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Polarizing electron spins with a superconducting flux qubit
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Electron-spin resonance is a useful tool to investigate properties of materials in magnetic fields where high
spin polarization of target electron spins is required in order to obtain high sensitivity. However, the smaller the
magnetic fields becomes, the more difficult it is to obtain high polarization by thermalization. Here, we propose
to employ a superconducting flux qubit (FQ) to polarize electron spins actively. We have to overcome a large
energy difference between the FQ and electron spins for efficient energy transfer among them. For this purpose,
we adopt a spin-lock technique on the FQ where the Rabi frequency associated with the spin-locking can match
the resonance (Larmor) one of the electron spins. We find that adding dephasing on the spins is beneficial to
obtain high polarization of them, because otherwise the electron spins are trapped in dark states that cannot
be coupled with the FQ. We show that our scheme can achieve high polarization of electron spins in realistic
experimental conditions.

DOI: 10.1103/PhysRevA.105.012613

I. INTRODUCTION

Increasing attention has been paid to electron-spin reso-
nance (ESR) due to an excellent sensitivity compared with
that of nuclear magnetic resonance (NMR). An improvement
of the ESR sensitivity is important for practical applications.
Therefore, superconducting circuits have often been used to
detect a small number of electron spins [1–8]. By using a
superconducting resonator, it is possible to measure only 12
spins with 1 s measurement time where the detection volume
is around 6 fL [9] where the frequency of the superconducting
resonator is fixed. It is favorable to sweep not only the mi-
crowave frequency but also the magnetic field to investigate
complicated spin systems. For this purpose, we could use
a waveguide [10], a frequency tunable resonator [11], or a
direct current-superconducting quantum interference device
(dcSQUID) [2,12]. Among these approaches, a superconduct-
ing flux qubit (FQ) is promising and has already achieved a
sensitivity of 20 spins/Hz1/2 with a sensing volume of 6 fL
for the ESR [13].

It is worth mentioning that the FQ cannot work if we apply
high magnetic fields, so the applied field should be smaller
than 10 mT [2]. One of the problems in FQ-ESR measure-
ments is a low polarization of target electrons, especially
when they are in a low magnetic field. A typical thermal
energy ≈kBT (kB is the Boltzmann constant and T is the
temperature) at mK temperatures is around hundreds of MHz
in frequency units, while the typical magnetic energy of the
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electron spins ≈μBB (μB is the Bohr magneton constant and
B is flux density in tesla) in a small field of few mT is about
tens of MHz. This implies that the electron spins cannot be
fully polarized in these conditions and that the sensitivity of
ESR is deteriorated. Note that high spin polarization of target
electrons is required in order to obtain high sensitivity [14]. A
Purcell effect [15] was recently employed to polarize electron
spins with a superconducting cavity [16]. However, this is not
applicable to the case when electron spins are placed in a low
magnetic field because of a large energy difference between
the cavity and electron spins. Moreover, a thermal relaxation
time of electron spins becomes larger at lower temperature,
and thus it is difficult to polarize them [17–20].

Here, we propose to employ a FQ for not only detect-
ing but also polarizing electron spins. The main idea is that
the energy relaxation time of the FQ is much shorter than
that of the electron spins, and so we can efficiently emit
the energy of the electron spin to the environment by using
a coupling between the FQ and electron spins. We adopt a
spin-lock technique where the Rabi frequency of the FQ in
a rotating frame associated with the spin-locking matches
with the resonance (Larmor) frequency of the electron spins
in a low magnetic field [21]. The important difference from
the polarization with a Purcell effect [16] is that the Rabi
frequency can be much smaller than the resonance one of the
FQ. By using a long-lived FQ such as a capacitively shunted
FQ whose coherence time is around tens of microseconds
[22–24], the Rabi frequency can be reduced to hundreds of
kHz. With these properties, one may overcome the energy
scale mismatch between a FQ and electron spins, and thus the
efficient polarization of the electron spins becomes possible.

This paper is organized as follows: Section II illustrates
our setup and proposal with analytical discussion on a simpli-
fied model. We show our numerical simulations with realistic
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experimental parameters in Sec. III for demonstrating its ex-
periment feasibility. We conclude this paper in Sec. IV.

II. THEORY

We here propose to employ a Hartmann-Hahn (H-H) res-
onance [21] to polarize electron spins with a FQ. The H-H
resonance has been applied to polarize environmental spins
by using nitrogen vacancy (NV) centers in diamond [25,26].
Our proposal is expected to polarize far more electron spins
than the case of the NV center in diamond because the size
of the FQ is of the order of micrometers while that of the NV
center is of the order of angstroms.

We discuss a simplified model in order to illustrate our
proposal after introducing a Hamiltonian and Lindbladian that
govern the electron spins and FQ.

A. Model

The Hamiltonian of a FQ coupled to M electron spins
(labeled with k = 1–M) is described as follows:

H = HFQ + Hspin + HI,

where HFQ, Hspin, and HI denote the Hamiltonian of the FQ,
spins, and interaction between them. HFQ is given as

HFQ = �

2
Z + ε

2
X + λX cos ωt,

where ε denotes the energy bias, � the tunneling energy, ω

the frequency of the microwave, and λ the strength of the
microwave. X , Y , and Z are standard Pauli matrices acting
on the FQ. It is convenient for us to change the notation, and
we rewrite HFQ as follows:

HFQ = �

2
σ (0)

x + ε

2
σ (0)

z + λσ (0)
z cos ωt,

where we change X and Z to σ (0)
z and σ (0)

x . Hereafter, we
identify the 0th degree of freedom, which is represented by the
superscript 0, with the flux qubit (FQ), and the other degrees
of freedom (k = 1–M ) with the electron spins. Hspin and HI

are given as

Hspin =
M∑

k=1

ωk

2
σ (k)

z ,

HI =
M∑

k=1

gkσ
(0)
z σ (k)

x ,

where ωk
2 denotes the resonance frequency of the kth spin and

gk the coupling strength between the FQ and the kth spin.
We rewrite the Hamiltonian by using the basis to diagonal-

ize �
2 σ (0)

x + ε
2σ (0)

z as follows:

H =
√

ε2 + �2

2
σ (0)

z + λ
�√

ε2 + �2
σ (0)

x cos ωt

+ λ
ε√

ε2 + �2
σ (0)

z cos ωt +
M∑

k=1

ωk

2
σ (k)

z

+
M∑

k=1

gk
ε√

ε2 + �2
σ (0)

z σ (k)
x

+
M∑

k=1

gk
�√

ε2 + �2
σ (0)

x σ (k)
x .

By going to a rotating frame with a frequency of ω =
(ε2 + �2)1/2 of the FQ, we obtain the following Hamiltonian
with a rotating wave approximation:

H � λ

2

�√
ε2 + �2

σ (0)
x +

M∑
k=1

ωk

2
σ (k)

z

+
M∑

k=1

gk
ε√

ε2 + �2
σ (0)

z σ (k)
x .

We change the notation from σ (0)
x (σ (0)

z ) to σ (0)
z (σ (0)

x ), and the
Hamiltonian is rewritten as

H � λ

2

�√
ε2 + �2

σ (0)
z +

M∑
k=1

ωk

2
σ (k)

z

+
M∑

k=1

gk
ε√

ε2 + �2
σ (0)

x σ (k)
x .

We obtain the following effective Hamiltonian in a rotating
frame of which the frequency is ωavg = 1

M

∑
k ωk with the

rotating wave approximation:

H �
M∑

k=1

[
ω′

k

2
σ (k)

z + gk
ε√

ε2 + �2
(σ (0)

+ σ
(k)
− + σ

(0)
− σ

(k)
+ )

]
,

(1)

where ω′
k = ωk − ωavg and σ± = σx ± iσy. Here, we set

λ �
(ε2+�2 )1/2 to be ωavg. It is worth mentioning that the Rabi

frequency λ can be as large as 2π × 1.7 GHz for the flux qubit
[27].

The energy exchanges occur between the FQ and electron
spins during the irradiation of a microwave due to the above
flip-flop interaction, while there is no coupling between them
in the absence of the irradiation due to the energy detuning of
(ε2 + �2)1/2 � ωk/2.

We also introduce the Lindblad operator in order to de-
scribe the relaxation of the system (= a FQ and spins), as
follows:

L[ρ] =
M∑

l=0

γ
(l )

T

(
σ (l )

z ρσ (l )
z − ρ

)

+
M∑

l=0

γ
(l )

L (σ (l )
+ ρσ

(l )
− + σ

(l )
− ρσ

(l )
+ − ρ), (2)

where γT and γL characterize the strengths of transversal
and longitudinal relaxations, respectively. Note that the su-
perscript l runs from 0 to M while k runs from 1 to M. We
consider the case when each qubit (FQ or spins) has a different
relaxation parameter labeled with ∗(l ).
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A system dynamics is then determined by

dρ

dt
= −i[H, ρ] + L[ρ], (3)

while the initial state is assumed to be

ρ(0) = |0〉〈0| ⊗
M⊗

k=1

σ0

2
, (4)

where σ0 is the 2 × 2 identity matrix. Then, our goal is to
obtain

ρ(final) = |0〉〈0| ⊗
M⊗

k=1

|0〉〈0|, (5)

after some operations.

B. Simplified model

We consider a simplified model where ωk and gk are iden-
tical for k = 1–M. Due to this simplification, we can calculate
polarization dynamics for a large number of spins. Our proce-
dure consists of two steps, Steps I and II. A FQ interacts with
the spins and absorbs their entropy in Step I while the spin
states are homogenized with a help of dephasing in Step II.

(i) in Step I
Let the system develop according to the following simpli-

fied Hamiltonian: This is obtained from Eq. (1) by assuming
gk = g and ω′

k = 0 for k = 1–M,

H I = g(σ (0)
+ S− + σ

(0)
− S+),

Sx,y,z,± =
M∑

k=1

σ
(k)
x,y,z,±, (6)

while the Lindbladian (2) is simplified as

LI[ρ] = γ
(
σ (0)

z ρσ (0)
z − ρ

)
, (7)

where we assume that only γ
(0)

T = γ �= 0 and the other γ
(k)

T

and γ
(l )

L are negligible. The only FQ is under influence of
dephasing.

After the dynamics, we initialize the FQ to the ground state
|0〉 without disturbing the spins (k = 1–M).

(ii) in Step II
We decouple the FQ from the spins. Therefore, the Hamil-

tonian is given as

H II = 0, (8)

while the Lindbladian (2) in Step II is simplified as

LII[ρ] =
M∑

k=1

γ ′(σ (k)
z ρσ (k)

z − ρ
)
, (9)

where we assume that only γ
(k)

T = γ ′ �= 0 and the other γ
(0)

T

and γ
(l )

L are negligible. All spins are under influence of the
same dephasing.

C. Step I

We employ the Young-Yamanouchi basis | j, m, i〉 [28]
in order to represent the spin state. Note that j =
1/2, 3/2, . . . , M/2 and |m| � j (half-integer) for odd-M

cases while j = 0, 1, . . . , M/2 and |m| � j (integer) for the
even-M cases. The index i represents the number of ways
of composing n spins to obtain the total angular momen-
tum j and takes 1–dj , where d j := (2 j + 1)M!/(M/2 + j +
1)!(M/2 − j)!. The action of spin operators S±,z is given as
follows:

S+| j, m, i〉 =
√

j( j + 1) − m(m + 1)| j, m + 1, i〉,
S−| j, m, i〉 =

√
j( j + 1) − m(m − 1)| j, m − 1, i〉,

Sz

2
| j, m, i〉 = m| j, m, i〉. (10)

Let us define

|ajmi〉 := |0〉 ⊗ | j, m, i〉, |bjmi〉 := |1〉 ⊗ | j, m − 1, i〉. (11)

By using the above bases, the initial state (4) can be rewritten
as

ρ(0) = 1

2M

∑
j,m,i

|a jmi〉〈a jmi|. (12)

The dynamics of ρ(t ) from the above initial state according to
Eq. (3) with Eqs. (6) and (7) is easily obtained with the help
of Eqs. (10–12):

ρ(t ) = 1

2M

∑
j,m,i

ρ jmi(t ),

ρ jmi(t ) := a jmi(t )|a jmi〉〈a jmi| + b jmi(t )|b jmi〉〈b jmi|
+ c jmi(t )|a jmi〉〈b jmi| + c∗

jmi(t )|b jmi〉〈a jmi|. (13)

Here the coefficients a jmi(t ), b jmi(t ), c jmi(t ) satisfy the fol-
lowing differential equations:

ȧ jmi(t ) = −2gl jmcI
jmi(t ),

ḃ jmi(t ) = 2gl jmcI
jmi(t ),

ċI
jmi(t ) = gl jma jmi(t ) − gl jmb jmi(t ) − 2γ cI

jmi(t ),

ċR
jmi(t ) = −2γ cR

jmi(t ), (14)

where cI (R)
jmi (t ) is the imaginary (real) part of c jmi and l jm =√

j( j + 1) − m(m − 1). The dynamics of each ρ jmi(t ), or the
dynamics of {a jmi(t ), b jmi(t ), c jmi(t )}, is independent of the
other.

Let us now focus on the dynamics of ρ jmi(t ) for fixed
j, m, i. Because the dynamics of cR

jmi(t ) is decoupled from
those of the other variables, we assume that c jmi is pure
imaginary from now on. The eigenvalues of this dynamics (=
decay rates) are given as

0,
−γ +

√
γ 2 − (16gl jm)2

2
,

−γ −
√

γ 2 − (16gl jm)2

2
.

(15)
The eigenstate corresponding to the eigenvalue 0 is
1
2 |a jmi〉〈a jmi| + 1

2 |b jmi〉〈b jmi| and is independent of γ . Note
that this state corresponds to the fully mixed state in the space
spanned by |a jmi〉 and |b jmi〉 and is stationary.
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Let us consider the dynamics of which initial state is given
as

ρ =
∑
j,m,i

p j,m|a jmi〉〈a jmi|. (16)

The states at the beginning and the end of Steps I + II (and
also the initial state) can be always written in the above form,
as shown below. The reason why pj,m is independent of the
index i is that there is no way to control the freedom of i in
our protocol and the initial state is also set to be independent
of the index i. Because the dynamics of each |ajmi〉〈a jmi| is
independent of each other, the dynamics from the initial state
(16) is simply given as

ρ(t ) =
∑
j,m,i

p j,mρ jmi(t ). (17)

Then, it is assumed that we can wait until the above dynamics
converges. After that, we obtain the stationary state of which
density matrix ρst is given as

ρst =
∑
j,m,i

p j,m

2
(|a jmi〉〈a jmi| + |b jmi〉〈b jmi|). (18)

We then cut the interaction between the FQ and the spins
and initialize the FQ state to the ground state |0〉. The final
total density matrix is given as

ρI = |0〉〈0| ⊗ Tr0(ρst ) =
∑
j,m,i

p′
j,m|a jmi〉〈a jmi|, (19)

where Tr0 denotes that only the FQ degrees of freedom is
traced out. By simple calculations, we obtain

p′
j, j = p j, j

2
,

p′
j,m = p j,m

2
+ p j,m+1

2
, m �= j,− j (20)

p′
j,− j = p j,− j + p j,− j+1

2
.

Thus, the repetition of Step I can be completely represented
by the above update rule (20). See Fig. 1.

The above processes (dynamics + trace out + initializa-
tion) is called Step I hereinafter. Figure 2 shows the global
view of the whole density-matrix dynamics during Step I.

D. Step II

Even when we repeat the Step I, we cannot polarize all
spins, because of the existence of the so-called dark states of
| j,− j, i〉 [29–36]. By the repetitive application of Step I, the
population of each basis |a jmi〉〈a jmi| in Eq. (16) except that
of the dark states converges to zero and thus the populations
will be accumulated onto these dark states. At the infinite-
repetition limit, the density matrix is given as

ρ =
∑
j,m,i

δm,− j p∞
j,− j |a jmi〉〈a jmi|, p∞

j,− j := 2 j + 1

2M
. (21)

Therefore, we cannot achieve perfect polarization only by
Step I.

To overcome this problem, in Step II, we apply dephasing
noise to the spins (k = 1–M) of which state is given by ρI

FIG. 1. Schematic picture of dynamics of Step I which consists
of “obtaining stationary state, ρ → ρst” and “trace out” processes.
In the ρ → ρst process, we have initially ρ = ∑

j,m,i p j,m|ajmi〉〈ajmi|
where |ajmi〉 = |0〉 ⊗ | j, m, i〉, which is illustrated in the upper
row. When the system becomes stationary state, we obtain ρst =∑

j,m,i
p j,m

2 (|ajmi〉〈ajmi| + |bjmi〉〈bjmi|) where |bjmi〉 = |1〉 ⊗ | j, m −
1, i〉, and we intuitively show this in the middle row. When the FQ is
isolated from the spins and initialized at the end of Step I, we obtain
ρI = ∑

j,m,i p′
j,m|ajmi〉〈ajmi|, as shown in the bottom row. The gray

zones represent the dark state.

[Eq. (19)] according to Eq. (9), and we wait until the dynamics
converges. We will prove that the density matrix after Step II
is given as

ρII =
∑
j,m,i

Pm|a jmi〉〈a jmi|. (22)

The dephasing removes the j dependence in the probability of
|ajmi〉〈a jmi|. Note that the density matrix given in Eq. (22) is
also a special case of Eq. (16).

,

=

= −

=

FIG. 2. Global view of the repetitive application of the update
rule (20) of Step I. The states of | j, m, i〉 converges to the states of
| j, − j, i〉. The red zone represents the target polarized state where
every spin is in the ground state.
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We first introduce ρ j,m which is given as

ρ j,m :=
d j∑

i=1

|a jmi〉〈a jmi|. (23)

Let us denote the operation of Step II by EII. Then the dynam-
ics of Step II is given as

ρII = EII(ρI ) =
∑
j,m

p′
j,m[EII(ρ j,m)]. (24)

The action of EII is written as

EII(ρ j,m) = d j

MCm+M/2

M/2∑
s=|m|

ds∑
i=1

|asmi〉〈asmi|, (25)

which is shown in Appendix A. After showing the
∑

in ρI

explicitly, we transform ρI as follows:

ρII =
M/2∑

m=−M/2

M/2∑
j=|m|

p′
j,m

(
d j

MCm+M/2

M/2∑
s=|m|

ds∑
i=1

|asmi〉〈asmi|
)

=
M/2∑

m=−M/2

(
M/2∑
j=|m|

p′
j,m

dj

MCm+M/2

)
M/2∑

s=|m|

ds∑
i=1

|asmi〉〈asmi|

=
M/2∑

m=−M/2

Pm

M/2∑
s=|m|

ds∑
i=1

|asmi〉〈asmi|

=
∑
j,m,i

Pm|a jmi〉〈a jmi|, (26)

where Pm is given as

Pm =
M/2∑
j=|m|

p′
j,m

dj

MCm+ M
2

= 1

MCm+ M
2

M/2∑
j=|m|

d j∑
i=1

p′
j,m. (27)

Because the number of orthogonal states |ajmi〉 for each m
is MCm+ M

2
, this process can be considered as an averaging

process of p′
j,m in ρI for a fixed m. (See Fig. 3 for an in-

tuitive explanation of Step II.) Thus, Step II can be totally
represented by the update rule,

p′
j,m → Pm. (28)

Figure 4 shows the schematic view of the whole density-
matrix dynamics after Step II.

E. Step I + Step II

It is possible to polarize the spins to ground states by
combining Steps I and II. To consider the polarization process,
it is convenient to employ the following variable:

�m =
M/2∑
j=|m|

d j∑
i=1

p j,m, (29)

which is the total probability of the mth column states, see
Fig. 5. These states have the same energy. If p j,m = Pm (after

/ ,

+ ,

| | ,

| | ,

fixed

,

Stationary state

| |

FIG. 3. Step II can be regarded as a process of averaging of pj,m

about j and i for fixed m. After Step II, the population of | j, m, i〉 in
the density matrix does not depend on j.

Step II and the initial state), this is given as

�m = MCm+ M
2

Pm. (30)

We now consider the update rule of �m under Steps I and
II. Let us denote the total probability of the mth column states
after the nth repetition by �(n)

m . The update rule depends on
the sign of m.

First, we consider the case of positive m. These columns
have no dark state, as shown in Fig. 6. According to the update
rule (20), all elements in the mth column can give half of its
probability Pm to the right ones and get half of the probability
from the left ones by Step I, as shown in Fig. 6. Thus the
update rule is given as

�
(n)
M/2 = �

(n−1)
M/2 /2,

�(n)
m = �(n−1)

m /2 + �
(n−1)
m+1 /2 for m > 0, m �= M/2. (31)

Second, we consider the case for m � 0 where we have
d|m| dark states (see Fig. 7). Then, only (MCm+ M

2
− d|m|) el-

ements can give the half of its probability Pm to the right
ones. Because each element in the mth column have the same

,

=

=

= −

FIG. 4. Global view of the update rule (28) of Step II, which is
regarded as averaging of the population of | j, m, i〉 about j and i for
fixed m. The blue arrow in the figure denotes such an averaging.
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Π− / 2Π / 2 Π,

FIG. 5. Definition of �m where we sum up all populations of
| j, m, i〉 in the density matrix for a fixed m.

probability Pm due to Step II, we only have to count how many
dark states in the mth column in order to derive the update
rule. A ratio between the number of the dark states and that
of the total elements for a fixed m determines the amount of
the population to be transferred from the mth column to the
(m + 1)st column (see Fig. 7). Thus, the update rule for the
m � 0 case is given as

�(n)
m = 1

2

(
1 + d|m|

MCm+ M
2

)
�(n−1)

m

+ 1

2

(
1 − d|m+1|

MC1+m+ M
2

)
�

(n−1)
1+m ,

for m � 0, m �= −M/2,

�
(n)
−M/2 = �

(n−1)
−M/2 + 1

2

(
1 − d|1−M/2|

MC1

)
�

(n−1)
1−M/2. (32)

The probability of each element pj,m in the mth column can
have different values after Step I because the rows labeled by
( j, i) are not equivalent. For instance, the probabilities of dark
states will be relatively large compared with those of the other
states, see Fig. 7. If the probabilities p j,m depend on j, the
above update rule does not work because this rule is derived
under the assumption that p j,m = Pm. Thus, when we repeat
only Step I, the variable �m is not appropriate to describe our
process and we should use the original update rule (20) for
p j,m. On the other hand, when we insert Step II, since this
step averages these probabilities, this update rule for �m can
be applied for the next repetition of Step I.

,

FIG. 6. Update rule for m > 0. Half of the population of | j, m, i〉
is transferred to that of | j, m − 1, i〉.

,

FIG. 7. Update rule for m � 0. Half of the population of | j, m, i〉
is transferred to that of | j, m − 1, i〉 unless | j, m, i〉 is a dark state that
cannot transfer its population by Step I.

Let us summarize the combined process of Steps I and II.
Note that the state after n times repetition is given as

ρ (n) =
M/2∑

m=−M/2

P(n)
m

M/2∑
j=|m|

d j∑
i=1

|a j,m,i〉〈a j,m,i|, (33)

which is justified with the calculation above. By introducing
the probability of the mth column after n times repetition like
Eq. (29),

�(n)
m =

M/2∑
j=|m|

d j∑
i=1

P(n)
m = MCm+ M

2
P(n)

m ,

the update rule is summarized as

�
(n+1)
M/2 = �

(n)
M/2/2,

�(n+1)
m = �(n)

m /2 + �
(n)
m+1/2, for m > 0, m �= M/2,

�(n+1)
m = 1

2

(
1 + d|m|

MCm+ M
2

)
�(n)

m

+ 1

2

(
1 − d|m+1|

MC1+m+ M
2

)
�

(n)
1+m,

for m � 0, m �= −M/2,

�
(n+1)
−M/2 = �

(n)
−M/2 + 1

2

(
1 − d|1−M/2|

MC1

)
�

(n)
1−M/2. (34)

As discussed previously, this update rule is based on the fact
that P(n)

m is independent of i and j thanks to Step II. By using
above �(n)

m , the density matrix after n times repetition is given
by

ρ (n) =
M/2∑

m=−M/2

�(n)
m

MCm+ M
2

M/2∑
j=|m|

d j∑
i=1

|a j,m,i〉〈a j,m,i|. (35)

Let us consider a probability of an excited state of the kth
spin,

p↑,k = 1
2

[
1 + Tr

(
σ (k)

z ρ
)]

. (36)

Note that all spins are now equivalent. In this case, p↑,k has no
dependency on k, and thus we drop the index k in this section.
The dynamics of p↑ is summarized in Fig. 8 when M = 10,
50, 100, and 200. The x axis is the number of steps divided by
M. Since we assume that we wait until the system saturates at
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Step I + II

       M = 10, 50, 100, 200

M = 200
100

50
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FIG. 8. Plot of the excited-state population p↑ of the spin against
the normalized number of steps. When we adopt only Step I, p↑
converges to finite nonzero values. On the other hand, when we
adopt Steps I and II, p↑ approaches zero, and the plots behave same
regardless of the number of spins. Here, we take M = 10, 50, 100,
and 200 from the bottom to top where M denotes the number of spins.

each Step I and Step II, the plot is independent of the interac-
tion strength g in Eq. (6) and the dephasing rate of the spins γ ′
in Eq. (9). When we perform only Step I, the population will
be trapped by the dark states, and the final population of the
excited state of the spins increases as M does. On the other
hand, the excited-state population converges to zero when we
perform both Steps I and II, as expected. Also, the plot of Step
I + II shows a universal dynamics and does not depend on M.

III. SPIN POLARIZATION WITH A FLUX QUBIT

We analyze a realistic polarization dynamics of electron
spins based on the discussion in Sec. II and show numerical
simulations in various conditions.

A. Parameters

We simulate the polarization dynamics with realistic pa-
rameters according to the Hamiltonian (1) and Lindbladian
(2). The configuration of the FQ is assumed to be a 2r0 × 2r0

square (see Fig. 9) and the parameters for numerical simula-
tions are summarized in Table I.

The electron spins are located in the middle of a square
determined by the FQ (see Fig. 9). Their interaction strengths

FIG. 9. Illustration of our system composed of the superconduct-
ing flux qubit (FQ) and electron spins. The FQ consists in a square
loop containing three Josephson junctions, illustrated as three blue
×. The electron spins are located in the middle of the FQ, and they
are inductively coupled with the FQ.

TABLE I. Parameters of the FQ for numerical simulations
[23,42,43].

Parameter of FQ Symbol Value

Size r0 3.0 × 10 μm
Persistent current Ip 180 nA
Longitudinal relaxation time T (FQ)

1 20 μs
Transversal relaxation time T (FQ)

2 2 μs
Energy gap �/2π 5.37 GHz
Detuning parameter ε/2π 0.112 GHz
Time required for initialization ti 1 μs
Interval between initialization tint 4 μs

gk with the FQ during the spin lock are given as [32,37,38]

gk = ε√
ε2 + �2

γeμ0Ip

2π

4∑
i=1

1

r (k)
i

, (37)

where r (k)
i , γe, μ0 are the distance from ith side of the FQ

to a kth spin, the gyromagnetic ratio of an electron spin, and
the vacuum permeability, respectively. If the electron spin is
placed in the middle of a FQ, we obtain gk = g0 = 175 rad/s
with the parameters given in Table I. This value gives the
energy scale of the interaction between the FQ and spins.

In our proposal, a fast FQ initialization is essential. A
fast reset in 120 ns was demonstrated with a superconducting
transmon qubit [39]. Although the transmon qubit was used,
we could in principle use the superconducting flux qubit with
a similar setup. We also point out that theoretical proposal
for fast initialization of a FQ have been reported [40]. More-
over, there was an experimental demonstration to reset the
FQ within tens of nanoseconds by using quantum feedback
control [41]. It is worth mentioning that we choose realistic
parameters of the coherence time of the FQ for our numerical
simulations.

We also assume that the longitudinal relaxation time T (e)
1 =

3600 s [20] and the transversal relaxation time T (e)
2 = 1.0 ×

10−3 s for electron spins [16,17,20,44–47].
In Appendix B, we also consider the case in the condition

of T (FQ)
1 = 200 μs, T (FQ)

2 = 30 μs, and T (e)
1 = 100 s, which

will be realized in the near future. Appendixes C and D dis-
cuss how the change of several parameters affect the cooling
behavior.

B. Simulations

We numerically calculate the system dynamics according
to the operator sum formalism [48–50]. The density matrix ρ

is updated as follows:

ρ(t ) → ρ ′ = e−iHδρ eiHδ → ρ(t + δ) = ρ ′ + L[ρ ′]δ. (38)

Here, we take δ = 1 μs, which is much shorter than the
characteristic timescale such as T1 of the FQ, T1 and T2 of
the spins, and 1/gk . Also, δ is set to be shorter than T2 of the
FQ. The choice of these parameters should not significantly
affect the dynamics of our system. We let the system evolve
by this formalism for a time tint. We consider various H and L
by changing parameters in Secs. III B 1–III B 4.
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FIG. 10. Plot of the excited-state population p↑ of the spins
against the number of steps for M = 1–5 of electron spins. The initial
state of the spins is a completely mixed state. We set the parameters
as ω′

k=1–M = 0, gk=1–M = g0, and γ
(l=0–M)

T = γ
(l=0–M)

L = 0.

The initial state of the electron spin is a completely mixed
state. We assume that the FQ is periodically initialized into the
ground state at tn = (n − 1)(ti + tint ) where n denotes natural
numbers. We define this period as a single step. Since the
initialization of the FQ can be much faster than the timescale
of the decay of the electron spins, we assume that the state of
the electron spins does not change during the initialization of
the FQ.

In the numerical calculations, we do not separate the dy-
namics into Step I and Step II. By applying both the dephasing
of the electron spins and the interaction between the FQ and
the electron spins, we simultaneously perform Step I and
Step II.

1. ω′
k = 0, gk = g0, and γ

(l)
T = γ

(l)
L = 0 case

We first simulate the case when there is no decoherence
in order to illustrate the influence of dark states on the po-
larization process. We assume that ωk

′ = 0 and gk=1∼M = g0

in Eq. (1) and γ
(l=0–M)

T = γ
(l=0–M)

L = 0 in Eq. (2). Figure 10
shows the dynamics of p↑. Note that all spins are equivalent
and thus all p↑,k are identical. Because of the dark states, p↑
saturates in the large-step limit. Note also that the cooling rate
in this simulation is much slower than that shown in Fig. 8.
This is because the interaction time tint in Fig. 10 is much
smaller than 1/gk , and the population transfer between the
electron spins and the FQ is small at a single step. On the
other hand, in Fig. 8, half of the ground-state population is
transferred to the electron spins at a single step.

2. ω′
k = 0 and γ

(l)
T = γ

(l)
L = 0 case

We consider the case when gk is inhomogeneous be-
cause of random spin positioning on a substrate according to
Eq. (37).

Figure 11 shows p↑,k when M = 4. Due to the different
values of gk (see the caption of Fig. 11), p↑,k approaches a
different saturation value and does not approach zero because
of dark states as in Fig. 10. Note that there is no direct interac-
tion among spins and the interaction between the FQ and the
spins are small. Therefore, the cooling behavior of the spins
in the case of larger M is essentially the same as shown in
Fig. 11.

0 1000 2000 3000 4000
0.0

0.1

0.2

0.3

0.4

0.5

Number of Steps /10000

p

FIG. 11. Plot of the excited-state population p↑,k of the spins
against the number of steps for M = 4 when ω′

k=1–M = 0, {gk=1–M} =
{161, 188, 218, 238} rad/s, γ

(l=0–M)
T = γ

(l=0–M)
L = 0. The lines from

top to bottom correspond to k = 1, 2, 3 and 4, respectively.

3. ω′
k = 0, γ

(l)
T �= 0, and γ

(l)
L = 0 case

We consider the case when gk is inhomogeneous with a
finite dephasing rate of γ

(l=0–M)
T �= 0. Figure 12 shows the case

with M = 4. Due to the dephasing on spins, p↑,k approaches
zero with different cooling rate according to gk . This observa-
tion with Fig. 11 shows that the dephasing leads p↑,k = 0 at
the large-step limit.

4. Realistic case

To support our simplified model discussed in Sec. II, we
have considered nonrealistic cases in Sec. III B 1–3 where
some imperfections have been ignored. We will, here, discuss
a realistic case when both ω′

k and gk are inhomogeneous with
finite decay rates of γ

(l)
T �= 0 and γ

(l)
L �= 0.

We show the case for M = 4 in Fig. 13. p↑,k approaches
0.08 regardless of ω′

k and gk . It converges to nonzero values
because of γ

(l )
L �= 0. Due to a thermal relaxation process, the

state of the electron spins will be a Gibbs state in a natural
environment, and its excited-state population is p↑ = 0.47 at
1 mT and 10 mK (a typical operation temperature of a FQ)
environment. This means that our cooling scheme with the FQ
is especially useful when we perform an ESR with the FQ: A
sensitivity of ESR measurements is proportional to p↓ − p↑

0 1000 2000 3000 4000
0.0

0.1

0.2

0.3

0.4

0.5

Number of Steps /10000

p

FIG. 12. Plot of the excited-state population, p↑,k , of the
electron spins against the number of steps for M = 4 when
ω′

k=1–M = 0, {gk=1–M} = {161, 188, 218, 238} rad/s, γ
(l=0–M)

L = 0,
γ

(0)
T = 1/T (FQ)

2 , and γ
(k=1–M )

T = 1/T (e)
2 . The lines from top to bottom

correspond to k = 1, 2, 3 and 4, respectively.
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FIG. 13. Realistic simulations. We plot the excited-state popu-
lation p↑,k of the electron spins against the number of steps for
M = 4 when {gk=1–M} = {161, 188, 218, 238} rad/s, ω′

k=1–M/2 =
{−12487, −7074, 1764, 8946} rad/s, γ

(0)
L = 1/T (FQ)

1 , γ
(k=1–M )

L =
1/T (e)

1 , γ
(0)

T = 1/T (FQ)
2 , and γ

(k=1–M )
T = 1/T (e)

2 . The lines from top to
bottom correspond to k = 1, 2, 3 and 4, respectively.

[14,51], and so the sensitivity of ESR with our polarization
scheme leads to more than ten times better than the conven-
tional one without active cooling. Also, it is worth mentioning
that the actual temperature of the electron spins in the dilution
refrigerator might be 50 mK or more and not 10 mK [7,8]
because T (e)

1 of the electron spins is large [20]. Moreover, an
interval between measurements in the standard ESR should
be a few time larger than T1 of the electron spins. Therefore,
as T (e)

1 becomes longer, our approach becomes more efficient
than the conventional approach.

IV. CONCLUSION

In conclusion, we propose a scheme to polarize electron
spins with a superconducting flux qubit (FQ). Since we cannot
apply large magnetic fields for the FQ to work, there is a large
energy gap between the electron spins and FQ. To achieve a
strong interaction between them, we adopt a spin-lock tech-
nique for the FQ. A Rabi frequency of the FQ can be as small
as resonance frequencies of the electron spins and thus the
efficient energy transfer between them can occur. We find that
homogeneous electron spins without any decoherence cannot
be cooled down to the ground state with the FQ, because the
electron spins in dark states cannot be coupled to the FQ.
Interestingly, dephasing on the electron spins (usually they are
not avoidable in experiments) allows them to escape from the
dark states. We show that the electron spins can be polarized
in realistic conditions by using our scheme.
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APPENDIX A: PROOF OF EQ. (25)

We first prove

Pρ j,mP† = ρ j,m (A1)

for any permutation matrix P. Note that any permutation ma-
trix P satisfies

[P, Sz] = 0, [P, S2] = 0, (A2)

where S2 = S2
x + S2

y + S2
z . This is directly proved by the

permutation invariance PSzP† = Sz and PS2P† = S2 in the
following way:

PSz = PSzP
†P = SzP,

PS2 = PS2P†P = S2P, (A3)

where we use P−1 = P†.
Let us write the action of P on | j, m, i〉 as

P| j, m, i〉 =
∑

j′,m′,i′
P j,m,i

j′,m′,i′ | j′, m′, i′〉. (A4)

We consider the explicit form of P j,m,i
j′,m′,i′ . By considering the

following fact:

0 = [P, Sz]| j, m, i〉 = PSz| j, m, i〉 − SzP| j, m, i〉
= mP| j, m, i〉 − Sz

∑
j′,m′,i′

P j,m,i
j′,m′,i′ | j′, m′, i′〉

= mP| j, m, i〉 −
∑

j′,m′,i′
m′P j,m,i

j′,m′,i′ | j′, m′, i′〉

=
∑

j′,m′,i′
(m − m′)P j,m,i

j′,m′,i′ | j′, m′, i′〉. (A5)

This implies that P j,m,i
j′,m′,i′ has the form of δm

m′ P̃
j,i
j′,i′ . By using the

commutation relation about S2, we can prove that P j,m,i
j′,m′,i′ has

the form of δm
m′δ

j
j′

˜̃Pi
i′ in the same manner as above. Thus, P is a

block-diagonal matrix with respect to the basis {| j, m, i〉} j,m,i.
The explicit form of P is given as

P =
∑

j,m,i,i′

˜̃Pi
i′ | j, m, i〉〈 j, m, i′| (A6)

because P is a unitary matrix. ˜̃Pi′
i is also unitary, i.e.,∑

i′′
˜̃Pi
i′′ (

˜̃Pi′
i′′ )

∗ = δi,i′ . Then we can explicitly show

Pρ j,mP† =
∑

j1,2,m1,2,i1,2,3,4

˜̃Pi1
i2

| j1, m1, i1〉〈 j1, m1, i2|

ρ j,m
( ˜̃Pi4

i3

)∗| j2, m2, i3〉〈 j2, m2, i4|
=

∑
i,i1,i4

˜̃Pi1
i

( ˜̃Pi4
i

)∗| j, m, i1〉〈 j, m, i4|

=
∑

i

| j, m, i〉〈 j, m, i| = ρ j,m. (A7)

We now proved Eq. (A1), which means that all the di-
agonal elements of ρ j,m represented in the binary basis
(| 11 · · · 1︸ ︷︷ ︸

n/2+m

00 · · · 0︸ ︷︷ ︸
n/2−m

〉 and all its permutations) is identical; that
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is,

ρ j,m = d j

MCm+ M
2

|0〉〈0| ⊗

⎛
⎜⎜⎜⎜⎝

1 . . . . . .

. 1 . . . . .

. . 1 . . . .

...
...

...
. . .

...

. . . . . . 1

⎞
⎟⎟⎟⎟⎠. (A8)

This matrix is a MCm+ M
2

× MCm+ M
2

matrix while its matrix
rank is d j . The effect of independent dephasing EII makes the
nondiagonal elements of this matrix be 0. Thus, after Step II,
the density matrix ρ j,m becomes EII(ρ j,m) given as

EII(ρ j,m) = d j

MCm+ M
2

|0〉〈0| ⊗

⎛
⎜⎜⎜⎜⎝

1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎠, (A9)

which is the identity matrix of the space spanned by the binary
basis with fixed m. Although the above matrix is represented
in the binary basis, because the identity matrix is invariant
under any unitary transformation on this space, Eq. (A9) can
be rewritten as

EII(ρ j,m) = d j

MCm+ M
2

|0〉〈0| ⊗
M/2∑

s=|m|

ds∑
i=1

|s, m, i〉〈s, m, i|.

(A10)
Thus, Eq. (25) is proved.

APPENDIX B: EXPECTED EXPERIMENTS
IN NEAR FUTURE

The coherence time used for the numerical simulation so far
is realistic with the current technology. However, since the
coherence time of the superconducting qubit are expected to
become longer due to the development of the technology, we
also performed the simulations in the condition of T (FQ)

1 =
200 μs, T (FQ)

2 = 30 μs, T (e)
1 = 100 s, ti = 5 μs, tint = 95 μs,

and δ = 5 μs.
We show the case for M = 7 in Fig. 14 which should

be compared with Fig. 13. Because of the longer T (FQ)
1 and

T (FQ)
2 , the cooling rate of electron spins is much faster. p↑,k

approaches 0.17 regardless of ω′
k and gk .

APPENDIX C: COOLING BEHAVIOR AS A FUNCTION
OF g AND T (FQ)

2

From Eq. (16), we can suppose that ς := g2T (FQ)
2 tint is an

important parameter that determines the behavior of cooling.
The bottleneck of the speed of cooling in one step is the

slower mode
−γ

(0)
T +(γ (0)

T −16g2l2
jm )1/2

2 . We now use γ
(0)

T = 1/T (FQ)
2

instead of γ in Eq. (16). This eigenvalue can be expanded
as 16g2l2

jm/γ
(0)

T = 16g2l2
jmT (FQ)

2 when g � γ
(0)

T . The competi-

tion between 1/tint and 16l2
jmg2T (FQ)

2 determines the behavior
of cooling. Thus, we can take ς as a key parameter for the
cooling behavior.

Here, we evaluate how the change in ς affects the cooling
behavior in numerical calculations. We assume that the spins
are homogeneous: ω′

k = 0 and gk = g0. The other parameters
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FIG. 14. Realistic simulations. We plot the excited-state
population p↑,k of the electron spins against the number of
steps for M = 7 when ω′

k=1–M/2 = {−3459, −911, −3511,

4082, 12114, 4608, −6898} rad/s, {gk=1–M} = {150, 160, 169,

178, 190, 197, 209} rad/s, γ (0)
L = 1/(200 μs), γ (k=1–M )

L = 1/(100 s),
γ

(0)
T = 1/(30 μs), and γ

(k=1–M )
T = 1/(1 ms). The lines from top to

bottom correspond to k = 1, 2, 3, 4, 5, 6 and 7, respectively.

are set to be γ
(k)

T = 1/(1 ms), γ
(0)

L = 1/(200 μs), ti = 5 μs,
tint = 95 μs, δ = 5 μs, which are same as in Appendix B, and
γ

(k)
L = 0. Also, we consider the M = 2 case for simplicity.

First, we calculate the cooling speed at early steps for
several pairs of (g0, T (FQ)

2 ). We approximate the cooling speed
v at early steps by

v =
∣∣∣∣ (p↑ at the 2000th step) − (p↑ at the initial time)

2000

∣∣∣∣.
Figure 15 plots the cooling speed v as a function of ς . These
points are almost on the same curve for small ς . This result is
consistent with our claim that ς is an important parameter for
the cooling behavior.

We also evaluate the entire dynamics while changing ς .
Figure 16 plots the dynamics for several values of ς while
we took ς ≈ 8.7 × 10−5 as in Appendix B. However, this
result shows that the state of the spin ensemble approaches
to almost the same stationary state even when ς changes by
several orders of magnitude. On the other hand, the cooling
speed significantly changes depending on ς .

0 5 10 15 20
0

5

10

15

Ζ∗104

v∗
10

5

FIG. 15. Cooling speed at early steps v as a
function of ς . We plot v for any pair of g0 =
{50, 100, 150, 200, 250, 300, 350, 400, 450, 500} rad/s and
T (FQ)

2 = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} μs. Regardless of
the combinations of g0 and T (FQ)

2 , v, is universal as a function of ς .
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FIG. 16. The behavior of cooling for three values of ς . The lines
from top to the bottom correspond to ς = 0.71 × 105, 8.6 × 105, and
76 × 105, respectively.

APPENDIX D: STATIONARY STATE IN FINITE-T1 CASES

Here we consider whether quantum spin systems with
small g can be polarized or not. In Fig. 17, we plot the excited-
state probability pst

↑ at the stationary state. We consider the
M = 1 case in this Appendix and the parameters other than
T (e)

1 are the same as in the Appendix B.

0.1 1 10 100 1000

0.2

0.3

0.4
0.5

g

FIG. 17. The excited-state probability pst
↑ at the stationary state

as a function of g. The lines from top to bottom correspond to T (e)
1 =

1 s, 10 s, 100 s, and ∞, respectively.

For T (e)
1 = ∞, pst

↑ is almost independent of g as also im-
plied in Appendix C. On the other hand, the g dependence of
pst

↑ appears once we take the effect of T (e)
1 into account. For

T (e)
1 = 100 s that we use in Appendix B, we need a coupling

strength of g ∼ O(102) to obtain the maximum polarization.
If we try to polarize spins with g ≈ 0.1 rad/s, we will need a
much longer T (e)

1 .
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