauli-type poten-
tial to the Hamiltonian. For the moment, our implementation
of RTDCIS is restricted to closed-shell atoms. The description
of the light matter is restrained to the dipole approximation,
which is sufficient for strong, albeit not extreme fields. Dis-
cussions about beyond-dipole effects in the TDDE can be
found in Refs. [23,24]. Pair production may be induced by
extreme processes, such as heavy-ion collisions at relativistic
velocities, or in presence of a superstrong laser field that
polarizes the vacuum [25]. Our work on relativistic ATAS
is far from these extreme scenarios and the no-virtual-pair
approximation [26] is applied. The limitations of RTDCIS,
which are explored in the present work, comes from the fact
that it is a single reference method that only includes single
excitations. Similar limitations were reported for TDCIS, see
for example Refs. [20,21,27]. Generally speaking, the method
proposed here can be used to study spin-resolved ATAS exper-
iments in heavy elements beyond the perturbative regime with
relativistic effects described by first principles via the Dirac
equation. Similarly, it can be applied to other strong-field
processes, such as high-order harmonic generation, above-
threshold ionization, and laser-assisted photoionization.

The outline of the present paper is as follows. In Sec. II, the
theory is presented with a derivation of the RTDCIS equations
of motion and observables. In Sec. III, details on the chosen B-
spline basis set and the numerical propagator are commented.
In Sec. IV, results are presented and discussed. In order
to validate the RTDCIS theory, different observables have
been calculated for krypton and xenon. First, the quality of
the relativistic configuration-interaction singles (RCIS) space
has been investigated. Our results have been compared with
experimental spectral data [28,29] provided by the National
Institute of Standards and Technology (NIST) [30] and with
four-component configuration-interaction singles calculations
performed with the DIRAC19 code [31]. Second, the imple-
mentation of RTDCIS has been verified using photoionization
cross sections that have been compared with experimental
data [32–35] and with relativistic random phase approxi-
mation (RRPA). We compare such RRPA calculations with
explicit time propagation of a relativistic method, where we
find that the Tamm-Dancoff approximation [RRPA(TD)] pro-
vides an efficient benchmark for the implementation. Finally,
in Sec. V, the conclusion is given.

II. THEORY

In this section, the formulation of RTDCIS is presented.
The equations of motion are derived in Sec. II A 1 and we
discuss the computation of the required source orbitals (four-
component spinors of the Dirac-Fock equation) in Sec. II

A 2. Due to the presence of a complex absorbing poten-
tial (CAP), the Dirac-Fock equations become non-Hermitian
and particular evaluation of the matrix elements is high-
lighted. Afterwards, the no-virtual-pair approximation is
discussed in Sec. II A 3. Next, the computation of some
observables is addressed. First, the computation of the rel-
ativistic singly excited state energy levels is described in
Sec. II B 1. Second, the equations to compute the total angular
momentum of a relativistic singly excited state are derived for
a closed-shell atom in Sec. II B 2. Finally, the calculation
of the photoionization cross sections is presented in Sec. II
B 3. Atomic units (a.u.) are used unless otherwise stated,
e = h̄ = me = 4πε0 = 1.

A. Relativistic formulation of TDCIS

1. Equations of motion

The relativistic electron dynamics of a closed-shell atom
under the influence of a laser field is encoded in the TDDE,
which can be written in the Hamiltonian formulation as fol-
lows:

i
∂

∂t
|�(t )〉 = [Ĥ + V̂ (t )]|�(t )〉, (1)

where �(t ) is the N-electron wave function, Ĥ is the field-free
Hamiltonian and V̂ (t ) describes the interaction of the atom
with the laser field. Equation (1) cannot be solved exactly and
different approximations must be taken into account. Within
the framework of the RTDCIS, the time-dependent N-electron
wave function is going to be expressed as a linear combi-
nation of the Dirac-Fock ground state, |�DF

0 〉, and the single
particle-hole excitation states, |�p

a〉. Thus, the time-dependent
N-electron ansatz is given by

|�(t )〉 = c0(t )
∣∣�DF

0

〉 + ∑
a,p

cp
a (t )

∣∣�p
a

〉
, (2)

where |�p
a〉 = â†

pâa|�DF
0 〉 and |�DF

0 〉 = â†
N . . . â†

c â†
bâ†

a|0〉 with
|0〉 being the vacuum state. Here and in the following, in-
dices a, b, c, d, . . . are used for one-particle occupied (core)
orbitals in |�DF

0 〉, while indices p, q, r, s, . . . are employed for
unoccupied (virtual) orbitals. For general one-particle orbitals
(occupied or unoccupied) i, j, k, l, . . . indices are used. The
one-particle orbitals, |i〉, are given by four-component Dirac-
Fock spinors, which are obtained after solving the following
eigenvalue problem:

ĥDF
0 |i〉 = εi|i〉, (3)

where ĥDF
0 is the one-particle Dirac-Fock operator and εi are

the one-particle Dirac-Fock orbital energies, which are given
by

εi = 〈i|ĥDF
0 |i〉

= 〈i|ĥD|i〉 + 〈i|v̂DF|i〉
= 〈i|ĥD|i〉 +

∑
b

[〈ib|r−1
12 |ib〉 − 〈ib|r−1

12 |bi〉], (4)

where the Dirac operator ĥD is defined as

ĥD = c α · p + βmec2 − Z

r
, (5)
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where c is the speed of light, mec2 the electron rest mass
energy, p = −i∇ the electron momentum operator, r the elec-
tron position, and Z the nuclear charge. The Dirac matrices
α = (αx, αy, αz ) and β are given by

αξ =
(

0 σξ

σξ 0

)
; and β =

(
I 0
0 −I

)
,

with

σx =
(

0 1
1 0

)
; σy =

(
0 −i
i 0

)
; and σz =

(
1 0
0 −1

)
,

where the set of σξ is given by the Pauli matrices and I is a 2 ×
2 unitary matrix [26]. The action of the Dirac-Fock potential
v̂DF on |i〉 is expressed in terms of the direct 〈ia|r−1

12 |ia〉 and
exchange 〈ia|r−1

12 |ai〉 Coulomb two-electron integrals (writ-
ten here in the so-called physicist’s notation) where r12 =
|r1 − r2|. The complete expression for the relativistic two-
electron integrals is given below. Finally, the one-particle
Dirac-Fock orbitals are expressed in spherical coordinates as
follows [36]:

〈r|i〉 ≡ ϕn,κ,m(r) = 1

r

(
Pn,κ (r)χκ,m(�)

iQn,κ (r)χ−κ,m(�)

)
, (6)

where the quantum number κ relates � and j as follows:
κ = � for j = � − 1/2 and κ = −(� + 1) for j = � + 1/2.
The spin-angular functions χ±κ,m(�) are expressed using the
�s coupling as follows:

χ±κ,m(�) = 1√
2� + 1

(±√
� ± m + 1/2 Y m−1/2

� (�)√
� ∓ m + 1/2 Y m+1/2

� (�)

)
,

(7)
where � stands for the angles θ, φ. The radial functions
Pn,κ (r) and Qn,κ (r) are the so-called large and small compo-
nents, respectively.

In consequence, the field-free Hamiltonian in Eq. (1) can
be expressed as follows [37]:

Ĥ = Ĥ (DF)
0 + Ĥ1 − E (DF)

0 , (8)

where the reference Hamiltonian (also known as the zero-
order Hamiltonian) is given by the N-electron Dirac-Fock
Hamiltonian, i.e.,

Ĥ (DF)
0 =

∑
i j

〈i|ĥDF
0 | j〉â†

i â j, (9)

and the perturbation is given by the difference between the
exact electron-electron Coulomb interaction and the Dirac-
Fock potentials, i.e.,

Ĥ1 = 1

2

∑
i jkl

〈i j|r−1
12 |kl〉â†

i â†
j âl âk −

∑
i j

〈i|v̂DF| j〉â†
i â j . (10)

In order to have compact equations of motion, the spectrum of
the field-free Hamiltonian is shifted by the Dirac-Fock ground
state energy, i.e.,

E (DF)
0 =

∑
a

εa − 1

2

∑
ab

[〈ab|r−1
12 |ab〉 − 〈ab|r−1

12 |ba〉], (11)

which is taken as the zero energy reference.

The interaction with the laser field is going to be treated
within the dipole approximation [38]. Neglecting the mag-
netic laser-field effects, and using a linearly polarized pulse of
duration τ along the z axis, we write the interaction in length
gauge as

V̂ (t ) = E (t )
∑

i j

â†
i â j〈i|ẑ| j〉, (12)

where ẑ is the z component of the dipole operator and E (t )
is the electric field. The complete expression for the dipole-
transition elements 〈i|ẑ| j〉 is given in our previous work [19].

Inserting the ansatz given by Eq. (2) into Eq. (1), and
projecting onto either |�DF

0 〉 or |�p
a〉, we obtain the equations

of motion for the time-dependent coefficients c0(t ) and cp
a (t ),

respectively. The resulting matrix elements are determined
using the anticommutation relations of the creation and the an-
nihilation operators (equivalent to the so-called Slater-Condon
rules, see Ref. [37]). Some of the required matrix elements are
given here:〈

�DF
0

∣∣Ĥ ∣∣�p
a

〉 = 0 (Brillouin theorem);〈
�DF

0

∣∣V̂ (t )
∣∣�p

a

〉 = E (t )〈a|ẑ|p〉;〈
�p

a

∣∣Ĥ ∣∣�q
b

〉 = (εp − εa)δabδpq + 〈bp|r−1
12 |qa〉 (13)

− 〈bq|r−1
12 |aq〉;〈

�p
a

∣∣V̂ (t )
∣∣�q

b

〉 = E (t )[〈p|ẑ|q〉δab − 〈b|ẑ|a〉δpq].

Thus, the RTDCIS equations of motions are given by

iċ0(t ) =
∑
ap

cp
a (t )E (t )〈a|ẑ|p〉; (14a)

iċp
a (t ) = (εp − εa)cp

a (t )

+
∑

bq

cq
b(t )

[〈bp|r−1
12 |qa〉 − 〈bp|r−1

12 |aq〉]

+E (t )

[
c0(t )〈p|ẑ|a〉 +

∑
q

cq
a(t )〈p|ẑ|q〉

−
∑

b

cp
b (t )〈b|ẑ|a〉

]
, (14b)

where εa and εp are the hole and particle energies of the one-
particle Dirac-Fock orbitals |a〉 and |p〉, respectively.

As we can see, Eq. (14) is similar to the nonrelativistic
equations of motion derived by Rohringer et al. [20] and
Greenman et al. [21]. Note that in the nonrelativistic TD-
CIS implementation, factors of two arise due to the use of
spin-adapted configurations (i.e., due to the summation of
the spin degrees of freedom). However, the main difference
between our implementation and Refs. [20] and [21] is the
relativistic nature of the one-particle orbitals used in Eq. (14).
This fact will strongly modify the possible number of active
holes and then the total number of ionization channels per
simulation. Finally, in order to avoid unphysical reflections
during the numerical propagation of TDCIS, core and vir-
tual orbitals are obtained from a Hartree-Fock calculation
in presence of a CAP [21]. Likewise, in the present rela-
tivistic version, core and virtual orbitals are obtained after
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solving Eq. (3) (i.e., the Dirac-Fock equations) in presence of
a CAP.

2. Dirac-Fock equations with CAP

In the present work, the Dirac-Fock equations have been
implemented following the investigations of Grant [26,36,39]
and Lindgren and Rosén [40]. The electron-electron inter-
action has been treated using the instantaneous Coulomb
potential. The resulting two-electron integrals are given by the
following multipolar expansion:

〈i j|r−1
12 |kl〉 =

∑
uw

(−1)wRu(i jkl )〈i|X u
w|k〉〈 j|X u

−w|l〉, (15)

where the angular coefficients, 〈i|X u
w|k〉 and 〈 j|X u

−w|l〉, are
expressed in terms of 3 j symbols, see Eq. (7.9) in Ref. [36],
and the radial part is given by the so-called relativistic Slater
integral,

Ru(i jkl ) =
∫ ∞

0
Iu(ik)[P∗

j (r1)Pl (r1) + Q∗
j (r1)Ql (r1)]dr1,

with

Iu(ik) =
∫ ∞

0

ru
<

ru+1
>

[P∗
i (r2)Pk (r2) + Q∗

i (r2)Qk (r2)]dr2,

where r< = min(r1, r2) and r> = max(r1, r2). Therefore, for
a one-particle orbital |a〉, the Dirac-Fock equations can be
written as follows:

−c Q′
a + cκ

r
Qa +

[
UCAP(r) − Z

r

]
Pa

+
∑

bu

[C0(abu)Iu(bb)Pa + D0(abu)Iu(ab)Pb] = εaPa;

(16a)

c P′
a + cκ

r
Pa −

[
UCAP(r) + 2mec2 + Z

r

]
Qa

+
∑

bu

[C0(abu)Iu(bb)Qa + D0(abu)Iu(ab)Qb] = εaQa,

(16b)

where the angular coefficients are given by

C0(abu) = (2 jb + 1)δu,0; (17a)

D0(abu) = −(2 jb + 1)

(
ja u jb

− 1
2 0 1

2

)2

, (17b)

for �a + �b + u even, otherwise D0(abu) = 0. In Eq. (16), the
zero energy has been defined so that an electron at rest at
infinity has zero energy.

As is customary Eq. (16) is here solved numerically using a
L2-basis approximation where Dirichlet boundary conditions
are imposed [26]. In order to prevent unphysical reflections
during time propagation at the end of the simulation box, a
complex absorbing potential UCAP(r) has been incorporated
as a scalar potential following the implementation made by
Ackad and Horbatsch in Refs. [41–43]. The CAP used here is
defined as in Ref. [44], i.e.,

UCAP(r) =
{

0 if r � RCAP;
−iη(r − RCAP)2 if r > RCAP,

(18)

being η a positive parameter that determines the strength of
the potential. Due to the presence of the CAP, the Dirac-Fock
Hamiltonian becomes non-Hermitian. As a consequence,
the Hermitian inner product is not satisfied in this basis.
Nevertheless, the resulting complex symmetric Dirac-Fock
Hamiltonian enables a redefinition of the inner product. This
problem was also addressed in the implementation of the
nonrelativistic TDCIS method in Ref. [21]. In practice, one
does not take the complex conjugate of the radial function in
the left vector when computing matrix elements.

3. No-virtual-pair approximation

The solution of Eq. (16) is composed by two sets of solu-
tions: the positive-energy states and the negative-energy states
[26]. When positron-electron pair creation is energetically
out of reach, the possibility of removing the negative-energy
states from the basis is very tempting from a computational
point of view. With the basis set reduced by a factor of two,
the time propagation will be less demanding. The question on
how to treat the negative-energy states in the many-electron
mean-field problem has been addressed by several authors in
the last decades, see for example [26,45–51] and references
therein. Furthermore, this problem has been attacked by dif-
ferent relativistic atomic and molecular codes, see for example
Refs. [52–54].

In essence, it can be shown that a positive-energy solution
of the relativistic Hartree-Fock Hamiltonian does not contain
any negative component [47]. Therefore, the negative-energy
states can be easily rejected by inspection of the energy value.
In the so-called no-virtual-pair approximation, the sums in
Eq. (16) are restricted to orbital indices that belong to the
positive-energy solutions only. Even though this is a very
natural approximation, only together the positive- and the
negative-energy solutions form a complete basis set. This
issue has important consequences when a time-dependent
perturbation is added to the Hamiltonian. As Furry [55]
showed in 1951, when a spectral method is used to evaluate
a time-dependent perturbation beyond the lowest order, both
positive- and negative-energy states are needed to expand the
intermediate virtual states correctly. Moreover, if the pertur-
bation is described by a nondiagonal operator with respect
to the large and the small components of the wave function,
it can be shown that the contribution of the negative-energy
states is of the same order of magnitude as the contribution
corresponding to the positive. This has been investigated in
detail by Selstø et al. [56] in connection with contributions
beyond the dipole approximation and by Vanne and Saenz
[57] in relation with multiphoton ionization within the dipole
approximation. As it was previously explained in Ref. [19],
the velocity form of the dipole operator is indeed nondiag-
onal with respect to the large and the small component and
multiphoton contributions will in this gauge not be correctly
represented with just the positive-energy spectrum. On the
other hand, the length form is diagonal and the contribution of
negative-energy states is greatly suppressed. In fact, it will be
suppressed beyond the leading relativistic contribution with,
at least, one order of the fine-structure constant (αfs ≈ 1/137).
This was also demonstrated quantitatively in Ref. [57]. As a
consequence, one is forced to use the length gauge form of
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the light-matter interaction when the negative-energy states
are excluded from the propagation of the TDDE.

B. Observables

1. Relativistic singly excited state energy levels

In order to compute the relativistic singly excited state
energy levels, one needs to project the field-free Hamiltonian
Ĥ onto the RCIS space. This procedure leads to the following
eigenvalue problem:

ACn = ωnCn, (19)

where A represents the field-free Hamiltonian Ĥ in the RCIS
space, ωn is the singly excited state energy level defined as
ωn = ERCIS − E (DF)

0 , and the vector Cn contains the RCIS
expansion coefficients. The matrix elements of A are then
given by

Aap,bq = (εp − εa)δabδpq + 〈bp|r−1
12 |qa〉 − 〈bp|r−1

12 |aq〉,
(20)

where the two-electron integrals are computed using Eq. (15),
and the orbital energies εa and εp are obtained after solving
Eq. (16).

2. Total angular momentum in closed-shell atoms

In second quantization, the total angular momentum oper-
ator is given by

Ĵtotal =
∑

i j

â†
i â j〈i|Ĵ| j〉, (21)

where the sum runs for all occupied and virtual one-particle
orbitals and Ĵ = Ĵx + Ĵy + Ĵz. As the operator Ĵ does not cou-
ple the occupied and the virtual orbitals in a closed-shell atom,
the sum in Eq. (21) can be rewritten as

∑
i j = ∑occ

ab +∑vir
pq .

This fact allows us to express the total angular momentum
operator as the sum of the separate occupied and virtual con-
tributions as follows:

Ĵtotal = Ĵocc + Ĵvir

=
occ∑
ab

â†
bâa〈b|Ĵ|a〉 +

vir∑
pq

â†
qâp〈q|Ĵ|p〉. (22)

Moreover, the total angular momentum operator Ĵ2
total can be

defined as

Ĵ2
total = Ĵ2

occ + Ĵ2
vir + 2ĴoccĴvir. (23)

As shown in Appendix A, the expectation value of the total
angular momentum for a given RCIS state is defined as〈

Ĵ2
total

〉
n = C†

n J2 Cn, (24)

where the vector Cn is obtained after solving Eq. (19) and the
matrix elements of J2 are expressed in terms of the occupied
and the virtual one-particle orbital quantum numbers, { ja, ma}
and { jp, mp}, respectively, i.e.,

J2
n′,n = 〈

�
q
b

∣∣Ĵ2
total

∣∣�p
a

〉
= {

k1 δma,mbδmp,mq − k2 δma−1,mb−1δmp−1,mq−1

− k3 δma+1,mb+1δmp+1,mq+1
}
δ ja, jbδ jp, jq , (25)

where the angular coefficients are defined as

k1 = ja( ja + 1) + jp( jp + 1) − 2mamp;

k2 = [( ja + ma)( ja − ma + 1)]1/2

× [( jp + mp)( jp − mp + 1)]1/2;

k3 = [( ja − ma)( ja + ma + 1)]1/2

× [( jp − mp)( jp + mp + 1)]1/2.

Note that the matrix elements in Eq. (25) are diagonal with
respect to the j’s quantum numbers but mix the m’s quantum
numbers.

3. Photoionization cross sections

Atomic photoionization cross sections can be calculated as
follows [27]:

σ (ω) = 4πω

c
Re

[∫ ∞

0
C(t )eiωt dt

]
, (26)

where the time-dependent correlation function C(t ) is defined
here as the overlap between an initial dipole-perturbed ground
state |� ′(0)〉 = Q̂|�DF

0 〉 and the field-free propagated state
|� ′(t )〉, being Q̂ the total N-electron position operator. Within
the CIS framework, one can easily find that the correlation
function can be written as C(t ) = ∑

ap cp
a (t )〈a|ẑ|p〉, where the

time-dependent coefficients are found by solving the field-
free set of equations of motion [i.e., by solving Eq. (14)
with E (t ) = 0] with the following initial conditions: c0(0) = 0
and cp

a (0) = 〈p|ẑ|a〉. Moreover, if a CAP is used to generate
the Dirac-Fock orbitals, the dipole transition matrix elements
must be evaluated in an inner region, which is not affected by
the CAP. Details on how to evaluate dipole elements in the
inner region can be found in Ref. [19]. Finally, in order to per-
form the inverse Fourier transform in Eq. (26), a filter function
must be used to damp the infinite oscillating behavior of the
correlation function C(t ). In the present work, the inverse of
the cumulative distribution function has been implemented as
a filter where

f (t ) = 1

2

[
1 + erf

(
t − μ1

μ2

√
2

)]
, (27)

with μ1 being equal to 75% of the total propagation time and
μ2 around 10%, depending on the desired spectral resolution.

III. NUMERICAL IMPLEMENTATION

This section contains numerical details for our im-
plementation of RTDCIS. In Sec. III A, we present the
time-propagation scheme implemented to solve Eq. (14). In
Sec. III B, we give the parameters for the B-spline representa-
tion of the radial components of the Dirac-Fock orbitals.

A. Time-propagation scheme

In this work, Eq. (14) is propagated numerically using
a second-order finite-differencing scheme [58]. This propa-
gation scheme was previously used by us to propagate the
TDDE in hydrogen [19]. It is also the same propagation
scheme that was used for TDCIS in Ref. [21]. As a result, the
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time-dependent coefficients c0(t ) and cp
a (t ) are computed at

each time step �t as follows:

c0(t + �t ) = c0(t − �t )

+2i�tE (t )
∑
ap

cp
a (t )〈a|ẑ|p〉; (28a)

cp
a (t + �t ) = e−2i(εp−εa )�t cp

a (t − �t )

−2i�te−i(εp−εa )�t F p
a (t ), (28b)

where

F p
a (t ) =

∑
bq

cq
b(t )

[〈bp|r−1
12 |qa〉 − 〈bp|r−1

12 |aq〉]

+E (t )

[
c0(t )〈p|ẑ|a〉 +

∑
q

cq
a(t )〈p|ẑ|q〉

−
∑

b

cp
b (t )〈b|ẑ|a〉

]
.

Note that Eq. (28) preserves the norm only for Hermitian sys-
tems. Numerical stability is reached for �t < h̄/|εmax|, εmax

being the largest eigenvalue of the total Hamiltonian opera-
tor [58]. In the present work, the time-dependent correlation
function C(t ) was recorded during a propagation time of 6000
a.u. and �t = 5 × 10−3 a.u.

B. B-spline basis set

The accuracy in describing processes that involve Rydberg
and continuum states can be related to the choice of the basis
set [59]. In the case of atomic photoionization, B-spline basis
sets are preferred, see for example Ref. [60]. Following our
previous work [19], the large and the small components are
expanded in two different B-spline basis sets. As suggested
by Froese-Fischer and Zatsarinny [61], different polynomial
orders for the large and small components are used for the
purpose of removing the so-called spurious states known to
appear in the numerical spectrum of the Dirac-Fock Hamilto-
nian after discretization, i.e.,

Pn,κ (r) =
n′

s∑
i=1

βiB
k′

s
i (r); (29a)

Qn,κ (r) =
ns∑

j=1

β jB
ks
j (r), (29b)

where the dimensions of the basis are defined by n′
s and

ns = n′
s + 1 and the order of the B-splines by k′

s and ks =
k′

s + 1. In the present work, both B-spline sets have been
defined on the same sequence of increasing knot points while
the boundary knots have been chosen to be either ks- or k′

s-
fold degenerate, e.g., r1 = r2 = · · · = rks = rmin and rns+1 =
rns+2 = · · · rns+ks = rmax. In order to ensure the zero boundary
conditions of Pn,κ (r) and Qn,κ (r) at r = rmin and r = rmax,
the first and the last B-splines, in both sets, were removed
from the calculation. Converged results were obtained using
an exponential-linear hybrid knot distribution as in Ref. [62]
with rmax = 100 a.u. and RCAP = 70 a.u. with a CAP strength
of η = 6 × 10−4. The exponential region was described by 12

knot points for krypton and by 18 knot points in the case
of xenon. The linear region was represented by 200 points
where the last 60 knots described the outer region (r > RCAP)
where the CAP is nonzero. The order of the B-splines was
chosen to be ks = 8 and k′

s = 7. For krypton, the chosen grid
generates a total number of ns = 216 B splines for the small
component and ns′ = 215 for the large component. For xenon,
ns = 222 B splines for the small component and ns′ = 221 for
the large component. Given a set of B-spline parameters, one
obtains ns′ positive-energy states and ns negative-energy state
solutions per spin-angular symmetry. In the present work,
we are interested on photoionization from s, p, and d holes,
for that reason a �max = 4 is chosen to ensure the proper
description of the one-photon transitions. In order to speed
up the time propagation, the high-energy components of the
spectrum were not taken into account. This can be done with-
out compromising the results. The adopted cutoff energy was
εcutoff = 15 a.u. Note that the dimension of the problem scales
as [nh(2�max + 1)]2, where nh is the number of active holes.

IV. RESULTS AND DISCUSSION

In order to validate the implementation of RTDCIS,
krypton and xenon have been chosen as target systems in
Secs. IV A and IV B, respectively. We have first explored
the quality of the RCIS space by reproducing the Rydberg
series with configuration ns2np5(2Po

ja )n′�′, where n′ > n with
n = 4 for krypton and n = 5 for xenon. Our relativistic singly
excited state energy levels and their corresponding total an-
gular momentum have been compared with four-component
CIS calculations performed with the LUCIAREL module of
the DIRAC19 code [31,63–66], and with experimental data
provided by NIST [28–30]. Finally, RTDCIS photoionization
cross sections have been compared with experimental data
[32–35] and with RRPA calculations. Details on RRPA calcu-
lations are given in Appendix B. Important conversion factors
are for the energy, 1 a.u. equals to 27.2114 eV, and for the
cross section, 1 a.u. equals 28.0028 Mb.

A. Krypton

As a first comparison between DIRAC19 and our RCIS
code, the Dirac-Fock orbital energies of krypton are shown
in Table I. Dirac-Fock energies obtained with our code are
labeled as “RCIS”. The calculation performed with DIRAC19
was done using a Gaussian-type orbital (GTO) basis set with
parameters given in Appendix C. Excellent agreement is
found between the two calculations. Overall, the differences
are not above the 0.01%. The B-splines parameters chosen
here are able to reproduces the one-particle Dirac-Fock orbital
energies as good as a GTO-type basis set. The Dirac-Fock
orbital energies provide further a good approximation to the
ionization energies from the outermost orbitals: NIST [30]
gives the energy needed for ionization to the ground state of
Kr+ 4p5(2P3/2) to 13.9996 eV, and to 14.6654 eV for ioniza-
tion to 4p5(2P1/2), in close agreement with the values given in
Table I. For ionization from deeper core orbitals, however, the
true ionization energies are typically several eV lower than the
Dirac-Fock orbital energies due to the increased importance of
orbital relaxation.
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TABLE I. Dirac-Fock orbital energies of krypton.

RCISa DIRAC19b

n � j εn,�, j (eV) εn,�, j (eV) �DIRAC
c

1 0 1/2 −14413.49791 −14413.48729 0.00007%
2 0 1/2 −1961.39410 −1961.40662 0.00064%
2 1 1/2 −1765.30087 −1765.27230 0.00162%
2 1 3/2 −1710.99426 −1711.04216 0.00280%
3 0 1/2 −305.45367 −305.44033 0.00437%
3 1 1/2 −234.58893 −234.55246 0.01555%
3 1 3/2 −226.21326 −226.20836 0.00217%
3 2 3/2 −102.79160 −102.80004 0.00821%
3 2 5/2 −101.40654 −101.41688 0.01020%
4 0 1/2 −32.32088 −32.32143 0.00170%
4 1 1/2 −14.73688 −14.73416 0.01846%
4 1 3/2 −13.99564 −13.99618 0.00386%

aEnergies computed with Eq. (16).
bEnergies computed with DIRAC19.
c�DIRAC = |1 − εRCIS/εDIRAC| × 100.

In order to investigate the quality of the RCIS space,
several singly excited state energy levels for the se-
ries 4s24p5(2Po

1/2)n′�′ and 4s24p5(2Po
3/2)n′�′ are shown in

Table II. Calculations have been carried out using only the
following active holes: 4p3/2 and 4p1/2. The RCIS energy lev-
els and their corresponding total angular momenta have been
obtained following the prescriptions given in Sec. II B. First,
experimental excitation energy levels are shown together with
their total angular momentum J and with their correspond-
ing configuration. The energy levels computed with DIRAC19
are shown together with their corresponding parity. DIRAC19
cannot exploit symmetry at the CIS-level, however, for closed-
shell atoms, orbitals have a well-defined parity, i.e., orbitals
can be gerade or ungerade (g/u). As a result, levels can be
easily characterized by the combination of hole and particle
parities. Finally, we show the energy levels obtained with our
RCIS code. The RCIS energy levels are not shown together
with their corresponding total angular momenta as the total
angular momenta computed with Eq. (24) are similar to the
experimental values up to the machine accuracy. In addition,
for a given level, the columns with “�a,max,” “ ja,max,” “�p,max,”
and “ jp,max” contain the one-particle orbital- and total-angular
momenta of the most relevant core and particle orbitals in the
coefficient expansion vector Cn in Eq. (19). As we can ob-
serve, for some levels there is a coexistence of several angular
momenta. That means their weights are comparable in magni-
tude in the coefficient vector Cn. In general, �a,max and ja,max

indicate the correct quantum numbers of the remaining hole.
On the contrary, the assignment of the particle orbital- and
j-quantum numbers with �p,max and jp,max is less conclusive,
since s and d waves, as well as p1/2 and p3/2 waves, generally
mix to describe the excited electron. In order to theoretically
predict the total angular momentum of a singly excited state
level in the RCIS space, one needs to use Eq. (24).

Closer inspection of Table II reveals that the RCIS levels
are mostly above the experimental energy values. As dis-
cussed in many references, see for example Ref. [67], the
excitation energies computed with a CIS-based method are
usually overestimated in comparison with their corresponding

experimental values. This is related to the fact that the singly
excited determinants {|�p

a〉}, derived from the Dirac-Fock
ground state |�0〉, can be seen as a first approximation to the
true excited states. Higher-order correlations, typically requir-
ing doubly excited determinants as {|�pr

ac〉}, generally lower
the energies, and are needed to improve the singly excited
state energies. The comparison of the RCIS energy levels
with the DIRAC19 levels allows us to have another benchmark.
As we can see, differences between RCIS and DIRAC19 are
very small. Nevertheless, at higher excitation energies, the
difference between RCIS and DIRAC19 increases dramatically
(not shown). This is a common problem related to the finite
dimension of the implemented basis set. The same issue is ob-
served between RCIS and NIST but at even higher excitation
energies (not shown). Generally speaking, the dimension of a
GTO-type basis set is going to be limited by the apparition of
the linear dependencies when diagonalizing the Dirac-Fock
Hamiltonian. In the case of the B-spline representation, the
dimension of the basis is limited by the size of the radial box,
i.e., rmax, which in principle can be selected to reach any spe-
cific degree of convergence. Details about convergence tests
with B-splines can be found in Refs. [68,69]. Overall, and
within the degree of convergence that we have obtained with
DIRAC19 and with our RCIS code, the present result indicates
that with our method we are able to reproduce (almost quan-
titatively) the space of the relativistic singly excited states. In
order to reproduce the experimental photoionization spectrum
of krypton, RTDCIS and RRPA calculations were performed
with the following active holes: 4p3/2, 4p1/2, 4s1/2, 3d5/2, and
3d3/2. In Fig. 1, the total photoionization cross section of kryp-
ton is displayed. In Fig. 1(a), a complete profile of the cross
section is shown. As one can see, RTDCIS reproduces the im-
portant features of the photoionization spectrum of krypton:
the quadratic decrease after the 4s edge up to a minimum
around 80 eV and the smooth increase after the 3d edge.
Nevertheless, RTDCIS overestimates the experimental cross
section. On the contrary, the full RRPA calculation matches
very well the entire experimental profile up to the so-called
3d edge, where it exhibits some deviation. This deviation is
in fact produced by the ∼5 eV energy shift existing between
the Dirac-Fock orbital energies and the binding energies of
the 3d orbitals, as estimated from experiments and accurate
calculations in Ref. [70].

In order to understand the overestimation of the total pho-
toionization cross section produced by RTDCIS, we decided
to run a RRPA(TD) calculation. As one can observe in Fig. 1,
RTDCIS matches RRPA(TD) very well. The differences be-
tween RTDCIS and RRPA(TD), which can be detected in the
shapes of the autoionization resonances, are simply related
to the fact that the time-dependent correlation function in
Eq. (26) has been computed during a finite amount of time.
Apart from that, RTDCIS and RRPA(TD) results can be con-
sidered to be in excellent agreement. Thus, the Tamm-Dancoff
approximation reduces RRPA to Eq. (19), i.e., to the RCIS
level of theory, which is used in RTDCIS. One important dis-
advantage of the Tamm-Dancoff approximation is that RRPA
no longer obeys the Thomas-Reiche-Kuhn sum rule, which
states that the sum of the transition dipole moments shall
be equal to the number of electrons [67,71,72]. Therefore,
properties such as total photoionization cross sections cannot
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TABLE II. Singly excited state energy levels of krypton for the series 4s24p5(2Po
1/2)n′�′ and 4s24p5(2Po

3/2)n′�′.

NISTa DIRAC19b RCISc

Configuration Term J Level (eV) Sym. Level (eV) �a,max ja,max �p,max jp,max Level (eV) �NIST
d �DIRAC19

e

4s24p6 1S 0 0.00000 g 0.00000 – – – – 0.00000 0.00000% 0.00000%
4s24p5(2Po

3/2)5s 2[3/2]o 2 9.91523 u 10.01333 p 3/2 s; d 1/2 10.00562 0.91163% 0.07706%
1 10.03240 u 10.18744 p 3/2 s 1/2 10.18222 1.49336% 0.05127%

4s24p5(2Po
1/2)5s 2[1/2]o 0 10.56241 u 10.71064 p 1/2 s; d 1/2 10.70653 1.36446% 0.03839%

1 10.64363 u 10.85654 p 1/2 s; d 1/2;3/2 10.85480 1.98400% 0.01603%
4s24p5(2Po

3/2)5p 2[1/2] 1 11.30345 g 11.30826 p 3/2 p 1/2;3/2 11.27434 0.25753% 0.30086%
0 11.66602 g 11.77865 p 1/2;3/2 p 1/2;3/2 11.76734 0.86851% 0.09611%

4s24p5(2Po
3/2)5p 2[5/2] 3 11.44304 g 11.48680 p 3/2 p 3/2 11.46641 0.20423% 0.17782%

2 11.44465 g 11.51301 p 3/2 p 1/2 11.49764 0.46301% 0.13368%
4s24p5(2Po

3/2)5p 2[3/2] 1 11.52611 g 11.60424 p 3/2 p 1/2;3/2 11.59248 0.57582% 0.10145%
2 11.54582 g 11.62523 p 3/2 p 3/2 11.61601 0.60793% 0.07937%

4s24p5(2Po
3/2)4d 2[1/2]o 0 11.99813 u 11.97188 p 3/2 s; d 3/2 11.96277 0.29471% 0.07615%

1 12.03702 u 12.01820 p 3/2 s; d 3/2 12.00680 0.25106% 0.09495%
4s24p5(2Po

1/2)5p 2[3/2] 1 12.10035 g 12.23126 p 1/2 p 1/2 12.21439 0.94245% 0.13812%
2 12.14365 g 12.26743 p 1/2 p 3/2 12.26442 0.99451% 0.02454%

4s24p5(2Po
3/2)4d 2[3/2]o 2 12.11174 u 12.10917 p 3/2 s; d 3/2;5/2 12.09343 0.15118% 0.13015%

1 12.35455 u 12.50949 p 1/2;3/2 d 3/2;5/2 12.44189 0.70695% 0.54333%
4s24p5(2Po

3/2)4d 2[7/2]o 4 12.12531 u 12.15620 p 3/2 d 5/2 12.13470 0.07744% 0.17718%
3 12.17850 u 12.24345 p 3/2 d 3/2;5/2 12.21649 0.31194% 0.22069%

4s24p5(2Po
1/2)5p 2[1/2] 1 12.14042 g 12.27713 p 1/2 p 3/2 12.25450 0.93967% 0.18467%

0 12.25646 g 12.42570 p 1/2;3/2 p 1/2;3/2 12.41762 1.31490% 0.06507%
4s24p5(2Po

3/2)4d 2[5/2]o 2 12.25799 u 12.35396 p 3/2 s; d 3/2;5/2 12.31549 0.46908% 0.31237%
3 12.28427 u 12.38822 p 3/2 d 5/2 12.34991 0.53434% 0.31020%

4s24p5(2Po
3/2)6s 2[3/2]o 2 12.35215 u 12.39755 p 3/2 s; d 3/2 12.37827 0.21146% 0.15576%

1 12.38528 u 12.41790 p 3/2 s; d 1/2 12.40585 0.16608% 0.09713%
4s24p5(2Po

3/2)6p 2[1/2] 1 12.75638 g 12.76813 p 3/2 p 1/2;3/2 12.75895 0.02015% 0.07195%
0 12.86480 g 12.90986 p 1/2;3/2 p 1/2;3/2 12.90011 0.27447% 0.07558%

4s24p5(2Po
3/2)6p 2[5/2] 3 12.78470 g 12.79665 p 3/2 p 3/2 12.78856 0.03019% 0.06326%

2 12.78539 g 12.80480 p 3/2 p 1/2 12.79860 0.10332% 0.04844%
4s24p5(2Po

1/2)4d 2[3/2]o 2 12.80339 u 12.95024 p 1/2;3/2 d 5/2 12.83762 0.26735% 0.87727%
1 13.00436 u 12.95908 p 1/2;3/2 s; d 3/2;5/2 12.87001 1.03312% 0.69207%

4s24p5(2Po
3/2)6p 2[3/2] 1 12.80923 g 12.83218 p 3/2 p 1/2;3/2 12.82661 0.13568% 0.04343%

2 12.81533 g 12.83778 p 3/2 p 1/2;1/2 12.83260 0.13476% 0.04037%

aExperimental data from Ref. [29].
bEnergy levels computed with the DIRAC19 code (see text).
cEnergy levels computed with Eq.(19).
d�NIST = |1 − LevelRCIS/LevelNIST| × 100.
e�DIRAC19 = |1 − LevelRCIS/LevelDIRAC19| × 100.

be expected to be quantitatively accurate with RRPA(TD) or
RTDCIS.

In the Fig. 1(b), the 4s24p6(1S) → 4s4p6np(1P) autoion-
ization energy range is presented. A comparison with the
measurements performed by Chan et al. [73] shows that nei-
ther RRPA, nor RRPA(TD) or RTDCIS are able to properly
reproduce the autoionization process in krypton. Figure 15
in Ref. [73] displays typical window resonances, in sharp
contrast to Fig. 1(b). The source of this disagreement is
the lack of the two-electron–two-hole excitations. This prob-
lem is intrinsic to all RRPA and RRPA(TD) calculations.
Amusia and Kheifets [74], as well as Carette et al. [75],
addressed this question in argon, where these excitations are
also important. In order to obtain the correct q parameter

in Fano’s theory of autoionization (i.e., the parameter that
defines the shape of the autoionization resonances) one needs
to include such configurations that are close in energy to
the dominating one-hole–one-particle configuration. For the
resonances shown in Fig. 1(b), which are labeled as being
due to excitations to 4s4p6np, this means that it, in particular,
is important to add configurations such as 4s24p44dnp. To
overcome this limitation in RTDCIS, one will need to include
doubly excited configurations (i.e., |�pr

ac〉) in Eq. (2). How-
ever, in terms of computational time, the addition of doubly
excited states into the expansion of the time-dependent wave
function is very expensive. For the moment, our investigation
on ATAS will be restricted to the space of singly excited
configurations.
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FIG. 1. Top panel (a): theoretical and experimental total pho-
toionization cross section of krypton. Experimental data from
Ref. [32]. Bottom panel (b): total photoionization cross section of
krypton in the 4s24p6(1S) → 4s4p6np(1P) autoionization energy
range.

B. Xenon

Following the discussion on krypton, a similar investiga-
tion has been done for xenon. In Table III, the Dirac-Fock
energies of xenon are compared with DIRAC19 calculations.
As in the case of krypton, the agreement between the two cal-
culations is very good. The orbital energies for the outermost
orbitals agree further well with experimental ionization ener-
gies [30] (12.1298 eV when the ion is left in 5p5 2P3/2 state,
and 13.4368 eV when it is left in 5p5 2P1/2), while the 5s and
4d orbital energies are around 4 eV above the true positions
of the 5s edge [30] and the 4d edges [76], respectively.

In Table IV, several energy levels belonging to the
5s25p5(2Po

1/2)n′�′ and 5s25p5(2Po
3/2)n′�′ series of singly ex-

cited state in xenon are given. Calculations have been carried
out using only the following active holes: 5p3/2 and 5p1/2.
First of all, the experimental energy levels are shown together
with their total angular momentum J and with their corre-
sponding electron configuration. The energy levels computed
with DIRAC19 are shown together with their corresponding
parity. Moreover, an extra column has been added to the
DIRAC19 results. This column contains the energy levels when
the magnetic part of the electron-electron interaction, in form
of the so-called Gaunt term [77,78], is accounted for. For

TABLE III. Dirac-Fock orbital energies of xenon.

RCISa DIRAC19b

n � j εn,�, j (eV) εn,�, j (eV) �DIRAC
c

1 0 1/2 −34755.43795 −34755.96427 0.00151%
2 0 1/2 −5508.96252 −5509.38625 0.00769%
2 1 1/2 −5161.48991 −5161.40855 0.00158%
2 1 3/2 −4835.61037 −4835.61570 0.00011%
3 0 1/2 −1170.29682 −1170.39998 0.00881%
3 1 1/2 −1024.78963 −1024.78765 0.00019%
3 1 3/2 −961.25527 −961.27295 0.00184%
3 2 3/2 −708.13702 −708.15645 0.00274%
3 2 5/2 −694.90484 −694.92646 0.00311%
4 0 1/2 −229.37366 −229.40692 0.01450%
4 1 1/2 −175.58375 −175.59037 0.00377%
4 1 3/2 −162.80167 −162.81276 0.00681%
4 2 3/2 −73.78031 −73.79646 0.02189%
4 2 5/2 −71.66946 −71.68587 0.02290%
5 0 1/2 −27.48507 −27.48995 0.01776%
5 1 1/2 −13.40393 −13.40252 0.01052%
5 1 3/2 −11.96796 −11.96762 0.00284%

aEnergies computed with Eq. (16).
bEnergies computed with DIRAC19
c�DIRAC = |1 − εRCIS/εDIRAC| × 100.

the description of the valence-excited states it is typically
not the direct influence of the magnetic interaction, which is
most important, but the self-consistent treatment of it, which
changes the central-field potential [79]. The RCIS energy
levels are not shown together with their J values as the total
angular momenta computed with Eq. (24) are equal to the
experimental values up to the machine accuracy. In addition,
the columns with �a,max, ja,max, �p,max, and jp,max contain the
one-particle orbital- and total-angular momenta of the most
relevant core and particle orbitals in the coefficient expan-
sion vector Cn in Eq. (19). Similarly to krypton, �a,max and
ja,max typically do indicate the dominating quantum numbers
of the hole, while several angular momentum channels are
needed to describe the excited electron. Finally, in the last two
columns of Table IV, the RCIS energy levels are compared
with NIST and DIRAC19. As one can see, the RCIS levels are
in good agreement with the levels computed with DIRAC19.
We note that both calculations most often underestimate the
experimental energies. The deviations from the experimental
energy values are related to the lack of higher-order electron
correlation, as previously commented on for krypton, but the
form of the relativistic electron-electron interaction also starts
to come into play. As seen in Table IV, the energies obtained
with DIRAC19 are modified with up to one percent when the
Gaunt interaction is added to the Dirac-Fock Hamiltonian.
In contrast, only minor modifications of the DIRAC19 energy
levels were observed when it was accounted for in the krypton
calculations (not shown). As a consequence, if heavier ele-
ments are to be explored in the future with the RTDCIS code,
the Gaunt interaction, or even better, the complete Breit [80]
interaction, should be taken into account.

In Fig. 2, the total and partial 4d photoionization cross
sections of xenon are given. In the top panel, the experimental
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TABLE IV. Singly excited state energy levels of xenon for the series 5s25p5(2Po
1/2)n′�′ and 5s25p5(2Po

3/2)n′�′.

NISTa DIRAC19b RCISc

Configuration Term J Level (eV) Sym. Levelf (eV) Level (eV) �a,max ja,max �p,max jp,max Level (eV) �NIST
d �DIRAC19

e

5s25p6 1S 0 0.00000 g 0.0000 0.00000 – – – – 0.00000 0.00000% 0.00000%
5s25p5(2Po

3/2)6s 2[3/2]o 2 8.31531 u 8.33595 8.29748 p 3/2 s; d 1/2 8.29633 0.22825% 0.01386%
1 8.43652 u 8.52396 8.48452 p 3/2 s; d 1/2 8.48382 0.56066% 0.00825%

5s25p5(2Po
1/2)6s 2[1/2]o 0 9.44719 u 9.34829 9.31319 p 1/2;3/2 s; d 1/2;3/2 9.31240 1.42677% 0.00848%

1 9.56972 u 9.53871 9.43782 p 3/2 s; d 1/2;3/2 9.43823 1.37402% 0.00434%
5s25p5(2Po

3/2)6p 2[1/2] 1 9.58015 g 9.53871 9.50225 p 1/2;3/2 p 1/2;3/2 9.50187 0.81711% 0.00400%
0 9.93348 g 9.93898 9.94571 p 1/2;3/2 p 9.94603 0.12634% 0.00322%

5s25p5(2Po
3/2)6p 2[5/2] 2 9.68562 g 9.67043 9.62628 p 3/2 p 1/2;3/2 9.62005 0.67698% 0.06476%

3 9.72074 g 9.66841 9.62816 p 3/2 p 3/2 9.61578 1.07975% 0.12875%
5s25p5(2Po

3/2)6p 2[3/2] 1 9.78930 g 9.77860 9.73590 p 3/2 p 1/2;3/2 9.73353 0.56970% 0.02435%
2 9.82109 g 9.80897 9.76607 p 3/2 p 3/2 9.76415 0.57977% 0.01966%

5s25p5(2Po
3/2)5d 2[1/2]o 0 9.89037 u 9.98467 9.89473 p 3/2 s; d 3/2 9.89458 0.04257% 0.00152%

1 9.91707 u 10.02071 9.97563 p 1/2;3/2 s; d 3/2 9.97568 0.59100% 0.00050%
5s25p5(2Po

3/2)5d 2[7/2]o 4 9.94311 u 9.86972 9.83221 p 3/2 d 5/2 9.80440 1.39504% 0.28365%
3 10.03905 u 10.01518 9.98221 p 3/2 d 3/2 9.96132 0.77428% 0.20971%

5s25p5(2Po
3/2)5d 2[3/2]o 2 9.95875 u 9.87174 9.83455 p 3/2 s; d 3/2;5/2 9.83305 1.26221% 0.01525%

1 10.40103 u 10.44642 10.40286 p 3/2 s; d 3/2;5/2 10.37664 0.23450% 0.25268%
5s25p5(2Po

3/2)5d 2[5/2]o 2 10.15746 u 10.17994 10.14016 p 3/2 d 3/2;5/2 10.12552 0.31445% 0.14459%
3 10.22004 u 10.24666 10.20526 p 3/2 d 5/2 10.19511 0.24393% 0.09956%

5s25p5(2Po
3/2)7s 2[3/2]o 2 10.56206 u 10.51817 10.47475 p 3/2 s; d 1/2 10.44129 1.14343% 0.32046%

1 10.59321 u 10.57395 10.53028 p 3/2 s; d 1/2 10.48867 0.98686% 0.39671%
5s25p5(2Po

3/2)7p 2[1/2] 1 10.90157 g 10.79777 10.75406 p 3/2 p 1/2;3/2 10.75394 1.35421% 0.00112%
0 11.01503 g 10.95639 10.91197 p 3/2 p 1/2;3/2 10.90575 0.99210% 0.05703%

5s25p5(2Po
3/2)7p 2[5/2] 2 10.95421 g 10.89935 10.82338 p 3/2 p 1/2 10.81939 1.23076% 0.03688%

3 10.96878 g 10.91483 10.82791 p 3/2 p 3/2 10.82352 1.32430% 0.04056%

aExperimental data from Ref. [29].
bEnergy levels computed with the DIRAC19 code (see text).
cEnergy levels computed with Eq.(19).
d�NIST = |1 − LevelRCIS/LevelNIST| × 100.
e�DIRAC19 = |1 − LevelRCIS/LevelDIRAC19| × 100.
fEnergy levels computed with Gaunt interaction (see text).

total photoionization cross section profile is compared with
RRPA, RRPA(TD), and RTDCIS calculations. Calculations
have been performed using the following active holes: 5p3/2,
5p1/2, 5s1/2, 4d5/2, and 4d3/2. As in the case of krypton, RT-
DCIS overlaps the RRPA(TD) result. These two calculations
overestimate the experimental profile but are able to reproduce
the important features of the spectrum: the quadratic decreas-
ing up to a minimum around 60 eV and, after the 4d edge,
the so-called giant resonance. The differences that can be
seen between RTDCIS and RRPA(TD) has been commented
previously for krypton. On the contrary, RRPA matches very
well over the whole spectrum. In the middle panel, the total
photoionization cross section of xenon is shown in the energy
range of the 5s25p6(1S) → 5s5p6np(1P) autoionization reso-
nances. As for krypton, the resonances obtained with RRPA
have very narrow energy widths. RTDCIS and RRPA(TD)
results present broader resonances. However, a comparison
with the measurements by Chan et al. [73], shows as for
krypton, clear window resonances, cf. Fig. 16 in Ref. [73],
i.e., with a clearly different resonance profile than either of
the curves in Fig. 2(b).

Finally, in Fig. 2(c), the 4d partial photoionization cross
section of xenon is presented. RRPA, RRPA(TD), and

RTDCIS calculations have been performed following the
work of Cheng and Johnson [81]. Correlation effects from
the 5s and 5p shells, as well as from inner shells, have been
neglected and only the 4d5/2 and 4d3/2 orbitals are consid-
ered as active holes. The origin of the giant resonance in the
photoionization spectrum of xenon has been investigated by
several authors, see for example Refs. [81–84]. The existence
of this resonance can be explained using a single-electron
picture, however, to obtain the correct spectral position and
shape one is forced to introduce electron-electron correlation
effects beyond the mean-field approximation. As we can see,
the RTDCIS method matches the results generated by the
RRPA(TD) calculation. However, the partial cross section is
overestimated and the spectral position is shifted in compar-
ison with the experimental data. On the contrary, the RRPA
calculation, which includes the so-called time-reverse dia-
grams (see Appendix B and references therein), does produce
the true strength of the resonance and the spectral shift com-
pared to RRPA(TD). Nevertheless, the still missing relaxation
effects should also be included in order to properly describe
the giant resonance [85]. Overall, RTDCIS is a simple method
that is capable to reproduce single-electron processes almost
quantitatively in xenon.
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FIG. 2. Top panel (a): theoretical and experimental total pho-
toionization cross section of xenon. Experimental data from
Ref. [32]. Middle panel (b): total photoionization cross section
of xenon in the 5s25p6(1S) → 5s5p6np(1P) autoionization energy
range. Bottom panel (c): xenon partial 4d photoionization cross
section. Experimental data: solid squares from Ref. [33], solid circles
from Ref. [34], and solid diamonds from Ref. [35].

V. CONCLUSION

RTDCIS is based on the expansion of the N-electron time-
dependent wave function in the space of single excitations and
the first goal was to investigate the quality of this space. To
this end, energy levels of a range of singly excited states in
krypton and xenon was calculated and compared with exper-
imental data from NIST, as well as with four-component CIS

calculations performed with DIRAC19. The agreement with
DIRAC19 is excellent, and the deviations from experiments is
within the expected size of contributions from higher-order
electron-electron correlation, which are missing in both cases.
For xenon there is evidence that contributions from interelec-
tron interactions beyond the pure Coulomb contribution play
a role. In the future we plan thus to add a possibility to start
from Dirac-Fock-Breit orbitals, which can be done without
any major consequences for the time consumption during the
time propagation.

Subsequently, the time propagation was validated by com-
parison of our RTDCIS photoionization cross sections, which
are extracted after time propagation of the TDDE, with tradi-
tionally calculated cross sections, as well as with experiments.
As expected, the RTDCIS cross sections are completely
equivalent to the RRPA(TD) results.

In conclusion, our implementation of RTDCIS, which is
now benchmarked with respect to accuracy, opens the possi-
bility to study one-electron processes in heavy atoms beyond
the perturbative regime in the context of attosecond transient
absorption spectroscopy, high-order harmonic generation,
above-threshold ionization, and laser-assisted photoioniza-
tion.
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APPENDIX A: TOTAL ANGULAR MOMENTUM MATRIX
ELEMENTS FOR CLOSED-SHELL ATOMS

When closed-shell atoms are investigated, one can easily
find that the elements of the total angular momentum ma-
trix can be expressed in terms of the occupied and virtual
one-particle orbital quantum numbers. In this Appendix, the
matrix elements for the total angular momentum are derived in
terms of the occupied and virtual one-particle orbital quantum
numbers.

The total angular momentum expectation value is defined
as 〈

Ĵ2
total

〉
n = C†

n J2 Cn, (A1)

where the vector Cn is obtained after diagonalizing the rel-
ativistic N-electron field-free Hamiltonian in the basis of
the relativistic configuration interaction singles (RCIS) states.
The matrix elements of J2 are given by

J2
n′,n = 〈

�
q
b

∣∣Ĵ2
total

∣∣�p
a

〉
, (A2)

where the relativistic singly excited states are defined in sec-
ond quantization as ∣∣�p

a

〉 = â†
pâa|�0〉. (A3)

As the operator Ĵ does not couple the occupied and the virtual
one-particle states in a closed-shell atom, the total angular
momentum operator can be redefined as

Ĵ2
total = Ĵ2

occ + Ĵ2
vir + 2ĴoccĴvir, (A4)
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where

Ĵocc =
occ∑
a,b

â†
bâa〈b|Ĵ|a〉; (A5a)

Ĵvir =
vir∑
p,q

â†
qâp〈q|Ĵ|p〉. (A5b)

Therefore, in order to compute Eq. (A2), one needs first to
know the action of Ĵ2

occ, Ĵ2
vir and ĴoccĴvir on |�p

a〉.
By making use of Eq. (A3), Eq. (A5) and the anticommu-

tator relations for the creation and the annihilation operators,
given by

{â†
i , â†

j} = 0; {âi, â j} = 0; and {âi, â†
j} = δi, j, (A6)

one obtains the actions for Ĵocc and Ĵvir:

Ĵocc

∣∣�p
a

〉 = −
∑

b

〈a|Ĵ|b〉∣∣�p
b

〉
; (A7a)

Ĵvir

∣∣�p
a

〉 =
∑

r

〈r|Ĵ|p〉∣∣�r
a

〉
. (A7b)

In a second step, one easily gets the actions for Ĵ2
occ and Ĵ2

vir,
which are given by

Ĵ2
occ

∣∣�p
a

〉 = Ĵocc
(
Ĵocc

∣∣�p
a

〉) = ja( ja + 1)
∣∣�p

a

〉
; (A8a)

Ĵ2
vir

∣∣�p
a

〉 = Ĵvir
(
Ĵvir

∣∣�p
a

〉) = jp( jp + 1)
∣∣�p

a

〉
. (A8b)

The action for ĴoccĴvir is computed separately for each x, y,
and z contribution, i.e.,

ĴoccĴvir = 1
2 (Ĵ+

occĴ−
vir + Ĵ−

occĴ+
vir ) + Ĵ z

occĴ z
vir, (A9)

where the terms Ĵx
occĴx

vir and Ĵy
occĴy

vir have been rewritten by
making use of the definition of the ladder operators, i.e.,

Ĵx = 1

2
(Ĵ+ + Ĵ−); and Ĵy = 1

2i
(Ĵ+ − Ĵ−). (A10)

In this work, the ladder operators have been defined following
the phase convention established by Condon and Shortley
[86], i.e.,

Ĵ+ϕ j,m = [( j − m)( j + m + 1)]1/2ϕ j,m+1; (A11a)

Ĵ−ϕ j,m = [( j + m)( j − m + 1)]1/2ϕ j,m−1. (A11b)

Thus, the action of Ĵ+
occĴ−

vir on |�p
a〉 is derived in three steps

as follows:
Step 1. We make use of the definitions given in Eq. (A11).

Ĵ+
occĴ−

vir

∣∣�p
a

〉 = Ĵ+
occ

∑
r

〈r|Ĵ−|p〉∣∣�r
a

〉
= Ĵ+

occ

∑
r

[( jp + mp)( jp − mp + 1)]1/2

×δ jr , jpδmr ,mp−1

∣∣�r
a

〉
.

Step 2. For mr = mp − 1 and using the notation p− ≡
{ jp, mp − 1}, the action in step 1 is rewritten as follows:

Ĵ+
occĴ−

vir

∣∣�p
a

〉 = [( jp + mp)( jp − mp + 1)]1/2Ĵ+
occ

∣∣�p−
a

〉
= [( jp + mp)( jp − mp + 1)]1/2

×
[
−

∑
b

〈a|Ĵ+|b〉∣∣�p−
b

〉]

= −[( jp + mp)( jp − mp + 1)]1/2

×
∑

b

[( jb − mb)( jb + mb + 1)]1/2

×δ ja, jbδma,mb+1

∣∣�p−
b

〉
.

Step 3. For mb = ma − 1 and using the notation a− ≡
{ ja, ma − 1}, the resulting action is given by,

Ĵ+
occĴ−

vir

∣∣�p
a

〉 = −[( jp + mp)( jp − mp + 1)]1/2

× [( ja − ma + 1)( ja + ma)]1/2
∣∣�p−

a−
〉
. (A12)

The action of Ĵocc − Ĵ+
vir on |�p

a〉 is derived also in three
steps as follows:

Step 1. We make use of the definitions given in Eq. (A11).

Ĵ−
occĴ+

vir

∣∣�p
a

〉 = Ĵ−
occ

∑
r

〈r|Ĵ+|p〉∣∣�r
a

〉
= Ĵ−

occ

∑
r

[( jp − mp)( jp + mp + 1)]1/2

×δ jr , jpδmr ,mp+1

∣∣�r
a

〉
.

Step 2. For mr = mp + 1 and using the notation p+ ≡
{ jp, mp + 1}, the action in step 1 is rewritten as follows:

Ĵocc − Ĵ+
vir

∣∣�p
a

〉 = [( jp − mp)( jp + mp + 1)]1/2Ĵ−
occ

∣∣�p+
a

〉
= [( jp − mp)( jp + mp + 1)]1/2

×
[
−

∑
b

〈a|Ĵ−|b〉∣∣�p+
b

〉]

= −[( jp − mp)( jp + mp + 1)]1/2

×
∑

b

[( jb + mb)( jb − mb + 1)]1/2

×δ ja, jbδma,mb−1

∣∣�p+
b

〉
.

Step 3. For mb = ma + 1 and using the notation a+ ≡
{ ja, ma + 1}, the resulting action is given by

Ĵ−
occĴ+

vir

∣∣�p
a

〉 = −[( jp − mp)( jp + mp + 1)]1/2

× [( ja + ma + 1)( ja − ma)]1/2
∣∣�p+

a+
〉
. (A13)

Finally, the last action one needs to compute is the action
for Jz

occJz
vir, and it is given by

Ĵ z
occĴ z

vir

∣∣�p
a

〉 = Ĵ z
occ

(
Ĵ z

vir

∣∣�p
a

〉) = (−ma)mp

∣∣�p
a

〉
. (A14)

In conclusion, the action of Ĵ2
total on |�p

a〉 is given by

Ĵ2
total

∣∣�p
a

〉 = Ĵ2
occ

∣∣�p
a

〉 + Ĵ2
vir

∣∣�p
a

〉
+ Ĵ+

occĴ−
vir

∣∣�p
a

〉 + Ĵ−
occĴ+

vir

∣∣�p
a

〉
+ 2Ĵ z

occĴ z
vir

∣∣�p
a

〉
. (A15)

Using Eqs. (A5), (A12), (A13), and (A14), the action of
Ĵ2

total on |�p
a〉 given in Eq. (A15) is rewritten as

Ĵ2
total

∣∣�p
a

〉 = k1

∣∣�p
a

〉 − k2

∣∣�p−
a−

〉 − k3

∣∣�p+
a+

〉
, (A16)
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where the angular coefficients are given by

k1 = ja( ja + 1) + jp( jp + 1) − 2mamp;

k2 = [( ja + ma)( ja − ma + 1)]1/2

× [( jp + mp)( jp − mp + 1)]1/2;

k3 = [( ja − ma)( ja + ma + 1)]1/2

× [( jp − mp)( jp + mp + 1)]1/2.

Finally, using the fact that the RCIS states are orthonormal,
the matrix elements of J2 are given by the following expres-
sion:

J2
n′,n = 〈

�
q
b

∣∣Ĵ2
total

∣∣�p
a

〉
= {

k1 δma,mbδmp,mq

− k2 δma−1,mb−1δmp−1,mq−1

− k3 δma+1,mb+1δmp+1,mq+1
}
δ ja, jbδ jp, jq . (A18)

APPENDIX B: RELATIVISTIC RANDOM-PHASE
APPROXIMATION

The present relativistic implementation of the random-
phase approximation (RRPA) follows Refs. [87,88]. (Note
that what we here label RRPA is in the literature often referred
to as relativistic random phase approximation with exchange
(RRPAE) [72].) The perturbed part of the many-electron wave
function is calculated for each photon frequency ω.When the
electron released in the photoionization process is coming
from the initially occupied orbital |a〉, this perturbed wave
function, |ρ±

a 〉, is given by the following expression:

|ρ±
a 〉 =

∑
p

〈p|ẑ|a〉|p〉
εp − εa ± ω

+ |p〉
εp − εa ± ω

×
∑

b

[〈bp|r−1
12 |ρ±

b a〉 − 〈bp|r−1
12 |aρ±

b 〉

+〈pρ∓
b |r−1

12 |ab〉 − 〈ρ∓
b p|r−1

12 |ab〉], (B1)

where ẑ is the dipole operator in length gauge, cf. Eq. (12),
and the superscript “±” indicates absorption or emission of
a photon of frequency ω. The third and fourth terms in
Eq. (B1): 〈bp|r−1

12 |ρ±
b a〉 and 〈bp|r−1

12 |aρ±
b 〉, give the so-called

time-forward contribution. It lets the outgoing electron adjust
to the presence of the hole and allow for coupling between
different channels. The fifth and sixth terms: 〈pρ∓

b |r−1
12 |ab〉

and 〈ρ∓
b p|r−1

12 |ab〉, are instead labeled the time-reverse con-
tribution. These terms are needed to fully account for the
modifications of the mean-field potential due to the interac-
tion with the electromagnetic field, and they are also needed
to ensure that identical results are obtained in length and
velocity gauge. The so-called Tamm-Dancoff approximation
[RRPA(TD)] is obtained when the time-reverse diagrams are
excluded from Eq. (B1). The many-body contributions in-
cluded in RCIS are identical to those in the Tamm-Dancoff
approximation. For a deeper discussion on the relationships
between different single-reference methods, see Ref. [67].

From the perturbed wave function in Eq. (B1), the par-
tial photoionization cross section can be computed from the
outgoing electron flux in each channel. This can be done

at any radius far enough from the nucleus. The hole and
particle are defined from the Dirac-Fock approximation and
expressed in a B-spline basis set as described in Sec. III B. For
both krypton and xenon we used B-spline orders: ks = 8 and
k′

s = 7, for the small and large component, respectively, and
a hybrid exponential-linear knot grid distribution. While the
RCIS time propagation was done in the presence of a CAP,
the RRPA implementation is using exterior complex scaling
(ECS). The scaled region starts at 70 a.u., where the radial
grid is rotated 0.05 radians into the complex plane, while
the full computational box is 100 a.u. For krypton, a total
of 240 knot points were used, with nine points in an inner
exponential region (close to the nucleus), 155 in the linear
(nonrotated) region, and finally 76 knot points in the linear
ECS region. For xenon, a total of 243 knot points were used.
The difference with respect to the grid for krypton was the
addition of three extra knot points in the exponential region
close to the nucleus.

APPENDIX C: DIRAC19 GTO-BASIS SET

1. Krypton

DIRAC19 calculations for krypton were performed by us-
ing a GTO-type basis set consisting in a triple-augmented
correlation-consistent triple ζ (t-aug-cc-pVTZ) basis. In ad-
dition, in order to increase the accuracy of the high-energy
Rydberg states, five Kaufmann-type functions were added per
angular momentum up to �max = 2. The contraction coeffi-
cients of the Kaufmann-type functions were set to unity and
the exponents were computed using Eq. (18) in Ref. [89], with
Z = 1 and where the fitting parameters a� and b� can be found
in Table 2 in the same reference. The resulting GTO basis set
was the best one we could design as the addition of more GTO
functions generates important linear dependencies problems.
To ensure the elimination of linear dependencies, cutoffs of
10−9 and 10−7 for the small and the large components were
selected in the DIRAC19 input file. With this set of parameters,
the total number of primitives was 769, i.e., 233 for the large
components and 536 for the small components.

2. Xenon

DIRAC19 calculations in xenon have been performed with a
triple-augmented Dyall-tyoe GTO basis set (t-aug-dyall.v2z)
and five Kaufmann-type functions per angular momentum up
to �max = 2. The contraction coefficients of the Kaufmann-
type functions were set to unity and the exponents were
computed using Eq. (18) in Ref. [89], with Z = 1 and where
the fitting parameters a� and b� are listed in Table 2 of
the same reference. The addition of more GTO functions
to the basis set generates important linear dependencies. As
in the case of krypton, a cutoff for the large and the small
components was established in the DIRAC19 input file. With
these parameters, the total number of primitives was 707; i.e.,
212 for the large components and 495 for the small compo-
nents. Note that less primitives were used in the calculation
of xenon. In DIRAC19, the option of using a t-aug-cc-pVTZ
basis for xenon was not available. This issue will limit the
number of accurate singly excited states that one can obtain
for xenon. Note that only few levels are given in Table IV
in comparison with Table II. In fact, above the configuration
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5s25p5(2Po
3/2)7p, the energy levels computed with DIRAC19

could not be assigned (not shown). Nevertheless, the degree
of convergence reached with the t-aug-dyall.v2z basis is good
enough for our purpose.
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