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Genetic optimization of quantum annealing
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The study of optimal control of quantum annealing by modulating the pace of evolution and by introducing
a counterdiabatic potential has gained significant attention in recent times. In this work, we present a numerical
approach based on genetic algorithms to improve the performance of quantum annealing, which evades the
Landau-Zener transitions to navigate to the ground state of the final Hamiltonian with high probability. We opti-
mize the annealing schedules starting from the polynomial ansatz by treating their coefficients as chromosomes
of the genetic algorithm. We also explore shortcuts to adiabaticity by computing a practically feasible k-local
optimal driving operator, showing that even for k = 1 we achieve substantial improvement of the fidelity over
the standard annealing solution. With these genetically optimized annealing schedules and/or optimal driving
operators, we are able to perform quantum annealing in relatively short timescales and with higher fidelity
compared to traditional approaches.
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I. INTRODUCTION

Small spectral gaps are a bottleneck of adiabatic
quantum computation and quantum annealing [1–4]. In these
paradigms of quantum computation, the goal is to read the
ground state of a target Hamiltonian Hz, encoding an NP-
complete or NP-hard problem [5]. Starting from the (easy to
prepare) ground state |ψ (0)〉 of a transverse field Hamiltonian
Hx = −�

∑n
i=1 σ x

i , where n is the number of qubits and � is
the strength of the transverse field, the system is evolved with
the time-dependent Hamiltonian H0(t ) = A(t )Hx + B(t )Hz.
The annealing schedule is given by the pair {A(t ), B(t )}, sat-
isfying A(0) � B(0) and 0 = A(T ) � B(T ), where T is the
annealing time. At t = T , the system is found in the target
ground state with a high probability, provided T is longer than
the inverse square of the smallest gap between the ground state
and the first excited state [6]. During the dynamics the system
may cross a quantum phase transition [7]; correspondingly,
the gap takes its minimum value � = mint [E1(t ) − E0(t )],
which results in long annealing times to satisfy the adiabatic
condition, thus making the algorithm ineffective.

If the annealing time T is shorter than that predicted by
the adiabatic theorem, the fidelity of the final solution is
compromised; if T is longer, the system suffers decoherence.
Therefore, the goal here is to modify the annealing dynamics
in order to achieve high fidelities, even breaking the adiabatic
criterion, before decoherence sets in. This can be achieved by
taking advantage of different improved schemes. We mention
optimal control theory [8], which is limited, in principle, only
by the quantum speed limit [9,10]; shortcuts to adiabaticity
(STAs) [11–23]; and modulating in a controlled way the an-
nealing schedules [24–27].

*pratibharaghupati.hegde@unina.it

A possible STA consists in adopting counterdiabatic (CD)
driving [11–18]. In transitionless or CD driving, a time-
dependent potential HCD(t ) is added to the unperturbed
Hamiltonian H0(t ) so that diabatic Landau-Zener transitions
are completely suppressed at all times and for all choices of
the annealing time T . The total Hamiltonian reads H (t ) =
H0(t ) + HCD(t ). The CD operator satisfies the constraint
HCD(0) = HCD(T ) = 0 and does not modify the starting and
target Hamiltonians. Computing the exact CD potential re-
quires knowledge of the (generally unknown) instantaneous
spectrum of the Hamiltonian H0(t ). Moreover, the resulting
operator is highly nonlocal, hardly implementable on actual
quantum machines, and generally unbounded in the thermo-
dynamic limit [28].

Recently, much effort has been put forth to build approxi-
mate CD potentials. In some very simple cases, such as the
Ising model with longitudinal and transverse fields, linear
combinations of local operators provide good approximations
of the CD potential, e.g., HCD(t ) ≈ ∑

k αk (t )Ok . The opera-
tors Ok are generally Hermitian products of a small number of
Pauli operators. The coefficients αk (t ) can be determined by
variational optimization [29,30]. For more complicated many-
body Hamiltonians, other choices for operators Ok involve
nested commutators between H0(t ) and its time derivative
[31]. However, in the former case, we do not know in ad-
vance which and how many local operators are needed to
build a good “enough” CD operator. In the latter case, nested
commutators can be highly nonlocal, as much as the exact
CD potential. Moreover, the number of nested commutators
is expected to diverge in the thermodynamic limit when the
system undergoes a quantum phase transition [32].

In this paper we derive an alternative route and we focus on
the study of optimal annealing schedules A(t ) and B(t ) and an
optimal driving (OD) potential HOD(t ) that are variationally
improved to achieve the maximum fidelity at the final time
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T . The search for variational minima is approached using
computational intelligence tools [26]; in particular, we adopt
a genetic algorithm, i.e., an evolutionary strategy inspired by
the Darwinian theory of the survival of the fittest [33]. We
consider time schedules that are polynomial functions of time
and we consider local operators for the OD. In our approach,
the coefficients of the polynomials and the OD operator are
represented as a real-valued chromosome. Each chromosome
is characterized by a fitness value. At each generation, chro-
mosomes will mate and randomly mutate. Only the fittest
individuals will survive to the next generation. We show that
a simple choice of the fitness function can lead to optimized
annealing schedules as well as to OD potentials that largely
improve the fidelity of the target quantum ground state of Hz,
compared to the bare case. We discuss the adiabatic quantum
computation of a prototypical system, the ferromagnetic p-
spin model, an exactly solvable model with a nontrivial phase
diagram, which encodes a Grover-like search [27,34] for large
and odd p.

This paper is organized as follows. In Sec. II we describe
the ferromagnetic p-spin model. In Sec. III we introduce
the genetic algorithms and the construction of chromosomes
for the problems of optimization of annealing schedules and
OD potentials. We also define fitness functions for single-
objective genetic algorithms (SOGAs) and multiobjective
genetic algorithms (MOGAs). In Sec. IV we present the
results obtained by optimizing the annealing schedules and
OD potentials individually and together using genetic algo-
rithms. In Sec. V we discuss the possibility of extending our
techniques to the quantum annealing of random Ising models.
We summarize in Sec. VI.

II. DEFINITION OF THE PROBLEM

In this paper we consider the fully connected ferromagnetic
p-spin model [35,36] as a case study. The Hamiltonian of this
model is

Hz = −Jn

(
1

n

n∑
i=1

σ z
i

)p

, (1)

with J > 0 and p � 2. For odd p, its ground state is fer-
romagnetic with all qubits in the state |0〉. For even p,
the ground-state manifold is two dimensional (|00 · · · 0〉 and
|11 · · · 1〉) due to the Z2 symmetry. If we study the quantum
annealing with the time-dependent Hamiltonian H0(t ) using
as a target Hamiltonian Hz defined in Eq. (1), we observe a
dynamical quantum phase transition separating a paramag-
netic phase (at short times) from a ferromagnetic phase (at
long times). For p = 2, the quantum phase transition is of
second order, while for p � 3 it is of first order. The latter
is the hardest case for quantum annealing, as the minimal gap
� closes exponentially as a function of n [37]. This feature
motivates the broad interest in this system as a toy model of
NP-hard problems [32,38–47].

The model Hamiltonian is permutationally invariant and
commutes with the total spin operator S2 at all times. The
starting and the target state belong to the subspace with max-
imum spin S = n/2 and the dynamics will occur within the
same (maximum spin) subspace. Therefore, we can work in
this (N = n + 1)-dimensional sector. In the following, we will

consider J as the unit of energy. Times are expressed in units
of J−1 (h̄ = 1 here and in the following).

We perform adiabatic evolutions of the system described
by the p-spin model assisted by genetic algorithms. We aim
at improving the final-state fidelity of the system by fol-
lowing three strategies: (a) optimizing annealing schedules,
(b) optimizing local OD with the traditional linear annealing
schedules, and (c) optimizing both annealing schedules and
the local OD operator. These strategies are explained in detail
later in the paper (see Sec. III). Further, we choose an anneal-
ing time sufficiently shorter than the timescale Tad predicted
by the adiabatic theorem, i.e.,

Tad = max
λ∈[0,1]

|〈E0(λ)|∂λH (λ)|E1(λ)〉|
|E1(λ) − E0(λ)|2 , λ = t/T . (2)

III. METHODS: GENETIC ALGORITHMS

We use a class of evolutionary algorithms known as genetic
algorithms to find optimized annealing schedules for adiabatic
evolutions. In addition, we also manage to demonstrate the
efficiency of genetic algorithms in the paradigm of shortcuts
to adiabaticity by finding optimized local OD operators.

Genetic algorithms are inspired by Darwin’s theory of
evolution. These algorithms offer solutions to optimization
problems conditioned by a single objective or multiple ob-
jectives [46,48–50]. In both cases, the possible solutions to
the problem are encoded as a string of real numbers called
chromosomes. The construction of a chromosome depends on
the optimization problem. In this article, broadly speaking,
we address three optimization problems, all of which aid the
performance of adiabatic evolution, i.e., finding the system in
a ground state of the problem Hamiltonian Hz with maximum
probability at the end of the evolution. The three problems are
as follows.

A. Optimization of annealing schedules

Here we try to optimize the performance of quantum an-
nealing by optimizing its annealing schedules A(t ) and B(t )
[24–26]. First, we express the annealing schedules as dimen-
sionless time functions of s = t/T throughout this paper. We
consider polynomial expansions of A(s) and B(s) as candi-
dates for the possible annealing time schedules, i.e., A(s, α) =∑ka+1

i=1 αisi and B(s, β ) = ∑kb+1
j=1 β j s j . Moreover, these time-

dependent functions have to satisfy the boundary conditions
A(0) = 1 and A(1) = 0, and B(0) = 0 and B(1) = 1, respec-
tively, and therefore can expressed as

A(s, α) = 1 +
ka∑

i=1

αis
i +

(
−1 −

ka∑
i=1

αi

)
ska+1,

B(s, β ) =
kb∑

j=1

β j s
j +

(
1 −

kb∑
j=1

β j

)
skb+1. (3)

We optimize the coefficients of these polynomial expan-
sions as chromosomes of the genetic algorithm and the
structure of the chromosome for this problem is

D1 = [α1, α2, . . . , αka , β1, β2, . . . , βkb]. (4)

The length of the chromosome is ka + kb.
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B. Optimization of the local OD operator

In this section we adopt the strategy of shortcuts to adi-
abaticity to optimize the performance of quantum annealing
[28–32]. Keeping the annealing schedules fixed and as linear
functions, i.e., A(s) = 1 − s and B(s) = s, we optimize an OD
operator which successfully avoids Landau-Zener transitions,
resulting in a better fidelity of the state of the system with the
exact ground state at t = T . We assume that the OD operator
HOD(s) can be expanded as the sum of local spin operators,

HOD(s, γ ) = C(s)
d∑

i=1

γiOi, (5)

where Oi are the total spins in the x, y, and z directions, i.e.,
Sx, Sy, and Sz, and their products. In particular, we consider
only single local operators and cumulatively add the set of
all possible two-spin operators and the set of all three-spin
operators. These local operators can be explicitly written as

HOD(s, γ )d=3 = C(s)
3∑

i=1

γiSi,

HOD(s, γ )d=9 = HOD(s)d=3 + C(s)
3∑

i, j=1

γi, jSiS j,

HOD(s, γ )d=21 = HOD(s)d=9 + C(s)
3∑

i, j,k=1

γi, j,kSiS jSk . (6)

The chromosome of the genetic genetic algorithm for this
problem is the set of coefficients of the local operators

D2 = [γ1, . . . , γ3, γ11, γ12, . . . , γ33, γ111, γ112, . . . , γ333]
(7)

whose length is equal to the number of local operators d . In
this work we are able to achieve remarkable results by opti-
mizing the local OD operator with only single-spin operators,
i.e., HOD(s, γ )d=3 = C(s)

∑3
i=1 γiSi, and therefore we discuss

and demonstrate our results for the case with d = 3. The
higher terms of two-spin and three-spin operators are omitted
since they do not produce any significant improvements. The
time schedule C(s) is fixed in this approach and is given by
C(s) = A(s)B(s) = (1 − s)s. The function C(s) controls the
pace of evolution dictated by the OD operator HOD(s).

C. Optimization of the time schedules and the local OD

Here we optimize the annealing schedules A(s) and B(s)
and the local OD operator altogether [24,25]. The time sched-
ule C(s) is optimized by absorbing it as the coefficients of the
local OD operators, i.e., HOD(s) = ∑d

i=1 Ci(s)Oi. We consider
each Ci(s) to be a polynomial of order kc + 1, which satisfies
the boundary conditions Ci(0) = 0 and Ci(1) = 0. Therefore,
the OD operator can be explicitly written as

HOD(s, ε) =
d∑

i=1

[
kc∑

j=1

ε jis
j +

(
−

kc∑
j=1

ε ji

)
skc+1

]
Oi. (8)

We optimize the free parameters ε ji, in addition to the free
parameters αi and βi in Eq. (4). The time-dependent Hamilto-

nian of the system is given by

H (s) = A(s, α)Hx + B(s, β )Hz + HOD(s, ε), (9)

where
α = {α1, . . . , αka},
β = {β1, . . . , βkb},
ε = {ε11, . . . , εkcd}.

Therefore, the chromosome for this optimization problem can
be expressed as

D3 = [α1, . . . , αka , β1, . . . , βkb, ε11, . . . , εkc1, . . . , εkcd ].

(10)

The length of the chromosome in this case is ka + kb + (d ×
kc). Here again we are able to obtain high fidelity of the state
of the system by considering only single-spin operators in the
expansion of the local OD operator. Therefore, we stick to the
case of d = 3.

The key aspect of genetic algorithms is the definition of the
fitness function. It is a function which takes each chromosome
as a variable and gives it a fitness value according to the qual-
ity of the solution generated by the given chromosome. In the
course of a genetic algorithm, we intend to either maximize
or minimize this fitness function. Depending on the number
of conditions the chromosomes have to satisfy, the genetic
algorithms are characterized by fitness functions which are
single objective or multiobjective. In the rest of this section,
we describe the fitness function and the workflow of SOGAs
and MOGAs.

D. Single-objective genetic algorithms

Single-objective genetic algorithms follow the workflow of
a standard genetic algorithm. We define the fitness of each
chromosome as the fidelity, which is the ground-state proba-
bility at t = T , i.e.,

fSO ≡ Pgs(T ) = |〈E0(T )|U (T )|ψ (0)〉|2, (11)

where U (t, 0) = T+ exp{−i
∫ t

0 [H (t ′)]dt ′} is the time-
evolution operator and T+ is the time ordering.1

An alternative fitness function would be to use the
negative of the mean energy at the final time T , i.e.,
−〈ψ (0)|U †(T, 0)HzU (T, 0)|ψ (0)〉. This choice does not
require the knowledge of any spectral property of the
Hamiltonian. The fittest individuals, maximizing fSO, are
those with higher fidelities and are likely to survive along
generations. At the end of the genetic optimization, we will
obtain a chromosome defined according to the problem.
However, all three problems considered here aim at giving a
higher fidelity.

We initialize a starting population of Npop individu-
als, whose genes are randomly extracted in the interval
[gmin, gmax]. Then we repeatedly apply the three genetic
operators (mutation, crossover, and selection [53]) until a
convergent solution is achieved. The genetic algorithm is
implemented using the DEAP package [50]. Here we briefly
describe the genetic operators adopted, also sketched in Fig. 1.

1The time evolution is computed with the QUTIP toolbox [51,52].
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FIG. 1. Cartoon of our genetic algorithm. (a) The free parameters of the annealing schedules are stored in a chromosome. (b) We first
randomly generate Npop individuals. (c) Then random gene mutation occurs in each individual. (d) Then we apply two individual crossovers.
(e) We select the fittest individuals and start again from (c) until convergence. The azure bars identify the fitness values: the larger the better.

(i) Gaussian mutation. Among the population of individ-
uals, random individuals are selected with a probability Pm

for mutation. Each gene is independently mutated with a
probability Pind, by adding a normal variable, extracted from a
Gaussian with mean value μ = 0 and variance σ 2 = 1 [see
Fig. 1(c)]. The mutation probability of each gene, i.e., the
product PmPind, should be neither too high nor too low (a
quantitative description is given in Appendix A). In the former
case, the genetic algorithm will turn into a random search.
In the latter case, the algorithm would be nonergodic. These
random mutations increase variability in the population and
reduce the probability of being trapped in local minima.

(ii) Two-point crossover. After the mutation process, we
randomly select two parents from the chromosome popula-
tion. Two random integers are randomly extracted from the
interval [0, L − 1], where L is the length of the chromosome,
which is the number of free parameters to be optimized using
a genetic algorithm and is problem specific. Two children
are produced by mixing alternating parts of the two parents,
obtained by cutting the chromosomes at the two extracted
indices [see Fig. 1(d)]. Note that the exchange of the frag-
ments is only symbolic in Fig. 1(d) and represents a one-point
crossover for the sake of visual clarity. In our experiments,
we resort to a two-point crossover operator, which yields the
fastest convergence in this case. The whole process occurs
with a probability Pc. Low Pc ensures slow but accurate con-
vergence to the optimal solution. On the other hand, high Pc

ensures quick convergence but can lead to suboptimal solu-
tions. Hence, Pc has to be carefully tuned to find a compromise
between speed of convergence and accuracy of the solution.

(iii) Selection by tournament. After mutation and crossover,
a new population is produced. NT competitors are selected
from the population and their fitness is compared [see
Fig. 1(e)]. Only the fittest individual survives to the next
generation. This tournament is repeated until we obtain a new
set of Npop individuals.

E. Multiobjective genetic algorithms

While SOGAs aim at maximizing the ground-state prob-
ability at the final time T , they sometime lead to practically
infeasible solutions during the time of evolution. For example,

some of the solutions returned by the algorithm can have
energy-level crossings between the ground state and the first
excited state. In an attempt to avoid these solutions produced
by SOGAs, we add another objective to the fitness function.
Other than maximizing the fidelity at t = T , we choose to
maximize it together with the area under the curve of the in-
stantaneous ground-state probabilities of the system computed
at Nt time intervals. The latter ensures that the ground-state
occupation is maximum at all the intermediate times, in the
spirit of counterdiabatic dynamics. The ground-state proba-
bility at time t is given by Pgs(t ) = |〈E0(t )|U (t )|ψ (0)〉|2. The
fitness of a chromosome in MOGAs is defined as

fMO ≡
{

1

T

∫ T

0
Pgs(t )dt, Pgs(T )

}
. (12)

We stress here the fact that this is not the same as imposing
local adiabaticity as by Roland and Cerf [27]. Multiobjec-
tive genetic algorithms deviate from the standard genetic
algorithms. In particular, they work using the strategy of a
nondominated sorting genetic algorithm (NSGA-II) [49,54].
NSGA-II uses an elitist method of evolutionary algorithms.
The parent and offspring generations are grouped together
and are ranked into fronts based on nondominated sorting.
The population of the following generation is filled with
the best fronts until Npop is reached. In the case in which
only some chromosomes have to be selected from a front in
the process, the most diverse solutions are chosen based on
the crowding distance. Given the new population, by the above
nondominated sorting process, the chromosomes undergo se-
lection (a binary tournament selected based on both rank and
crowding distance), mutation, and crossover processes. At the
end of Ngen generations, the Pareto optimal front with the best
ranking is obtained. The details of selecting the chromosome
from the Pareto optimal front is given in Appendix B.

IV. RESULTS

In this section we present the results obtained by per-
forming adiabatic quantum computation of the ferromagnetic
p-spin model assisted by genetic algorithms. In particular,
we concentrate on a system with 15 spins and p = 3 to
demonstrate our results. The adiabatic timescale of Eq. (2)

012612-4



GENETIC OPTIMIZATION OF QUANTUM ANNEALING PHYSICAL REVIEW A 105, 012612 (2022)

for this system is Tad ≈ 30. We choose the annealing time
T = Tad/10 ≈ 3 in order to be far from adiabaticity. Through-
out the time evolution, we store the data of energy gaps
between the ground state and the first excited state, time
schedule function values, and ground-state probabilities. We
initiate the genetic algorithm with a population of Npop = 20
individuals and run it for a large enough number of gen-
erations until the algorithm gives convergent values. When
implementing genetic algorithms, it is advisable to perform
initial experimentation to optimize the hyperparameters in-
volved in mutation, crossover, and selection processes. The
details of this procedure are given in Appendix A. We consider
the optimal hyperparameters to repeatedly perform genetic
algorithms and to analyze the results obtained from their solu-
tions. With the optimized annealing schedules and an optimal
driving operator, the Schrödinger equation is solved in the
time domain [0, T ] and sampled at 100 evenly spaced points
in this interval. The system is initialized in the ground state
of Hx. When we optimize the annealing schedules, we evolve
the Schrödinger equation with the Hamiltonian in Eq. (9),
but without the optimal driving term HOD(s, ε). In the case
of optimal driving optimization, we evolve the Schrödinger
equation with the Hamiltonian in Eq. (9). The ground-state
probability of the system is computed along the geneti-
cally optimized path of quantum annealing. The Schrödinger
equation evolution is simulated using the QUTIP library
[51,52]. Further, we repeat the genetic algorithms 50 times
and compute the corresponding results pertaining to the
dynamics of the system. Hereafter, we present the results
obtained by using the three strategies assisted by a SOGA. We
discuss the cases where MOGAs can be chosen over SOGAs
in order to obtain meaningful results. Further, we test our
methods in systems with a varying number of spins.

A. Optimization of annealing schedules A(s) and B(s)

As described in Sec. III, we optimize the annealing sched-
ules by encoding the coefficients of the polynomials in Eq. (3)
as chromosomes D1 in Eq. (4). With the optimal annealing
schedules given by the genetic algorithms, we simulate the
adiabatic quantum computation. We focus on the cases when
ka = 2 and kb = 2 and hence the length of the chromosome is
4. We have run the algorithm for 5000 generations.

The summary of the results from optimizing the annealing
schedules using the SOGA is provided in Fig. 2. In Fig. 2(a)
we show that the optimized path increases the minimum
gap between the ground state and the first excited state only
slightly: The energy scales remain within practical limits.
Meanwhile, in Fig. 2(b) the ground-state probabilities remain
higher throughout the evolution and around the final time
there is a slight drop in the fidelity. This could possibly be
overcome by using a MOGA by imposing a condition on
the fitness function that the derivative of the ground-state
probability evolution curve remains smaller. In Fig. 2(c) we
show the annealing schedules optimized by the SOGA. We
see that both schedules A(s) and B(s) increase to a value larger
than one and gradually decrease to their respective boundary
values, as opposed to the traditionally used monotonic func-
tions [6,46]. We point out that the nature of our optimized time
schedules is different from the exact solution of annealing

FIG. 2. Summary of the results obtained by using the optimized
annealing schedules for solving the p-spin model using SOGAs:
(a) instantaneous energy gaps during the dynamics of the adiabatic
evolution, (b) instantaneous ground-state probability using the opti-
mized schedules and using a simple linear schedule, (c) annealing
schedules A(s) and B(s), and (d) histogram of the fidelities for
50 runs of the algorithm. We investigate the system with 15 spins
with both annealing schedules A(s) and B(s) expanded up to a degree
of 3. In other words, ka = kb = 2.

schedule function derived, for example, in Ref. [27]. This is
due to the fact that we do not impose the local adiabaticity
at all points of time, but only at the final time. Figure 2(d)
shows the histogram of fidelities for 50 runs of the algorithm.
Fidelities are distributed in a small window with the median
value of the distribution approximately equal to 0.895, which
is about two orders of magnitude higher with respect to the
linear schedule.

To conclude this section, we study the genetic optimization
of annealing schedules for varying system sizes. In Fig. 3

FIG. 3. Box plot of fidelities of the states of systems with differ-
ent sizes. Each box represents the first quartile and the third quartile
and the red (gray) dashed line represents the median of the data for
50 runs of the SOGA which optimizes the annealing schedules A(s)
and B(s), each of which is expanded up to a third-degree polynomial.
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FIG. 4. Results obtained by optimizing the time-independent part of the local OD operator for the ferromagnetic p-spin model with
15 spins and p = 3. The OD operator chosen is HOD(s, γ )d=3. The plots depict the data for 50 runs of the SOGA and the corresponding results
obtained by adiabatic quantum computation. (a) Instantaneous energy gaps between the ground state and the first excited state. (b) Instantaneous
ground-state probabilities. (c) Histogram of the fidelities for 50 instances.

we set the chromosome length equal to 4 and we run the
genetic algorithms for 5000 generations for system sizes up
to 45 spins. We plot the fidelities of the adiabatic evolution
as a box plot, where each box represents the interval between
the first and third quartiles and the red (gray) dashed line is
the median fidelity over 50 repetitions. The solutions by the
genetic algorithms decrease for larger system sizes. However,
the performance is strikingly better than the corresponding
results using linear annealing schedules, by several orders of
magnitude.

B. Optimization of OD

Here we optimize the local OD operators alone, fixing
linear annealing schedules as described in Sec. III. The
chromosome is D2 in Eq. (7). We focus on optimizing the local
operators with only single-spin operators HOD(s, γ )d=3 from
Eq. (6) and show that by optimizing only three parameters,
we obtain good fidelities. The higher number of local terms
leads to many trivial solutions of simply increasing the energy
scale of the system beyond practical capabilities due to the
large solution space, at the same time being computationally
expensive.

A summary of the results obtained by genetic optimization
of HOD(s, γ )d=3 is shown in Fig. 4. In Fig. 4(a) we show the
energy gaps between the ground state and the first excited
state. The minimum energy gap is slightly higher than the
original system driven with no OD potentials. In Fig. 4(b) we
show the corresponding results of the evolution of ground-
state probabilities. Even though the ground-state probabilities
are comparatively lower during the evolution, the fidelities are
high at the final time. The probabilities can be controlled to be
higher also during the evolution using a MOGA. The results
are not very diverse due to the small chromosome size and
yet this set of solutions is feasible. Finally, in Fig. 4 we show
the distribution of fidelities for 50 solutions of the SOGA.
All the solutions show very high fidelity with a median value
approximately equal to 0.98. We analyze the data of optimized
chromosomes to understand the contribution of each of the
local operator terms in the expansion of the optimized local
OD operator. The contribution of Sy is larger for all the cases
considered, which is expected since the term Sy is the starting
point for many known expansions of the OD operator [29–32].

We verify the robustness of the genetic optimization ap-
proach in OD driving for larger system sizes. In Fig. 5 we
compare the fidelities of states of the systems up to 45 spins.
The fidelities are very high despite increasing the number

of spins by optimizing only single-spin operators (i.e., d =
3). Nevertheless, when we increase the size of the system,
some of the solutions given by the genetic algorithms lead to
energy-level crossings between the ground state and the first
excited state. The corresponding ground-state probabilities
fall to very low values in these points and regain better values
towards the end of the evolution. However, this is an unphysi-
cal scenario. We resort to a MOGA in this case, which makes
sure the ground-state probabilities are higher throughout the
evolution by avoiding the situations of energy crossings. An
example of improvement of the results using a MOGA for a
system with 40 spins is demonstrated in Appendix B.

C. Optimization of time schedules and local OD

Here we optimize the free parameters of the time schedules
A(s, α), B(s, β ), and C(s, ε) all together as a chromosome D3

in Eq. (10). We choose ka = 2, kb = 2, and the number of
local operators d = 3, each accompanied by a time schedule
Ci(s, ε) as described in Eq. (8) with kc = 3. It is sufficient to
run the algorithm up to 1000 generations in this case in order
to obtain convergent results.

Figure 6 shows a summary of the results obtained by op-
timizing all the time schedules in the realm of shortcuts to

FIG. 5. Box plot of fidelities of the states of systems with dif-
ferent sizes. Each box represents the data for 50 runs of the SOGA
iterated for 1000 generations, which optimizes the time-independent
part of the OD operator with d = 3.
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FIG. 6. Results obtained by optimizing the annealing schedules
A(s) and B(s) and time-dependent local OD operator for the ferro-
magnetic p-spin model with 15 spins and p = 3. The OD operator
chosen is HOD(s, γ )d=3, ka = kb = 2, and kc = 3. The plots depict the
data for 50 runs of the SOGA and the corresponding results obtained
by adiabatic evolution. (a) Instantaneous energy gaps between the
ground state and the first excited state. (b) Instantaneous ground-
state probabilities. (c) Time schedule functions A(s), B(s), and C(s).
(d) Histogram of the fidelities for 50 instances.

adiabaticity. In Fig. 6(a) we show the minimum energy gaps.
In this case, the solutions are quite diverse because of the
larger search space. The same is reflected in the evolution
of ground-state probabilities in Fig. 6(b). In Fig. 6(c) we
show the optimized annealing schedules. While some of the
solutions show the same increase and decrease patterns seen
in the previous case, some others are monotonic between the
boundary values. The schedules C(s) plotted in green are com-
posed of the three time functions {C1(s),C2(s),C3(s)} of each
of the local operators in the expansion of the OD potential. We
show the distribution of fidelities in the solutions given by the
genetic algorithm in Fig. 6(d). The fidelities are exceptionally
higher with a median value approximately equal to 0.997.

In Fig. 7 we compare the fidelities of adiabatic quantum
computation assisted by genetic algorithms for varying system
sizes. Here we have set the chromosome length to be 13
and we run the algorithm for 1000 generations for all the
cases. The performance of genetic optimization is consistently
higher even for larger system sizes.

V. GENERALIZATION TO RANDOM ISING MODELS

In order to test the feasibility of our method in a more
general framework, we additionally study the performance
of the genetic optimization for a random Ising model. We
consider a system of n = 5 qubits arranged in the graph shown
in Fig. 8, described by the Hamiltonian

Hz = HI = 1
2

∑
〈i j〉

(1 − Ji jσ
z
i σ z

j ), (13)

where the sum acts on qubits connected by the graph bonds
and the couplings Ji j are random uniform variables in [−1, 1].

FIG. 7. Box plot of fidelities of the states of systems with dif-
ferent sizes. Each box represents the data for 50 runs of the SOGA
iterated for 1000 generations, which optimizes the annealing sched-
ules A(s) and B(s) and the scheduling of the local OD operator
[HOD(s, γ )d=3], with ka = kb = 2 and kc = 3.

The idea here is to apply the genetic routine to a family of ran-
domized models to see if some general features of optimized
annealing schedules or OD operators can be inferred. This
would allow us to significantly speed up computation since
it would remove the need to repeat the genetic optimization
on an instance-by-instance basis. We generate Ninst = 50
random instances and repeat the (stochastic) genetic optimiza-
tion Nrep = 30 times for each instance and for each choice
of the parameters of the simulation. In particular, we con-
sider two different annealing times (T = 5 and 10). For the
optimization of annealing schedules alone, we consider the
parameters of the polynomial ansatz, ka = kb = 3, while for
the optimization of the OD operator we consider ka = kb = 2
and kc = 3. We focus our attention on SOGAs and since the
target Hamiltonian is Z2 symmetric and the ground state is
doubly degenerate we resort to the average final energy as
the fitness function: fSO = 〈HI〉. We quickly note that the
Hamiltonian in Eq. (13) is commonly used to encode MaxCut
and MinCut problems [55]. This is why, in the following,
we will show data concerning the so-called approximation
ratio, i.e., the ratio between the final fitness value and the true

FIG. 8. Graph of the Ising model discussed in Sec. V
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FIG. 9. Results of genetic optimization of quantum annealing of a random Ising model [Eq. (13)] for a typical random instance. The plot
shows the data of 30 genetic optimizations of the considered random instance. (a)–(c) Optimization of annealing schedules alone, with the
parameters ka = kb = 3: (a) instantaneous total probability of obtaining degenerate ground states using optimized polynomial schedules vs
using linear schedules, (b) optimized annealing schedules A(s) and B(s), and (c) approximation ratios of 30 genetic optimizations of the given
random instance. (d)–(f) Corresponding results obtained by optimizing annealing schedules and the OD operator [HOD(s, γ )d=3] together. The
parameters considered in this case are ka = kb = 2 and kc = 3.

ground-state energy, which is a commonly used figure of merit
in approximate optimization of this kind of problems [55,56].

We show the results for a typical random instance in
Fig. 9 by optimizing annealing schedules alone and by
optimizing both annealing schedules and OD operator. First,
we focus on the optimization of the annealing schedules [see
Figs. 9(a)–9(c)]. In all cases analyzed, the annealing schedules
are nonmonotonic like for the p-spin model of Sec. II. In
addition, since the final typical energy scale is smaller than
the starting one, we note that schedule B(s) is always larger
than A(s). The energy scales remain comparable to the ones
of linear annealing schedules, but the approximation ratio is
substantially improved compared with the linear schedules.
The results are similar when annealing schedules and
OD operators are optimized together [see Figs. 9(d)–9(f)].
In particular, the annealing schedules continue to show
nonmonotonic features, and we note that the schedules of
the OD operator C(s) is bounded within a smaller range
of values. Also, the approximation ratios are significantly
higher than the bare case. In Fig. 10 we compare the median
approximation ratios (median of Nrep = 30 SOGA repetitions)
of 50 random instances of the Ising model. It is evident that
the genetically optimized quantum annealing protocols show
consistently higher approximation ratios than the traditional
quantum annealing with linear annealing schedules and
without OD.

Even though the preliminary analysis of this problem
shows considerably promising results, the question of whether
one can find general optimal schedules or OD operator which
optimizes any random instance of Ising model remains open.
We consider the average time schedules obtained from the
data of 50 random instances and investigate if this averaged

schedule optimizes new random instances. In most cases it
shows slight improvement when compared to the bare case.
However, our analysis is far from being comprehensive in
this test case and we reserve the possibility of expanding on

FIG. 10. Median approximation ratio distribution for Ninst = 50
random instances over Nrep = 30 repetitions of the SOGA for each
instance. The histogram shows the approximation ratios of the
traditional quantum annealing protocol. The inset shows the corre-
sponding approximation ratios of quantum annealing with optimized
time schedules and quantum annealing with optimized annealing
schedules and the OD operator.
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this aspect in future works together with machine learning
techniques.

VI. CONCLUSION

In this paper we used genetic algorithms to optimize the
performance of quantum annealing. We demonstrated the ef-
ficiency of our method for the ferromagnetic p-spin model
with p = 3. We optimized the annealing schedules of the
standard adiabatic quantum computation protocol using ge-
netic algorithms. We considered the time schedules to be
polynomial expansions, whose coefficients were optimized
as chromosomes of genetic algorithms. For a system with
15 spins, we were able to achieve a median fidelity approx-
imately equal to 0.895, by optimizing four free parameters of
the polynomials.

We used the genetic algorithms in the paradigm of short-
cuts to adiabaticity as well. Here we optimized a practically
implementable local Hamiltonian composed of only single-
spin operators, which when added to the system Hamiltonian
can improve the fidelity of the state of the system. In the first
step, we fixed the annealing schedules to be linear functions of
time and the time schedule of the optimal driving operator to
be a quadratic function. By optimizing only the coefficients
of single-spin operators, i.e., by optimizing only three free
parameters, we were able to achieve a median fidelity ap-
proximately equal to 0.98, for a system with 15 spins. As
the next step, we optimized the annealing schedules and the
time-dependent coefficients of the local operators together. In
this case, the time schedules of each of the optimal driving op-
erators were absorbed as their coefficients and were assumed
to be polynomial functions of time. By optimizing 13 free
parameters of polynomials, we were able to obtain a median
fidelity approximately equal to 0.997.

Further, we tested our methodology for varying system
sizes. While optimizing annealing schedules alone showed
a decrease in the fidelities, optimization of optimal driving
showed consistent performance even for larger systems with
up to 45 spins by optimizing only local single-spin operators.
We also discussed the cases when the single-objective genetic
algorithms give unphysical solutions of energy crossings and
the possibility of using multiobjective genetic algorithms to
tackle this problem.

We tested the technique of SOGAs for a generic case of
random Ising models. We generated 50 random instances of
Ising models. We separately analyzed the results when only
annealing schedules are optimized with chromosome size 6
and as well as in the picture of optimal driving with chromo-
some size 13. We compared the approximation ratios (the ratio
between the energy of the final state and the energy of the true
ground state) of the traditional quantum annealing with those
of genetically optimized quantum annealing and demonstrated
that genetic algorithms are promising tools also in optimizing
quantum annealing of random Ising models.

Optimized annealing schedules and local optimal driving
operators can enhance the efficiency of quantum annealers
in solving optimization problems. To give a practical exam-
ple, D-Wave quantum annealers allow the experimentalists
to control the dynamics globally by submitting a piecewise
linear approximation of the annealing schedules. The shape

of this approximation can then be tweaked using our genetic
algorithm. Our method is flexible in terms of the choice of the
ansatz, the definition of fitness function, and the simulation of
time dynamics and can be fine-tuned accordingly to match the
experimental platforms and their limitations.

We leave for future work the aim to find general optimal
paths of evolution for a class of random Ising models resorting
to machine learning techniques, as well as the application of
the evolutionary strategies to find shortcuts to adiabaticity for
open quantum systems.
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FIG. 11. Results of the optimization of the local OD operator
with 3-local operators for a p-spin model with 40 spins and p =
3. We compare the performances of (a) SOGAs and (b) MOGAs.
The red (dark gray) bold solid lines in the solutions obtained from
SOGAs indicate the solutions where there are energy-level crossings.
The corresponding results using MOGAs do not show this kind of
solution.
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APPENDIX A: OPTIMIZING THE HYPERPARAMETERS
OF GENETIC ALGORITHMS

Genetic algorithms are characterized by hyperparameters
pertaining to the selection, crossover, and mutation processes.
To be precise, the individual undergoes the process of muta-
tion with a probability of Pm, wherein the real numbers of the
chromosome are altered according to a Gaussian distribution
with variance σ 2 and mean μ. Further, each real number
(gene) in the chromosome undergoes mutation with the prob-
ability Pind. We perform two-point crossover among the parent
chromosomes where a string of values is cut and exchanged
between the parents to produce two new solutions, this process
occurring with a probability of Pc. We choose the tournament
selection process where among every NT individual chromo-
somes, we choose the best chromosome as the parent for
producing offspring. This cycle of generation repeats. In gen-
eral, for each optimization problem it is advisable to perform
an initial experimentation to fix these hyperparameters which
give the best solution to the problem [46,48,50]. In particu-
lar, for the problem of annealing schedule optimization, we
have tuned and chosen the hyperparameters values NT = 6,
Pc = 0.75, Pm = 0.35, Pind = 0.1, σ 2 = 0.6, and μ = 0. For
the problem of finding the optimal driving, the best combi-
nation of hyperparameters is found to be NT = 3, Pc = 0.3,
Pm = 0.9, Pind = 0.1, σ 2 = 1, and μ = 0. However, in this
paper, for the optimization problems chosen, varying the hy-
perparameters has minimal effect on the overall quality of
the solutions. For example, Pm = 0.9 gives the best fidelity;
however, decreasing Pm leads to searching in a smaller search

space, which in turn reduces the number of solutions which
simply increase the energy scaling of the system. Meanwhile,
by doing so, the fidelity is not affected a great deal.

APPENDIX B: SELECTION OF A CHROMOSOME FROM
THE PARETO OPTIMAL FRONT IN A MOGA

The output of a MOGA, which is implemented using
NSGA-II, is a set of chromosomes with the best ranking in
terms of their domination over the rest of the chromosomes
[49,50]. This set of chromosomes is called the Pareto optimal
front. At the end of evolution, we choose one of the chromo-
somes in the Pareto optimal front, which has a good trade-off
between the area under the ground-state probability curve and
fidelity. In this work we choose the chromosome with the
maximum value of 0.4 × (area) + 0.6 × Pgs(T ) and use this
solution to perform adiabatic evolution and compute results.
As an example, we consider the ferromagnetic p-spin model
with 40 spins and optimize a local optimal driving operator
(with fixed annealing schedules). We show the difference in
the solutions obtained from SOGAs and MOGAs in Fig. 11. In
the MOGA, with the imposition of a large area under the curve
of ground-state probabilities, the genetic algorithm converges
to solutions where there are no energy crossings. The same
can be seen in the plots of �min(t ) and the histogram of
�min(T ). The median fidelity using the results of the SOGA is
approximately equal to 0.983, whereas with the MOGA, the
median fidelity is approximately equal to 0.981.
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