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Optimizing quantum control pulses with complex constraints
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Applying optimal control algorithms on realistic quantum systems confronts two key challenges: to efficiently
adopt physical constraints in the optimization and to minimize the variables for the convenience of experimental
tuneups. To resolve these issues, we propose an algorithm by incorporating multiple constraints into the gradient
optimization over piecewise pulse constant values, which are transformed to contained numbers of the finite
Fourier basis for bandwidth control. Such complex constraints and variable transformation involved in the
optimization introduce extreme difficulty in calculating gradients. We resolve this issue efficiently utilizing
autodifferentiation on the machine learning platform TensorFlow. We test our algorithm by finding smooth
control pulses to implement single-qubit and two-qubit gates for superconducting transmon qubits with always-
on interaction, which remains a challenge of quantum control in various qubit systems. Our algorithm provides
a promising optimal quantum control approach that is friendly to complex and optional physical constraints.
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I. INTRODUCTION

Potential ground-breaking quantum technologies, such
as quantum computing, quantum sensing, and quantum
metrology [1–3], become more and more feasible with the
tremendous progress of quantum control technology on var-
ious physical systems [4–7]. Based on growing knowledge
about quantum systems interacting with the environment,
multifarious approaches have been developed to improve the
control precision [8–14]. Even so, further optimizing quantum
control still highly relies on numerical approaches [14–20].
Practical quantum optimal control (QOC) [21–25] should
satisfy the requirements and constraints in the physical sys-
tems, such as more realistic Hamiltonians, maximal field
strengths, finite sampling rates, limited bandwidths [26–29],
etc. Also, for efficient calibration in experiments, the con-
trol field waveform should depend on as few variables as
possible. Other than the physical considerations, the optimiza-
tion algorithm ought to be fast and accurate and should be
extensible to larger systems. As one of the most successful
numerical optimization algorithms, GRAPE has been applied
to many physical systems, including NMR qubits [15,30–33],
superconducting qubits in three-dimensional cavities [34–38],
nitrogen-vacancy (NV) centers in diamond [5,39,40], etc.
However, adapting GRAPE to multiple realistic constraints
remains challenging. Different from GRAPE, another numer-
ical algorithm, CRAB, has been proposed to generate smooth
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control waveforms, towards applications in cold atoms [41].
There are also many other proposed algorithms leading to
promising applications [17,18,42,43].

It’s worth noting that quantum optimal control is a non-
convex optimization problem [44–46], but we can still find a
good local minimum with some strategies [46,47]. Depend-
ing on how to parametrize the control field’s variables, QOC
algorithms could be assorted into two classes: 1. Piecewise
constant (PWC) discretizes the field pulse as a sequence of
piecewise-constant field strengths and the value of each piece
as the optimization variable [15,16,42,48,49]. Varying each
variable causes local variation of the whole waveform and
hence the local variation of the expectation function, which
could help with fine searching within a local minimum. And
then gradient-based optimization could efficiently proceed
[15,17,18,42]. A tradeoff arises between inaccurate PWC dy-
namics for finite discretization rates and the cost of computing
the gradients versus massive variables. Also, PWC waveforms
are not smooth and could easily contain fast fluctuations.
Filtering the optimized waveform in the postoptimization de-
forms the output pulses from optimum. 2. Chopped basis
(CB) optimization uses parameters related to a finite set of
basis expanding the control waveform. The basis is usually
analytic functions such as Gaussian, tangential, sinusoidal,
or Fourier functions [14,19,50], etc., which easily guarantees
the smoothness of the optimized waveform. However, adding
the physical constraints deforms the processed pulses in an
unknown way [14,19], so the output pulses lose analyticity.
Furthermore, a small change of one expansion coefficient
leads to global deformation of the pulse waveform, and also
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coefficients of different bases have different effects. Therefore
the nonfine searching of CB optimization could sometimes
jump out a local minimum and get a relatively bad result com-
pared to the PWC method. Alternatively, constraints could
be incorporated into optimization with Lagrange multipliers,
but the calculation of the analytical differentiation brings in
another source of complexity and difficulty [43,44,51].

Here in this article, we propose an optimization algo-
rithm, the complex and optional constraints optimization
with autodifferentiation (COCOA), to tackle the problems
summarized above. The algorithm parametrizes the control
waveform based on a truncated Fourier series, while the
optimization performs the gradient in the convex landscape
of PWC parameter space. The transformation between the
aforementioned two parametrization systems is bridged via
approximate discrete Fourier transformation (DFT) and in-
verse discrete Fourier transformation (iDFT). The advantage
of combining these two parametrization systems is that all
the pulse constraints can be incorporated in the optimization
process instead of postoptimization. The application of DFT
and iDFT within the optimization iteration introduces further
physical advantages: 1. hard bounds on the bandwidth by
limiting the Fourier basis; 2. definite expansion with prese-
lected basis; 3. analytical expression of output pulses with
a small number of parameters for tuning; and 4. convenient
application of pulse predistortion because the transfer and
filter functions are in the frequency domain [28,52,53]. How-
ever, embedding these constraints and the transformation of
parametrization systems into the optimization iteration raises
extreme difficulty in solving the analytical gradient equations.
We resolve this issue using autodifferentiation during the one-
round backpropagation process provided by TensorFlow [54].
With TensorFlow, the automatic calculation of gradient could
be further extended to various physical systems. This paper
explains in detail how COCOA works and presents some nu-
merical results to demonstrate the efficiency and its advantage
compared with GRAPE and CRAB.

This paper is organized as follows. First, we take an
overview of quantum optimal control theories and numerical
methods. In Sec. III we present the algorithmic description of
COCOA and explain how it combines the advantages of two
categories of QOC approaches and performs an optimization
task under complex and optional constraints. Then in Sec. IV,
we apply COCOA to find optimal quantum-gate pulses for
superconducting qubits with always-on interactions. We sim-
ulate two models: cavity-mediated two-qubit systems and
direct capacitively coupled systems. We demonstrate CO-
COA’s advantages by comparing with the representative
algorithms GRAPE and CRAB of the two QOC categories.
In Sec. V, we conclude this paper.

II. QUANTUM OPTIMAL CONTROL

A. General formalism

We consider a general Hamiltonian in the QOC problem as

H (t ) = Hd + Hc(t ), (1)

where Hd is the drift Hamiltonian of the system. Hc(t ) is the
time-dependent Hamiltonian which is to be optimized to con-
trol the quantum system to undergo a desired time evolution.

The dynamics of the system steered by the total Hamilto-
nian in Eq. (1) satisfied the Schrödinger equation |ψ̇ (t )〉 =
−iH (t )|ψ (t )〉, with the time evolution operator satisfying
U̇ (t ) = −iH (t )U (t ), or an integral form U (t ) = T e−i

∫
H (t )dt ,

where T is the time-ordering operator. A generic form of the
control Hamiltonian is Hc(t ) = Hc({� j (t )}, t ), where {� j (t )}
are a set of time-dependent control pulses to be optimized.
In our examples presented later, {� j (t )} are chosen to be
the envelopes of microwave drives on qubits, where j =
1x, 1y, 2x, 2y, i.e., 1x means rotating around the x axis for
qubit 1. For different QOC problems, the expectation function
could be customized. A constrained optimization could be
performed by combining penalty functions into the expecta-
tion function with Lagrange multipliers [43,51]. In the specific
examples discussed in this article, we study the performance
of a quantum gate at final time t = T as an average over all
possible initial quantum states. It can be quantified by the
average gate fidelity [55], defined as

f = 1

d (d + 1)
[Tr(MM†) + |Tr(M )|2], (2)

where M = UtarUT , and d is the dimension of the quantum
system. Utar denotes the target gate that you want to optimize.
Therefore we use infidelity as the cost function to be mini-
mized, i.e., F = 1 − f .

B. Realistic requirements

Traditional pulse optimization algorithms are confronted
with many issues while applying to realistic systems. We sum-
marize various realistic issues below and design the COCOA
optimization to bridge the gap between numerical optimiza-
tion and experimental applications.

1. Pulse predistortion. Pulse distortion as one of the ma-
jor issues could take place in the following process [56]: (i)
Pulse generation with finite sampling rates, which could be
modeled as a finite impulse response (FIR) filter. (ii) Trans-
mission of signal, where an infinite impulse response (IIR)
transfer function could be used to model the distortion. (iii)
Numerical distortion when postprocessing the optimal pulse
for purposes such as smoothening, which could be modeled as
the postoptimization filter function. Commonly, the processed
pulse is not optimal anymore. Pulse predistortion with inverse
filter function could be applied in experiments to compensate
for these effects [28,57]. Since the filter functions are in the
frequency domain, it would be much more convenient for
predistortion if the numerical output pulse is an analytical
function for frequency rather than in the PWC form.

2. Pulse constraint. Optimal pulses should satisfy various
physical constraints, such as smoothness, finite bandwidth,
bounded amplitude, starting and ending at some designated
values, robustness to some randomness (e.g., noises), and
so on. Postprocessing the optimized pulses with constraints
results in the numerical pulse distortion mentioned above.
So it is necessary to incorporate constraints into the opti-
mization. However, efficiently adding pulse constraints to the
optimization is challenging because the gradient might be
too complicated to compute. Traditionally, conditional expres-
sions such as the if-else paragraph could be added into the
optimization solver. But this results in possible loopholes and
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Algorithm 1. Complex and optional constraints optimization (COCOA) for pulse engineering.

Require: Cost function: F ; initial pulse sequence: �0
j (t ); Nc; α; iterations: R; ε0; ε1

Ensure: Optimized pulse: �∗
j (t )

1: Discretization: �0
j (t ) → {�0

j [k]};
2: Repeat
3: Record computational graph for autodifferentiation;
4: Pulse constraint: {�r

j[k]} → {�̄r
j[k]};

5: Bandwidth control: {�̄r
j[k]} → {�̃r

j[k]};

6: Evolution: Uk = e
−i(Hd +∑

j
�̃r

j [k]Hj [tk ])�t

,UT = UNUN−1 . . .U1;
7: Cost function: F (UT , ST );
8: Calculate gradient using autodifferentiation: { ∂F

∂�r
j [k] };

9: Update control pulse sequence using SGD or Adam algorithm.
10: Until [F (UT , ST ) < ε0 or ‖ ∂F

∂{�r
j [k]} ‖ < ε1].

low efficiency. So a better approach is still open for investiga-
tion.

3. Pulse parameters. Optimizing the pulse parameters in
experiments is necessary and could become exponentially
strenuous when the number of parameters grows. Therefore,
it is desired to obtain optimal pulses with few parameters for
experimental tuneups.

4. Analyticity of the pulse. The analyticity is defined as
an explicit and analytical function or a definite summation
of several analytical functions, which helps generate and tune
control pulses in experiments.

In this article we will show how the COCOA algorithm is
engineered to satisfy the above requirements efficiently. And
we will test its performance via realistic optimization tasks.

III. COCOA ALGORITHM

A. Pseudocode

The pseudocode of the COCOA algorithm can be seen in
Algorithm 1. Here α denotes the learning rate, ε0 and ε1 are
the threshold of cost function and the norm of the gradient,
and k is the index of the discrete-time sequence.

B. Algorithm settings

The process of COCOA is shown as a flowchart in Fig. 1.
The four main nodes in COCOA are pulse constraint, band-
width control, evolution, and cost function. Pulse constraints
and bandwidth control nodes are the core nodes, which al-
ways do a pretreatment on the pulse before evolution, while
the form of evolution node and cost function node depends
on the problem and optimization task. In the following we
elaborate on each node and illustrate several unique features
of COCOA.

1. Ansatz for pulses

COCOA could use different settings of initial pulses
with arbitrary waveform, including random guesses of PWC
sequence, random combinations of Fourier series, and spe-
cific analytical forms based on prior knowledge. The ef-
ficiency remains at a high level for various settings, as
will be demonstrated later in the manuscript and shown in
Figs. 3, 6, 10, respectively. In this section we focus on the
illustration COCOA could use different settings of initial

pulses with arbitrary waveform, including random guesses
of PWC sequence, random combinations of Fourier series,
and specific analytical forms based on prior knowledge. The
efficiency remains at a high level for various settings, as will
be demonstrated later in the manuscript and shown in Figs. 3,
6, 10, respectively. In this section we focus on the illustration
of processing pulses in the algorithm. Without loss of gener-
ality, the initial pulses are set to be the truncated Fourier basis
function in the algorithm.

The control pulse can always be written as an expression
with the parameters � j ( �p, t ), where �p is the parameter vector.
According to the actual demand, the analytical pulse form can
be any form. For the consideration of limiting pulse band-
width, without loss of generality we take the chopped Fourier
basis functions as

� j ( �p, t ) = a0 +
Nc∑

n=1

Ajn cos(ω jnt ) + Bjn sin(ω jnt ), (3)

where the pulse parameter set �p is formed with Fourier expan-
sion parameters

�p = {Ajn, Bjn, a0}. (4)

Analytical pulse functions solved from different theories
could be exactly or approximately transformed to the chopped
Fourier basis for optimization, such as Slepian pulses [58],
SWIPHT pulses [9,10], geometric pulses [12], and so on. We
demonstrate this in Sec. IV B 1. Note that filter functions for
pulse predistortion could be directly applied on the Fourier ba-
sis, which brings added convenience to experimental tuneups.

In the PWC optimization, � j ( �p, t ) is discretized to an N
-length sequence with sampling frequency fs = N/T , where
T is the total gate time:

� j ( �p, t )
sample−→ {� j[ �p, k]}, k = 1, . . . , N. (5)

For convenience, the discretized temporal sequence of the
PWC ansatz is denoted as {� j[k]}, k = 1, ..., N .

2. Amplitude constraint

A realistic system limits the maximal strength of the con-
trol field. Also, a single control pulse starts and ends at zero.
As a traditional way in textbook [15,59], this constraint enters
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FIG. 1. Flow diagram of COCOA. We use the transform functions C,M, E,F to denote the four main nodes. The autodifferentiation tape
is just a recorder that records all the computing processes automatically by TensorFlow and will be used for the computing gradient. The
figures on the left show how the pulse changes after each specific node in the time and frequency domain. S0 and UT denote the initial state
and the final operator, respectively.

the optimization cost function by adding up with the con-
trol power defined as J = λ

∫ T
0 �2

j (t )dt , where the weight
λ > 0. However, the fidelity of the optimized pulse will be

lower with this term added. Furthermore, this way just gives
a soft constraint on the amplitude maximum, which could be
harmful when physical systems have a hard limit on control

FIG. 2. Computational graph of autodifferentiation. C,M, E,F denote four transform layers, corresponding to each node. �k, �̃k,UT , F
are the output sequence after each transform layer. The solid line (dashed line) is the forward propagation (backpropagation). The subscript
k denotes the index of the control sequence �. The dashed box at the bottom shows how autodifferentiation computes the gradient of F with
respect to �k , following the chain rule.
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FIG. 3. Algorithm comparison. (a) Optimized pulse with zero amplitude at t = 0 ns and t = 50 ns. The pulse amplitude is limited between
[−30, 30] MHz. (b) Frequency spectrum of each pulse. f0 = 1/T = 0.02 GHz. As we can see, GRAPE [orange dashed line in (a)] and CRAB
[green dash-dotted line in (a)] have more high-frequency components induced by pulse constraints or by the algorithm itself. The gray dashed
line shows the truncated components of the COCOA algorithm. (c) Gate infidelity changing vs iteration, showing the efficiency of each
algorithm.

amplitude. In our algorithm a strong constraint to the pulse
amplitude is added by passing the control pulses through a
sigmoid window function, similar to GOAT [14]:

Sdown(t, g) = 1

1 + egt
, (6)

Sup(t, g) = 1 − Sdown(t, g), (7)

Samp(� j[k], l, u) =
[

2Sup

(
� j[k] − u+l

2
u−l

2

, 0.5

)
− 1

]
u − l

2

+ u + l

2
, (8)

where g is the ascent or descent gradient of the window func-
tion, and l , u are the lower and upper bounds of the pulse
amplitude.

The total amplitude constraint transformation reads

C(� j[k], t, l, u, g,�t )

= Sup

(
t − �t

T
, g

)
Sdown

(
t−(T − �t )

T
, g

)
Samp(� j[k], l, u),

(9)

where �t is the width of the ascent (descent) edge. The first
and the second sigmoid function ensures zero amplitude at t =
0 and t = T , and thus satisfies the second physical constraint.
The last one bounds the amplitude to the [l, u] range.

3. Bandwidth control

In this node we modulate the control pulse to a bandwidth-
limited one in the frequency domain. First we transform the
pulse sequence from the time domain into the frequency do-
main using discrete Fourier transform (DFT):

X [n] =
N∑

k=1

� j[k]ei(2πn/N )k . (10)

After DFT, We get a complex sequence {X [n]}, n = 1, . . . , N .
Assuming the upper cut-off frequency is fth, we can derive the
maximal Fourier component number Nc,

Nc � Int

(
N

fth

fs

)
, (11)

where Int(·) indicates rounding down. Here Nc is a hyper-
parameter in our algorithm and it affects the pulse’s simplicity,
smoothness, and numerical accuracy. We discuss it in detail in
Sec. IV.

Then the complex sequence in the frequency domain be-
comes

Y [n] =
{

X̃ [n], n ∈ [1, Nc] ∪ [N − Nc, N]
0, n ∈ [Nc + 1, N − Nc − 1]

. (12)

After DFT, the higher Fourier components over Nc,
namely, the complex sequence elements from X [Nc + 1] to
X [N − Nc − 1], will be set to zero, i.e., limiting the band-
width. Because the complex sequence after DFT is conjugate
symmetric, i.e., X [n] = X ∗[N − n], and the nth spectral com-
ponent is contained in X [n] and X [N − n], we have to set both
of them to zero to do a bandwidth limitation. For more details,
you can refer to Appendix A.

Then we apply the inverse transformation of DFT, called
iDFT, to transform the pulse back to the time domain,

�̃ j[k] = 1

N

N∑
n=1

Y [n]ei(2πk/N )n. (13)

After iDFT, the pulse sequence {�̃ j[tk]} is a smooth pulse
sequence with limited bandwidth. Its functional form in con-
tinuous time domain is denoted as

�̃ j (t ) = a0 +
Nc∑

n=1

An cos

(
n

2π fs

N
t + φn

)
. (14)

It is worth noting that this is the functional form of our final
optimized waveform, which is a finite Fourier basis function.
More details about DFT and iDFT can be seen in Appendix A.

4. Evolution

For the evolution node, the smooth, analytical, and
bandwidth-limited control pulse, Eq. (14), obtained from the
previous nodes is taken into the dynamical equation to com-
pute the time evolution. The choice of evolution equations,
such as the master equation and Schrödinger equation, de-
pends on the specific physical problem and optimization task.
Here we consider a closed quantum system and use the PWC
approach for the time evolution. Note that this could be up-
graded to other finite-difference methods to obtain the more
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precise solution of the Schrödinger equation. Here the evolu-
tion operator at time tk reads

Uk = e−iH [tk ]�t

= e
−i(Hd +∑

j
�̃ j [tk ]Hj [tk ])�t

. (15)

Then the final evolution operator at time t = T reads

UT = UN . . .U1U1. (16)

The final state ST reads

ST = UT S0. (17)

C. Pulse distortion in the numerical process

There are at least three steps of pulse distortion in a com-
plete quantum control task. First, the pulse is distorted from
the waveform optimized numerically because of the finite
sampling rate of the arbitrary waveform generator (AWG)
[60,61]. Second, the pulse experiences distortion during the
transmission due to impedance mismatching and other realis-
tic filtering effects [27,28,57,62]. Third, to force the optimized
pulses to satisfy physical constraints, pulse distortion is often
induced when postprocessing the output pulses from opti-
mization iteration, such as adding filter functions to the output.
As mentioned above, PWC algorithms, such as GRAPE and
Krotov, generates rough pulses. To smoothen the optimal
pulses, low-pass filters such as a Gaussian filter [63] could be
applied to suppress or cut off the high-frequency components
and limit the bandwidth, after which the resultant waveform
deforms and the fidelity is lowered from the optimum. On the
other hand, limiting pulse amplitude [14] by applying a con-
straint function to the optimization results in distortion from
the analytical form and induces additional high-frequency
components. However, COCOA introduces all the pulse con-
straints into the optimization before the DFT node and all
the high-frequency components will be filtered, overcoming
this kind of pulse distortion perfectly. Additional customized
constraints could be incorporated as well. This is enabled with
the use of autodifferentiation in TensorFlow, which is dis-
cussed next. As a result, the optimized pulse is band-limited,
maximum-limited, starting and ending at ZERO, while a def-
inite analytical waveform is guaranteed to output from the
algorithm. This is illustrated in Sec. IV

D. Autodifferentiation

The autodifferentiation (AD) method is widely used in
machine learning, which is almost as accurate as symbolic
differentiation [64]. There are two points of necessity that we
choose AD: (1) AD obtains the derivatives to all inputs in one
backpropagation when AD works in the reverse mode. So it is
much more efficient than manual and symbolic differentiation
and is more precise than numerical differentiation. (2) The
complexity of derivatives induced by the bandwidth control
and the extraction of computational subspace places many
difficulties, such as expression swell problems, to manual
and symbolic differentiation. The feasibility of autodifferen-
tiation is demonstrated by the fact that each node of COCOA
is derivable theoretically, so the total transform function of
inputs to cost function is F : Rn → R. This is suitable for

the reverse mode of AD because the dimension of inputs is
larger than outputs. We explicitly elaborate the process of au-
todifferentiation in COCOA optimization in Fig. 2. There are
two processes when using autodifferentiation in reverse mode.
(i) Forward propagation: when computing from {� j[k]}, k =
1, ..., N to F , it automatically constructs a computational
graph formed of nodes and edges, as shown in Fig. 2 (solid
line). (ii) Backpropagation: The gradients of F versus all
inputs {� j[k]}, k = 1, ..., N are calculated with the computa-
tional graph by using a chain rule, as shown in Fig. 2 (dashed
line). We note that all the derivatives of F with respect to
inputs {� j[k]}, k = 1, ..., N are calculated in one backprop-
agation, which makes AD more efficient than other methods.
Our numerical simulation results in Sec. IV will demonstrate
the efficiency of AD in quantum optimal control. For more
details of AD, please refer to [64].

IV. APPLICATIONS ON SUPERCONDUCTING QUBITS

To demonstrate the advantage of COCOA, we apply this
algorithm to tackle one of the most challenging control ob-
stacles in the up-to-date multiqubit processors: the always-on
couplings. Such issue lies in many qubit systems such as su-
perconducting qubits [12,65,66], quantum dots [67–69], NMR
qubits [70,71], etc. Scaling-up qubit systems tends to reduce
the number of control degrees, which means taking out more
control fields out of the system. Losing either the control of
qubit frequencies or coupling strength brings more difficulty
in realizing good quantum gates, especially in the systems
such as fixed frequency qubits with fixed couplings, tun-
able qubits with residual couplings, and qubits with tunable
couplings with unwanted interaction and crosstalk [72–74].
Fortunately, the degree of control freedom on the pulse shap-
ing could be further exploited with the help of COCOA. In this
section, without loss of generality, we consider two realistic
models of multiconnected superconducting qubits and apply-
ing COCOA to find optimal control pulses for single-qubit and
two-qubit gates for the always-coupled qubits.

Before introducing the numerical simulations, we need to
note two important tricks on how to choose the gradient opti-
mization method when using COCOA for pulse optimization:
1. The Adam algorithm is always preferred when doing a
global optimization, since Adam is more suitable for a broader
search range due to its momentum factor and adaptive learning
rate when updating variables [64]. We use the Adam algorithm
for most numerical simulations except the CNOT pulse. 2. To
obtain fast convergence in a local optimization scenario, see
Fig. 6(b), choosing the SGD algorithm (stochastic gradient
descent algorithm) with a small learning rate is favored, which
is taken to be α = 0.001. This is what we do when optimizing
the CNOT pulse in Sec. IV B 1. For more details about these
gradient algorithms, please refer to Ref. [75].

A. Model 1: Two transmon qubits coupled directly

In X-mon (X-shaped transmon) arrays the qubits are cou-
pled directly via a capacitance with a constant interaction g,
such as Google’s previous version of the quantum computing
chip Bristlecone and other chip designs with few control lines
[13]. As a simplified model, we consider two qubits coupled
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directly and obtain the Hamiltonian as

H0 =
∑
j=1,2

ω ja
†
j a j + α j

2
a†

j a
†
j a ja j + g12(a†

1 + a1)(a†
2 + a2).

(18)
This model is effectively valid for qubits coupled via tunable
couplers [12,76]. Here ω j are the qubit frequencies and α j

are the anharmonicities of transmon qubits, j = 1, 2. To im-
plement single-qubit operations, neighbor qubits are detuned
with � = ω1 − ω2 and the effective zz-coupling strength is

turned down with the rate g2
12
�

[12,77–79]. g12 is the capaci-
tive coupling strength between two qubits. a†(a) denotes the
qubit creation (annihilation) operators. This unwanted cou-
pling gives rise to frequency splitting between |00〉 → |01〉
and |10〉 → |11〉, inducing gate errors, as well as control
crosstalk [12]. This could be a more challenging issue when
qubit frequencies are fixed [13]. Complex control pulses are
proposed to resolved this issue, but finding appropriate pulses
remains a difficulty [12,15]. The microwave pulses are sent in
to drive the transmons via this operator:

H j
d = a†

j e
−iωd t + a je

iωd t , (19)

where ωd is the driving frequency. The waveform �(t ) is
applied to the drive and modulates the strength of the control
pulse. Hence, the total Hamiltonian reads

H = H0 +
∑

j

� j (t )H j
d . (20)

The control field could be added to both qubits 1 and 2 simul-
taneously or only on a single qubit 1 or 2.

To illustrate the properties of COCOA’s solutions and
demonstrate the advantage of the algorithm, we show some
numerical examples of optimizing quantum gates in a re-
alistic system by comparing different algorithms, including
COCOA, CRAB, and GRAPE. For a fair comparison, we
use the gradient descent optimizer Adam [75] in all these
algorithms but keep the rest of the steps the same as the
original versions. Therefore we denote them as COCOA,
GRAPE-like, and CRAB-like in our results. In the simulation,
each transmon is truncated to a four-level system to better
consider leakage. The model parameter we used is similar
to Ref. [80] as ω1/2π = 5.270 GHz, ω2/2π = 4.670 GHz,
α1/2π = α2/2π = 220 MHz, g12/2π = 25.4 MHz. The ini-
tial pulses for all algorithms are identical and take the form as
shown in Eq. (14).

Note that the coupling strength between the two qubits is
in the order of g/ω 	 10−2. The results for the weak coupling
g/ω � 10−3 and ultrastrong coupling regime g/ω � 10−1 are
shown in Appendix B, all of which demonstrates the enhance-
ment of COCOA in the search of optimal pulses.

1. Single-qubit X gate at presence of interaction

The first gate is a single X rotation only on the second
qubit while remaining the state in the first qubit. The target
evolution operator of the two-qubit system is

Utar = I ⊗ σx, (21)

which includes both qubit’s dynamics in the computational
subspace span{|̃00〉, |̃01〉, |̃10〉, |̃11〉}. The identity I in the

first qubit’s subsystem meets the requirement that the control
field does net-zero operation to the first qubit at the pres-
ence of crosstalk due to the coupling. Applying simple pulses
results in entanglement between the two qubits. However,
COCOA can efficiently find composite pulses to achieve the
Utar evolution. Here we set ωd in resonance with transition
|̃00〉 → |̃01〉; then it is off-resonant with |̃10〉 → |̃11〉 [12].
Other relevant parameters are T = 50 ns, N = 148, fs/2π =
N/T = 2.96 GHz, Nc = 5. The range of pulse amplitudes is
[−30, 30] MHz × 2π .

We can conclude three advantages of COCOA according
to the comparison result in Fig. 3: (1) Accuracy. As shown in
Fig. 3(c), COCOA achieves the gate infidelity below 10−4,
which is the same order of magnitude with GRAPE-like’s
result and better than CRAB-like’s. Even better results could
be obtained by enlarging Nc, as illustrated later in Sec. IV A 3.
(2) Smoothness and bandwidth. As shown in Fig. 3(a), the
optimal pulse obtained by COCOA shows the best smoothness
and limited pulse amplitude within [−20, 20] MHz × 2π .
From the frequency spectrum of optimized pulse, as shown
in Fig. 3(b), COCOA has limited bandwidth but the other’s
consist of high-frequency components. Interestingly, GRAPE-
like’s pulse shows a similar profile as COCOA, with more
high-frequency components. Although CRAB-like’s pulse
looks smooth too, its amplitude is significantly stronger than
the other two. (3) Analyticity. As promised, COCOA gives a
definite analytical summation form of the basis, and all the
high-frequency components are filtered completely. Specif-
ically, COCOA outputs the pulse parameters for Eq. (14)
with

a0 = 5.066,

A1, . . . , A5 = −11.66,−4.172,−5.753, 2.140, 3.497,

φ1, . . . , φ5 = 1.080,−3.385, 6.104,−1.458, 1.098.

GRAPE-like and CRAB-like pulses both produce uncontrol-
lable high-frequency components and cannot obtain definite
analytical expressions due to the ZERO starting and ending
point constraints.

COCOA shows a great advantage here, because the
smoothness of the control pulse is rather important in many
qubit systems where leakage and crosstalk errors are sig-
nificant. Limiting the bandwidth could also help reduce
pulse distortion throughout all the control steps. More-
over, the analytical expression with definite summation of
a few chopped basis brings convenience and simplicity to
the experimental adjustments. It is necessary to point out
that, in principle, CRAB also uses an analytical waveform
with definite summation of the chopped random basis, but
the pulse constraints during the optimization process in-
duces numerical pulse distortion from the original analytical
form, leading to higher-frequency components, as shown in
Fig. 3(b).

2. Dual X gate at the presence of interaction

Simultaneously driving coupled qubits is a challenging
task, even in a tunable qubit system where the interaction
could be turned on and off approximately. Crosstalk of control
signals and ZZ interactions causes a significant drop in gate
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FIG. 4. Dual X gate optimization using COCOA. (a) Opti-
mized control pulse for each qubit with pulse amplitude limitation
[−30, 30] MHz and ZERO starting and ending point. (b) Gate infi-
delity changes vs iteration, indicating the efficiency of the algorithm.
(c) Evolution trajectories of qubit 1, driven by the dark orange
(dash-dotted line) pulse in (b). Blue dotted (red solid) line shows
the evolution in on-resonant (off-resonant) subspace span {|̃00〉, |̃01〉}
({|̃10〉, |̃11〉}). (d) Evolution trajectories of qubit 2, driven by the
purple (solid line) pulse in (b). Blue and red lines have the same
meaning as in (c)

error compared to individual driving cases. To implement
a high-fidelity dual (simultaneous) X gate on both nearest-
coupled coupled qubits, we apply COCOA to find the pulses
to drive them at the same time. The dual X gate simultane-
ously flips the states of the first and second qubits. The target
evolution operator of the two-qubit system is

Utar = σx ⊗ σx. (22)

Both qubits should be driven simultaneously and the drive
term follows the same form of Eq. (19). Hence the total
Hamiltonian reads

H = H0 + �1(t )H1
d + �2(t )H2

d . (23)

Here we use the COCOA algorithm to find the optimized
driving pulse of the dual X gate and we set T = 50 ns, N =
200, Nc = 5, fs = N/T = 4 GHz. As we can see in Fig. 4, the
optimized gate fidelity is greater than 99.9%, and the pulse
parameter for each drive is given as follows:

Pulse parameters for Q1:

a0 = 5.091

A1, . . . , A5 = −10.46, 2.971, 3.033, 6.725,−6.124,

φ1, . . . , φ5 = 5.858, 1.547, 3.085, 1.458,−3.650

Pulse parameter for Q2:

a0 = 5.078

A1, . . . , A5 = 7.790, 0.8855, 4.857,−6.030, 1.787

φ1, . . . , φ5 = 0.7156, 1.714, 2.507, 0.8538, 2.292

(a)

(b)

(c)

FIG. 5. Explore how Nc affects the accuracy, efficiency, and
smoothness of our algorithm. (a) Best infidelity that COCOA can
reach with each Nc. (b) Infidelity changes vs iterations for different
Nc, indicating the efficiency. (c) The complexity of optimized pulse
change vs Nc.

By analyzing the driving pulse and its corresponding
Bloch trajectory, we found that the negative part of the
driving pulse eliminates the detuning of the off-resonance sub-
space with respect to on-resonance subspace, namely, the ZZ
coupling.

3. Optimizing Nc

The key parameter Nc, i.e., the number of Fourier com-
ponents, determines the smoothness and bandwidth of the
pulse, as well as the number of optimized parameters, which
increases at a scaling rate of 2Nc. Consequently, the choice of
Nc affects the optimization efficiency and accuracy.

We take the previous case in Sec. IV A 1 as an example to
study how Nc affects the optimization, where we only tune Nc

while fixing all the other parameters. As shown in Fig. 5(a),
gate infidelity is improved by one order of magnitude when Nc

increases from 1 to 5 and does not improve much beyond 5.
Figures 5(b) and 5(c) demonstrate the convergence behavior
and pulse shape of Nc = 1, 5, 8. From these simulation re-
sults, we observe that Nc = 5 is the best choice based on the
consideration of the tradeoff between the number of parame-
ters and optimization accuracy.

Theoretically, if there is no bandwidth limit, the COCOA
algorithm can approach to GRAPE algorithm when Nc reaches
its maximum: Nmax

c = Int( N−1
2 ), where Int(·) means rounding

down.

B. Model 2: Two transmon qubits coupled via a cavity

In another widely used architecture, superconducting
qubits are coupled via superconducting cavities, such as one-
dimensional transmission line resonators [81–83], with the
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Hamiltonian

H0 =
∑
j=1,2

ω ja
†
j a j + α j

2
a†

j a
†
j a ja j + gc j (b

†a j + ba†
j ) + ωcb†b,

(24)
where ωc is the frequency of the cavity. gc j is coupling
strength between the resonator and the jth qubit. b(b†) is
the annihilation (creation) operator of the resonator. Other
parameters have the same meaning as in model 1. We take
ω1/2π = 6.2 GHz, ω2/2π = 6.8 GHz, ωc/2π = 7.15 GHz,
α1,2/2π = 350 MHz, g1,2/2π = 250 MHz, which are used in
Ref. [9]. The drive Hamiltonian Hd has the same form as in
Eq. (19).

Since the cavity behaves as merely a larger scale fixed-
coupler between two qubits, control pulses for single-qubit
gates could be obtained similarly as in a previous discussion.
Detailed numerical results of a single-qubit X gate could be
found in Appendix C. Here we demonstrate the optimization
of a two-qubit entangling gate for this model.

1. Optimizing CNOT gate based on the SWIPHT protocol

It is worth pointing out that COCOA can fully utilize the
prior knowledge of analytical methods and obtain completely
analytical optimal pulses via local optimization around an
analytically given pulse. To demonstrate this, we start from
a CNOT gate implementation using the SWIPHT protocol
(speeding up wave forms by inducing phases to harmful tran-
sitions) [9,10,13]. The given analytical form of the pulse is

�(t ) = χ̈

2
√

δ2

4 − χ̇2
−

√
δ2

4
− χ̇2 cot(2χ ), (25)

where χ (t ) = A
T 8 t4(T − t )4 + π

4 , A = 138.9, T = 5.87/|δ|.
δ = ω1̃0→1̃1 − ω0̃0→0̃1 is the detuning between the target
and the harmful transition in the computational subspace
span{|̃01〉, |̃01〉, |̃10〉, |̃11〉}, where the first qubit is the control
qubit and the second one is the target qubit. The CNOT operator
generated with a single microwave control could be expressed
as this general form,

Utar = (σx ⊕ I )
∏

i=1,2; j=x,y,z

Ri j (θi j ), (26)

where Ri j (θi j ) are single-qubit rotations with arbitrary angles
for optimization. This Utar is equivalent to a standard CNOT

σx ⊕ I up to some local phases. We set the drive frequency
ωd = ω0̃0→0̃1, and Nc = 9. Figure 6(b) shows that the local
optimization converges very fast with prior knowledge of the
optimal pulse, which demonstrates the advantage of numerical
optimization based on analytically optimal pulses. Figure 6(a)
shows that the optimized CNOT pulse is transformed but still
maintains a similar shape as the initial analytically optimal
pulse. We note that the optimized pulse, shown in Fig. 6(a),
can be generated more accurately with an AWG device due
to its limited bandwidth that the initial pulse does not process.
With the same evolution time T = 35.4 ns, we finally obtained
the optimized driving pulse shown in Fig. 6(a) with complete

(a) (b)

(c) (d)
Q1_sub1

Q1_sub2

FIG. 6. CNOT gate optimization using COCOA. (a) Pulse com-
parison between the initial SWIFT CNOT pulse (green-dashed line) in
Ref. [9] and our optimized CNOT pulse (purple-solid line). (b) Gate
infidelity changes vs iteration, indicating the efficiency of the al-
gorithm. (c) Evolution trajectory on Bloch sphere driven by our
optimized pulse in (b). The blue and red lines show the target
qubit’s evolution trajectory in the two subspaces span{|̃00〉, |̃01〉}
and span{|̃10〉, |̃11〉}. (d) The gate speed limit of CNOT.

pulse parameters (in units of MHz) in Eq. (14):

a0 = 7.416,

A1, . . . , A9 = −0.818,−2.05,−2.27,−1.50 − 0.807,

− 0.2020.0287, 0.325, 0.00291,

φ1, . . . , φ9 = 0, π, π, 0, 0, 0, 0.000138, 0, 0.00198.

The speed of this analytical CNOT gate is limited by δ2

4 − χ̇2 >

0 derived from Eq. (25). Hence, T > 0.02975 A
δ
, and we have

Tmin = 24.95 ns when A = 138 and δ = 26.4 MHz ×2π . The
behavior of the optimal CNOT gate approaching the speed
limit is shown in Fig. 6(c). Here we start from T = 25 ns
and increase by 1 ns each step to observe the change of the
optimal fidelity with the gate time. Finally, we see that the gate
fidelity exceeds 99.9% when T � 26 ns, which is a significant
improvement from the initial CNOT gate time of 35 ns using
SWIFT theory.

V. CONCLUSION

In this paper we have developed an algorithm to optimize
smooth quantum control pulse constraints, which could be
very complex, highly nonlinear, sub-/superdifferentiable ap-
proximations, and optional. In the particular demonstration
examples, we limit the pulse amplitude, pulse bandwidth, and
the number of pulse parameters. Doing so makes this algo-
rithm involve complicated computations for the differentiation
of the expectation function versus the optimizing parame-
ters. We resolve this issue using autodifferentiation powered
by TensorFlow. Therefore this algorithm can be straightfor-
wardly extended to larger quantum systems with even more
complicated calculations of gradients. We have demonstrated
the advantages of the proposed algorithm by applying it to
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(a) (b) (c)

FIG. 7. Algorithm comparison. g = 1 MHz × 2π . (a) Optimized pulse with zero amplitude at t = 0 ns and t = 20 ns. Pulse amplitude is
limited between [−40, 40] MHz. (b) Gate infidelity changing vs iteration, showing the efficiency of each algorithm. (c) Frequency spectrum of
each pulse. f0 = 1/T = 0.05 GHz. As we can see, the GRAPE [orange dashed line in (a)] and CRAB [green dash-dotted line in (a)] have more
high-frequency components induced by pulse constraints. The gray dashed line shows the truncated components of the COCOA algorithm.

realistic superconducting qubit models with always-on ZZ
interaction and achieving optimal smooth pulses to imple-
ment single-qubit gates and two-qubit gates. Compared to the
GRAPE and CRAB algorithms, we obtain higher gate fideli-
ties and better optimization efficiency. We have shown that
COCOA could be applied to the optimization scenarios either
with or without good prior knowledge by simply switching the
optimizers and obtaining high-fidelity gates for both cases.

We summarize COCOA’s advantages as follows: 1. CO-
COA outputs optimal pulses with definite analytical expres-
sion. 2. The optimal pulses have manually limited bandwidth
and amplitude. 3. This algorithm is more compatible with
complex and flexible pulse constraints, without the induced
pulse distortion in numerical optimization. 4. The autodiffer-
entiation assisted by TensorFlow enables efficient and easy
calculation of gradients and the ability to handle complex
computing processes and complex models. 5. COCOA can
speed up until the optimization by locally searching the opti-
mal pulses based on certain prior knowledge. Using COCOA,
we completely resolve the challenging problem, to implement
either individually or simultaneously a single-qubit X gate
in a strongly ZZ-interacting two-qubit system [12,13,73]. In
conclusion, COCOA optimization is friendly to realistic quan-
tum control tasks, easily customizable, and easily extended to
larger quantum systems.

In conclusion, COCOA provides a versatile, highly func-
tional, and efficient platform to add physical constraints into

quantum optimal control tasks. Following the line of COCOA,
more work could be pursued in the near future to resolve the
realistic QOC issues. For example, pulse predistortion could
be effectively performed by adding the definite transfer func-
tion of control lines and pulse generators into the optimization
process. Different analytical forms with fewer pulse parame-
ters could be investigated using the proposed algorithm so that
the numerical approach could better meet experimental needs.
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FIG. 8. Algorithm comparison. g = 100 MHz × 2π . (a) Optimized pulse with zero amplitude at t = 0 ns and t = 20 ns. The pulse
amplitude is limited between [−40, 40] MHz. (b) Gate infidelity changing vs iteration, showing the efficiency of each algorithm. (c) Frequency
spectrum of each pulse. f0 = 1/T = 0.025 GHz. As we can see, GRAPE [orange dashed line in (a)] and CRAB [green dash-dotted line in
(a)] have more high-frequency components induced by pulse constraints. The dashed line shows the truncated components of the COCOA
algorithm.
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(a) (b) (c)

FIG. 9. Single X gate for model 2. (a) Optimized pulse with zero amplitude at t = 0 ns and t = 70 ns. Pulse amplitude is limited between
[−20, 20] (unit: MHz). The purple solid line is the optimized pulse with the COCOA algorithm, and the green dashed line is the initial Fourier
pulse. (b) Gate infidelity changing vs iteration, showing the efficiency of the algorithm. (c) Frequency spectrum of COCOA pulse with limited
bandwidth (Nc = 5). f0 = 1

T = 0.0143 GHz.
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APPENDIX A: LOW-PASS FILTERING

DFT. Given a discretized pulse sequence in time domain
� j[k], k = 1 . . . N . Note that the pulse here can be any form or
without any form. After DFT we can get a complex sequence
that contains amplitude and phase information:

X [n] =
N∑

k=1

� j[k]ei(2πn/N )k . (A1)

We can deduce that

X [N − n] =
N∑

k=1

� j[k]e− j(2π/N )(N−n)k (A2)

=
N∑

k=1

� j[k]e j(−2kπ+(2π/N )kn) (A3)

=
N∑

k=1

� j[k]e j((2π/N )kn) (A4)

= X ∗[n]. (A5)

This is an important characteristic of the complex sequence.

iDFT:

�̃ j[k] = 1

N

N∑
n=1

Y [n]ei(2πk/N )n. (A6)

Without loss of generality, we assume N is an even number,
and then we obtain the pulse amplitude in the time domain as

N × � j[k] =
N∑

n=1

X [n]e j(2π/N )kn (A7)

= X [0] + X [1]e j(2nπ/N ) + X [2]e j[2(2nπ/N )] + · · ·

+ X [N/2 − 1]e j
(

2nπ
N (N/2−1)

)
+ X [N/2]

+ X [N/2 + 1]e j
(

2nπ
N (N/2+1)

)
+ · · ·

+ X [N − 2]e j
(

2nπ
N (N−2)

)
+ X [N − 1]e j

(
2nπ
N (N−1)

)
. (A8)

We set X [n] = an + ibn. Combining the sum of the conju-
gate symmetric terms X [n] and X [N − n], we obtain

(an + ibn)e j(2π/N )kn + (an − ibn)e j(2π/N )(N−k)n

= An cos

(
2knπ

N
+ φn

)
, (A9)

FIG. 10. Efficiency of COCOA algorithm with a random initial pulse sequence. This numerical simulation is similar to Sec. IV A 1, except
for the initial pulse. (a) Optimized pulse with zero amplitude at t = 0 ns and t = 50 ns. Pulse amplitude is limited between [−30, 0] MHz.
Dashed line is the random initial pulse sequence, and each element is in the range of [0, π/T ]. (b) Gate infidelity changing vs iteration,
showing the efficiency of COCOA, even starting with a random initial pulse. (c) Frequency spectrum of COCOA pulse with cut-off frequency
4 f0, where f0 = 1/T = 0.02 GHz.
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where An = 2
√

a2
n + b2

n and tan(φn) = bn
an

. Then Eq. (A8) be-
comes

N × � j[k] = a0 + A1 cos(n2π/N + φ1)

+ A2 cos[(2n)2π/N + φ2] + · · ·
+ A N

2 −1 cos
(
[(N/2 − 1)n]2π/N + φN

2 −1

)
.

(A10)

Assuming the sample frequency is f0, we have

� j[k] = � j[kT0] = � j (k/ f0). (A11)

Replacing k with f0t , we then have

N × � j (t ) = a0 + A1 cos( f02πt/N + φ1)

+ A2 cos[(2 f0)2πt/N + φ2] + · · ·
+ A N

2 −1
cos

(
[(N/2 − 1) f0]2πt/N + φN

2 −1

)
.

(A12)

APPENDIX B: WEAK AND STRONG COUPLING
STRENGTH

This Appendix demonstrates that the COCOA algorithm
can still be efficient in different coupling strengths. In Fig. 7

we show the algorithm comparison with g = 0.001 GHz ×
2π . Figure 8 shows the result of g = 0.1 GHz × 2π .

APPENDIX C: SINGLE-QUBIT X GATE WITH ALWAYS-ON
INTERACTION FOR MODEL 2

Here we show the result of a single-qubit X gate in model 2
using the COCOA algorithm to show its power and compati-
bility with a multiqubit system. The result is shown in Fig. 9.

APPENDIX D: INITIAL PULSES AS A RANDOM PWC
SEQUENCE

As mentioned in Sec. III B 1, the initial pulse in the CO-
COA algorithm can be of any kind, including a random
sequence. Here we conduct a numerical simulation starting
from a random PWC sequence based on model 1 with g =
1 MHz × 2π . The initial random sequence with each value
ranging within [0, 10] is generated using the random number
generator in NUMPY. Compared to the convergence trend in
Figs. 3(b) and 6(b), where the initial pulses are the random
Fourier basis and SWIPHT pulse with prior knowledge, this
simulation in Fig. 10 demonstrates that COCOA can always
be efficient no matter what the initial pulse looks like.
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