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We propose a quantum metrological protocol based on a Mach-Zehnder interferometer with a squeezed vac-
uum input state and an antisqueezing operation at one of its output channels. A simple and intuitive geometrical
picture of the state evolution is provided by the marginal Wigner functions of the state at each interferometer
output channel. The protocol allows us to detect the values of the sum β = 1

2 (ϕ1 + ϕ2) + θin − θout, of the relative
phase θin − θout between the two squeezers, and of the average of the phase delays ϕ1 and ϕ2 in the two arms of
the interferometer. The detection sensitivity scales at the Heisenberg limit and, remarkably, is robust not only to
detector inefficiencies but also to any photon losses occurring before the antisqueezing operation. Interestingly,
we demonstrate that in the latter case an increase of sensitivity can even occur by increasing the losses in a
suitable range.
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I. INTRODUCTION

After Caves demonstrated, in a seminal work, that it is
possible to reduce the quantum-mechanical noise of the sig-
nal in an interferometric experiment by fully harnessing the
quantum nature of photons [1], a great deal of interest has
been invested in this endeavor, leading to the birth of the
field of quantum metrology [2–8]. In the near future, these
technologies are expected to find applications in a wide range
of settings. For instance, they could enhance the sensitivity
in the mapping of inhomogeneous magnetic fields [9–13],
phase imaging [14–19], quantum-enhanced nanoscale nuclear
magnetic resonance imaging [20–22], and long-distance clock
synchronization [23]. Single-parameter quantum metrology,
i.e., the problem of estimating a single parameter with quan-
tum measurements, has been extensively studied. By contrast
the multiparameter setting has remained vastly unexplored
and has only recently become an attractive topic among the
quantum physics research community [20,24–32] because
of its impact on the development of quantum technologies
[33–36].

A simple scenario with multiple unknown parameters is
given by a Mach-Zehnder interferometer with two unknown
phases in its upper and lower paths. Heisenberg-limited
sensitivity to the sum of such phases was shown to be po-
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tentially achievable by demonstrating Heisenberg scaling in
the quantum Fisher information [31]. However, it is only by
demonstrating Heisenberg scaling in the Fisher information
associated with specific feasible measurements that one can
claim the experimental feasibility of such quantum-enhanced
sensitivity [37].

In this work, we consider the Mach-Zehnder interferometer
in Fig. 1 where either the phases ϕ1 and ϕ2 in the interferom-
eter paths or the phases associated with the input squeezing
operation and the output antisqueezing operation θin and θout

are unknown. We aim to answer the following questions. Is it
possible to estimate experimentally with Heisenberg-limited
sensitivity a combination of such unknown parameters? How
is such a sensitivity affected by losses? Are there experimental
scenarios where losses can be advantageous?

Interestingly, we show that it is possible to estimate with
Heisenberg-limited sensitivity the combination β = 1

2 (ϕ1 +
ϕ2) + θin − θout of the relative phase θin − θout between two
squeezers and the average of the upper phase ϕ1 and the lower
phase ϕ2 in the Mach-Zehnder interferometer in Fig. 1. We
can thus estimate not only the average phase in the Mach-
Zehnder interferometer if the relative phase of the squeezers
has a known constant value stabilized through a standard
phase locking procedure but also the relative phase of the
squeezers if it is the average phase of the Mach-Zehnder
interferometer to assume a known constant value in the ex-
periment. The interferometer is also able to estimate the
relative phase 1

2 (ϕ1 − ϕ2) between the two arms of the optical
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FIG. 1. Interferometric setup for the Heisenberg-limited esti-
mation of the combination β = 1

2 (ϕ1 + ϕ2) + θin − θout. Squeezing
operations are characterized by the complex squeezing parameter
z = r eiθ . Specifically, a balanced Mach-Zehnder interferometer is
preceded by a squeezer with squeezing parameter z = zin = reiθin and
followed by an antisqueezing operation with squeezing parameter
z = zout = reiθout . On-off photodetectors are placed at the end of the
interferometer.

interferometer with a sensitivity scaling at the standard quan-
tum limit. Remarkably, we demonstrate that in both cases the
effect of inefficient detectors only hinders the sensitivity by a
constant factor, i.e., that our protocol is robust to external pho-
ton losses. This is a particularly desirable feature, as it is the
case that other supersensitive schemes employing squeezed
states—such as the ones relying on parity measurement—
which, in theory, can reach the Heisenberg limit are, in
practice, spoiled by the slightest photon loss.

Finally, we compare the effects of detector inefficiencies
to losses of photons inside the interferometric circuit, which
often have a more severe nature than the former [38,39]. Our
work also motivates further analysis of internal losses due to
imperfections in the Mach-Zehnder optical elements, which
are beyond the scope of the present paper. We show that the
Heisenberg-limited scaling not only is also preserved in the
presence of losses before the antisqueezing operation but can
exhibit, quite counterintuitively, an increase in the sensitivity
at a suitable range with high loss values.

II. STATE EVOLUTION THROUGH THE
INTERFEROMETER

Let us consider a balanced Mach-Zehnder interferometer
(see the schematic in Fig. 1) in which one of the input channels
is fed with a squeezed vacuum state, characterized by the
squeezing parameter zin = reiθin and the other channel is left
in the vacuum state. Throughout the interferometer the system
is in a Gaussian state described by the Wigner function [40]

Wσ (ξ) = e− 1
2 ξT σ−1 ξ

(2π )2
√

det(σ )
, (1)

where ξ = (x1, p1, x2, p2)T is the two-mode phase-space vari-
able and σ is the covariance matrix.

At the input of the interferometer, the covariance matrix
takes the form

σin = 1

2

(
S(zin )2 0

0 12

)
, (2)

where

S(z) = S(reiθ ) = eiθσy diag(er, e−r ) e−iθσy (3)

is the matrix associated with the (one-mode) squeezing op-
eration in phase space acting on the first channel and σy is
the second Pauli matrix. The mean photon number associated
with the input state is 1

2 tr(σin ) − 1 = sinh(r)2 = N .
The action of the Mach-Zehnder interferometer on the

quantum state is described by the covariance matrix transfor-
mation

σMZ = OMZσinOT
MZ, (4)

where the orthogonal and symplectic matrix OMZ reads [41]
(see Appendix A)

OMZ =
(

c− e−iϕ+σy s− e−i(ϕ++ π
2 )σy

s− e−i(ϕ++ π
2 )σy c− e−iϕ+σy

)
, (5)

with c− = cos(ϕ−), s− = sin(ϕ−), and

ϕ± = (ϕ1 ± ϕ2)/2. (6)

The measurement operation at the output of the Mach-
Zehnder interferometer is defined by an antisqueezing op-
eration on the first channel, characterized by the squeezing
parameter zout = reiθout and by the consequent projection over
the vacuum state via on-off photodetectors placed at the two
output channels. The operator associated with such a measure-
ment is the projector

�̂ = Ŝ1(zout )|00〉〈00|Ŝ†
1 (zout ), (7)

where Ŝ1(z) = e
1
2 (zâ†2

1 −z∗â2
1 ) is the squeezing operator and is

associated with the Wigner function Wσout (ξ), with

σout = 1

2

(
S(zout )2 0

0 12

)
(8)

and S(zout ) given by Eq. (3). The probability for ideal detec-
tors to click is 1 − P, where

P = 〈�̂〉 = (2π )2
∫

Wσout (ξ)WσMZ (ξ) d4ξ

= det(σMZ + σout )
−1/2, (9)

as can be seen by taking a simple Gaussian integral. The
expectation value is taken on the Mach-Zehnder output state
associated with the covariance matrix σMZ in Eq. (4).

We can track the evolution of the state throughout the
interferometer by using the marginals of the correspondent
Wigner function,

Wi(xi, pi; σ ) =
∫

Wσ (ξ) dx jd p j, (10)

at each channel i, j = 1, 2 and i �= j, where Wσ is given in
Eq. (1). Of course, since the state in the two channels gets
entangled by the interactions with the beam splitters, the in-
formation provided by the marginals cannot be expected to
be complete. Nonetheless, as we shall see, the marginals are
sufficient to provide a clear and intuitive physical picture.

Initially, the first channel is in a squeezed state, and the
second one is in the vacuum state corresponding to the covari-
ance matrix σ = σin in Eq. (2): the marginal W2 has a circular
Gaussian profile, while the marginal W1 exhibits an elliptic
Gaussian profile with one quadrature below the vacuum level
and the other one above it, with the squeezing direction being
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FIG. 2. Contour plots of the marginal Wigner functions defined
in Eq. (10) for σ = σMZ in Eq. (4) (a) and (b) in the case ϕ− = 0 (σMZ

reduces to σin in Eq. (2)), (c) and (d) for ϕ− = π/4, and (e) and (f)
for ϕ− = π/2. The parameter ϕ+ has been set to zero for simplicity.
Notice how at the output of the Mach-Zehnder configuration the pro-
portion of photons in each channel, directly related to the squeezing
of the ellipses’ semiaxes as in Eqs. (11) and (12), shifts from one
channel to the other as ϕ− increases.

determined by the angle θin (see Fig. 2 (b) and (a), respec-
tively). After the photons have traversed the Mach-Zehnder
configuration, the profiles undergo the measurement described
by Eqs. (8) and (9). The parameter ϕ− controls the squeez-
ing proportions across the two channels and, consequently,
also what portion of the photons ends up in which channel
(see Fig. 2).

The lengths of the ellipses semiaxes can be found to be

1 + cos(ϕ−)2[N ±
√

N (1 + N )] (11)

FIG. 3. Comparison between the marginal Wigner functions (10)
for σ = σMZ in Eq. (4) (a) and (b) in the case where ϕ+ = 0 and
(c) and (d) for the ones rotated in phase, corresponding to ϕ+ = 0.4.
The parameter ϕ− has been set to π/4 for simplicity.

for the first channel and

1 + sin(ϕ−)2[N ±
√

N (1 + N )] (12)

for second channel of the interferometer (see Appendix A).
The effect of the parameter ϕ+, often ignored, is to rotate

both profiles by an additional angle of ϕ+ in phase space,
through the matrix e−iϕ+σy in Eq. (5) (see Fig. 3). As we shall
shortly see, ϕ+ has a physical effect on the outcome of the
measurement and thus allows us to estimate the average phase
of the Mach-Zehnder. Indeed, when the state is antisqueezed
with the operation Ŝ†

1 (zout ) and then projected onto the vac-
uum, the detection probability (9) is given by the overlap
between the Gaussian Wigner function WσMZ associated with
the covariance matrix σMZ in Eq. (4), whose marginals have
a total phase ϕ+ + θin, and the Gaussian Wigner function
Wσout , whose marginal W1 at the output channel 1 is rotated
in phase space by the squeezing angle θout associated with the
covariance matrix (8). As depicted in Fig. 4, the projection
overlap depends on the relative phase

β = ϕ+ + θin − θout (13)

between the two Wigner functions, as well as the fraction of
photons in the first output channel, and thus on ϕ−. Intuitively,
we expect this overlap to be maximal when the ellipse associ-
ated with σMZ, is squeezed in the same direction as σout, i.e.,
when θin + ϕ+ = θout.

To account for a detector loss parameter η (with 0 < η � 1),
we imagine that the (ideal) detectors are preceded by a ficti-
tious beam splitter with reflectivity η. This modifies Eq. (9) as
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FIG. 4. Marginal Wigner functions associated with the covari-
ance matrices σMZ (foreground) and σout (background), defined in
Eqs. (4) and (8), respectively. The relative angle is β = ϕ+ + θin −
θout.

follows:

P = det[η σMZ + (2 − η)σout]
−1/2, (14)

as shown in Appendixes B and C. Using expressions (4) and
(8) for the covariance matrices, the detection probability (14)
reads

P(β, ϕ−) = (1 + η̃{2N + [2 cos(ϕ−)2 + η̃ sin(ϕ−)4]N2

− 2 cos(ϕ−)2 cos(2β ) N (1 + N )})−1/2, (15)

with η̃ = η(2 − η) and the relative phase β given in Eq. (13).
Plots of P as a function of β and ϕ− are provided in Fig. 5 for
different values of the mean photon number N and the detector
loss parameter η.

From Eq. (15) and Fig. 5 the periodicity of P with period
π in both variables is evident; hence, we may restrict our
attention to a fundamental domain, such as |β| � π/2, |ϕ−| �
π/2. The detection probability P is maximal for (β, ϕ−) =
(h, k) π , with integers h and k. As can be seen from Fig. 5,
these peaks become more and more localized as N increases,
with a variation on the β axis significantly more stark than
on the ϕ− axis. A nonunit loss parameter instead spreads
out these peaks, an effect which is quickly compensated by
a moderate increase of N by a factor which later we will
show to be equal to

√
η̃. Furthermore, notice how both ϕ−

and β affect the detection probability: the relative angle β

between the squeezed ellipses [corresponding to WσMZ and
Wσout in Eq. (9)] has a major physical effect, allowing both the
global phase of the Mach-Zehnder ϕ+ and the relative phase
of the squeezers θin − θout to be estimated once the other one
is known. Thus, assuming that only the relative phase in a
Mach-Zehnder interferometer bears physical significance is
not correct in general; for a discussion of the cases when
this is actually correct see Ref. [37]. In fact, we will see
it is impossible to estimate β (and hence ϕ+) without any

FIG. 5. Detection probability (15) as a function of β = 1
2 (ϕ1 +

ϕ2) + θin − θout and ϕ− = 1
2 (ϕ1 − ϕ2) for (a) N = 4, η = 1, (b) N =

20, η = 1, (c) N = 4, η = 0.2, and (d) N = 6.667, η = 0.2. The
maxima of P become more and more localized with the increasing
of N and concentrate way more quickly in the β direction than they
do in the ϕ− direction. The spread caused by a nonunit loss parameter
is compensated by dividing N by the factor

√
η̃ = √

η(2 − η), as is
evident when comparing the (a) and (d) in the case of η = 0.2.
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FIG. 6. Level curves for the detection probability P given in
Eq. (15). Every couple of parameters corresponding to a point on
a given level curve is completely indistinguishable from every other
point on the same curve.

knowledge of ϕ− and vice versa. Of course, in practice, any
laser source must be phase locked with respect to a reference
phase. This is reflected in the dependence of P on the relative
phase of the squeezers, θin − θout, which shifts the probability
plot on the β axis. Analogously, one could estimate θin − θout

when the known reference phase is the average phase ϕ+ in
the network.

III. ESTIMATION PROCEDURE

Let us now discuss the sensitivity achievable with this
estimation scheme. The relative angle of the squeezers—or
any other combination of ϕ1, ϕ2, θin, and θout over which the
experimentalist has good control—can be used to calibrate the
estimation apparatus so that the detectors click at almost every
trial within the desired confidence level.

The quantum observable measured at the output of the
interferometer is the projector �̂ in (7), and the detection

FIG. 7. Diameters for the 90% level curve of the detection prob-
ability P as a function of N at η = 1. The diameter in the β direction
(bottom solid blue line) is compared with 1/N (dashed yellow line),
whereas the diameter in the ϕ− direction (top solid green line) is
compared with 1/

√
N (dot-dashed red line).

FIG. 8. Plots of the rescaled inverse variances of β̃ and ϕ̃− for
(a) and (c) N = 2 and (b) and (d) N = 20. If the variance of β̃ is
rescaled by N2 and the variance of ϕ̃− is rescaled by N , there is a
neighborhood of the origin where they both stay constant. The jump
discontinuity at the origin is a consequence of the local indistin-
guishability of the parameters.
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probability is given in Eq. (9). In order to correctly estimate β

or ϕ− we have to deal with the local indistinguishability of the
parameters [42–45]. This means that for any fixed probability
P0, a given couple of parameters (β, ϕ−) is indistinguishable
from every other point on the curve P(β, ϕ−) = P0, as all
possible outcomes of the measurement of �̂ have the same
probabilities in either case (see Fig. 6). The ambiguity in
β is removed once the value of ϕ− is known, but clearly,
in practice, ϕ− cannot be known with arbitrary precision. In
the previous section we observed that the peaks concentrate
more quickly in the β direction than in the ϕ− direction: more
precisely, the horizontal diameter of the level curve corre-
sponding to a fixed probability P0 can be determined directly
from Eq. (15) and reads (see Appendix E for details)

β∗ = arcsin

√
1 − P2

0

4η̃N (1 + N )P2
0

. (16)

Similarly, the vertical diameter can be found to be

ϕ∗ = arcsin

√√√√√
P2

0 + η̃
(
1 − P2

0

) − P0

η̃NP0
. (17)

From these expressions, plotted in Fig. 7 versus N , it is evident
that the horizontal diameter β∗ scales as 1/N , whereas the
vertical diameter ϕ∗ scales as 1/

√
N .

Thus, knowledge of ϕ− with classical precision will be
sufficient to estimate β with Heisenberg-limited sensitivity, as
the uncertainty in ϕ− becomes irrelevant for large N .

It remains to be shown that the Heisenberg limit can be
achieved in this way. If the measurement of �̂ in (7) is re-
peated n times and the outcomes are x1, . . . , xn, with xi = 0
or 1 according to whether the detector clicked or not, the
maximum likelihood estimator (MLE) β̃ is defined implicitly
by the equation

P(β̃, ϕ−) = 1

n

n∑
i=1

xi. (18)

For large n, the variance of β̃ can be approximated as

Var[̃β] � 〈�̂2〉 − 〈�̂〉2

n(∂〈�̂〉/∂β )2
= P(β, ϕ−)[1 − P(β, ϕ−)]

n(∂P/∂β )2
. (19)

When all the terms in expression (19) are nonzero, since from
(15) P ∝ 1/N , one would have that (19) scales as Var[̃β] ∝
N . Thus, we cannot expect a good metrological scaling for
generic values of β and ϕ−. However in the correspondence
of any of the maxima in Fig. 5 we have P = 1 independently
of N , and both the numerator and the denominator of Eq. (19)
vanish; we will momentarily show that there is Heisenberg
scaling in this case.

A plot of the rescaled sensitivity 1/N2Var[̃β], which we
report in Fig. 8, shows that there is, in fact, a neighborhood
of the origin which stays essentially constant as N increases,
indicating there is, indeed, Heisenberg scaling in this region.
Interestingly, this suggests constructive quantum interference
is a necessary metrological resource to reach the Heisenberg
limit. The jump discontinuity at the origin is again a con-
sequence of the local indistinguishability of the parameters:
performing the estimation once ϕ− is known corresponds to
taking a section of Fig. 8 at fixed ϕ−, and each of these
sections is well defined and free from singularities.

Therefore, we require ϕ− � hπ , where h is an integer, with
classical precision. Besides making sure the sensitivity (19)
stays close to its maximal value, where Heisenberg scaling
is expected, the condition ϕ− � hπ entails that all photons
end up in the first channel, offering the practical advantage
of having to place only one detector at the output of the
interferometer.

Moreover, our discussion indicates the size of the
Heisenberg-limited region about a maximum scales as 1/N
in the β direction. Taking these facts into account, we can
expand expression (19) around its maxima, that is, β = kπ +
δβ and ϕ− = hπ + δϕ, with |δβ| � β∗ and |δϕ| � ϕ∗, and
obtain

Var[̃β] = P(β, ϕ−)[1 − P(β, ϕ−)]

n(∂P/∂β )2

∣∣∣∣
β=kπ+δβ,ϕ−=hπ+δϕ

= 1

32η̃nN2
+ [1 + η̃(2δβ2N2 + δϕ2N )](

√
1 + η̃δβ2N2 − 1)(2δβ2N2 + δϕ2N )

24η̃2δβ2nN5
+ O

(
1

N4

)
. (20)

Since δβ = O(1/N ) and δϕ = O(1/
√

N ), the first term in
Eq. (20), which scales as 1/N2, is the dominant one, with the
second term being of order 1/N3. Hence, the estimation of β

can be achieved at the Heisenberg limit, with the statistical
error

Var[̃β] = 1

32η(2 − η)nN2
, (21)

with only classical a priori knowledge of ϕ− around a peak of
maximal probability.

Such Heisenberg scaling is obviously consistent, apart
from a constant factor, with the quantum Cramér-Rao bound
for the estimation of ϕ+ found in Ref. [31] for a fixed value of
θin. We remark that in the presence of inefficient detectors,

corresponding to η < 1, the variance of the estimator (21)
changes only by a constant factor 1/[η(2 − η)] with respect to
the ideal case (η = 1), meaning that the effect of such losses
does not affect the Heisenberg scaling and is easily mitigated
by increasing the mean photon number by the square root of
the same constant factor (see again Fig. 5).

It is possible to reverse the roles of the parameters; that
is, once β is known with classical precision, we can use
the same procedure to estimate ϕ−. To this end, given the
measurements x1, . . . , xn, the maximum likelihood estimator
ϕ̃− is now defined by

P(β, ϕ̃−) = 1

n

n∑
i=1

xi. (22)
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Similar to Eq. (19), for large n the variance of ϕ̃− can be
approximated by the error-propagation formula

Var[̃ϕ−] � P(β, ϕ−)[1 − P(β, ϕ−)]

n(∂P/∂ϕ−)2
. (23)

A plot of 1/NVar[̃ϕ−] in Fig. 8 reveals that much like the
case of β, there is a neighborhood of the origin where the sen-
sitivity is maximal, although the scaling with N is classical.
Indeed, setting β � kπ , where k is and integer, with classical
precision and assuming ϕ− to be in a neighborhood of hπ of
size 1/N , we have

Var[̃ϕ−] � P(β, ϕ−)[1 − P(β, ϕ−)]

n(∂P/∂ϕ−)2

∣∣∣∣
β=kπ+δβ, ϕ−=hπ+δϕ

= 1

4η̃nN
+ 6[η̃N (2δϕ2N + δβ2) + (5 − η̃)δβ2]

24η̃nN2

+ O

(
1

N3

)
, (24)

with δβ = O(1/
√

N ) and δϕ = O(1/N ). The second term is
O(1/N2) hence the dominant term is the first one and does
not depend on δβ or δϕ. Therefore, our protocol enables
the estimation of ϕ− as well, with sensitivity scaling at the
standard quantum limit.

A final remark is in order. There are other situations
in which we are able to reach the Heisenberg limit in the
estimation of β. If ϕ− is not a multiple of π , but rather
ϕ− = (k + 1

2 )π with integer k, all the photons end up in the
second channel rather than the first. This suggests that in
this case it might be possible to obtain the same results as
above simply by performing the antisqueezing operation on
the second channel instead of the first one. Indeed, in this case

the detection probability becomes

P′(β, ϕ−) = (1 + η̃{2N + [2 sin(ϕ−)2 + η̃ cos(ϕ−)4]N2

− 2 sin(ϕ−)2 cos(2β )N (1 + N )})−1/2. (25)

We can clearly see that P′(β, ϕ− − π/2) = P(β, ϕ−); hence,
as expected, we can repeat the procedures outlined before for
the estimation of both β and ϕ−, with the only difference be-
ing that the peaks of P in (β, ϕ−) = (h, k)π are now replaced
by (h, k + 1

2 )π , but otherwise, with identical results.

IV. INTERNAL LOSSES

We now compare the effect of internal losses, i.e., losses
of photons which happen inside the interferometric circuit, to
external losses, i.e., the previous kind of losses due to detector
inefficiencies. Typically, it is found that the former have a
tendency to be more disruptive than the latter [38].

We can implement internal losses by means of a fic-
titious beam splitter with reflectivity η placed before the
antisqueezer. In this configuration, the detection probability
now reads (see Appendix C)

P′′ = det
(
η σMZ + 1 − η

2
I4 + σout

)−1/2
. (26)

Using expressions (4), (5), and (2) for the covariance matrices,
the expression above becomes

P′′(β, ϕ−) = {1 + [1 + η(2 − η)]N
+ η[2 − η + η cos(ϕ−)4]N2

− 2 cos(ϕ−)2 cos(2β )N (1 + N )}−1/2. (27)

We now use this new probability to reconstruct the MLE β̃.
Substituting P′′ in Eq. (19) and following the procedure out-
lined in the previous section (about the origin, for simplicity),
we find

Var[̃β] �
√

1 − η(9 + 21η − 224η2 + 65η3 + 945η4) + (1 + η2)(2 − 4η + 21η2 − 38η3 + 38η4)

1208η2(1 + η)3N2

+ B3

234η2(1 + η)δβ2N4
+ O

(
1

N4

)
, (28)

where δβ = O(1/N ), δϕ = O(1/
√

N ), and

B3 = 2η(2 −
√

1 − η)[37
√

1 − η − (12 − η)(3η − 29) + 81δβ2N2]
√

3η − η2(1 − δϕ2N − δβ2N2)

+ η[59 + (η + 97)
√

1 − η + 30η(17η + 3δϕ2N ) − 88(2 + η2)δβ2N2]
√

5η2 − 4η3 + δβ2N2. (29)

The analogous expression for the MLE ϕ̃− is

Var[̃ϕ−] = 45
√

1 − η+ 11[13 − 2η+ 11η2(1 + η)(5 − η)]+ 7η3[40
√

1 − η+ 61η2(24 + 85
√

1 − η) − 4η(12 + 75
√

1 − η)]

680η(1 + η)6N

+ F2

103η5(1 + η)7δϕ2N4
+ O

(
1

N3

)
, (30)

where now δβ = O(1/
√

N ), δϕ = O(1/N ), and

F2 = 64η[90 + δϕ2N2 + δβ2N − 28
√

1 − η + 20η(303
√

1 − η − 64)]

+ 64η2[10 + δϕ2N2 + 265
√

2 − δϕ2N2 − η + 10η(128 + 7
√

1 − η)] + 7η(1 − η). (31)
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These terms are plotted in Fig. 9. In Fig. 9(a) we can see that,
comparing the leading term of Eq. (20) to the leading term
of Eq. (28), the sensitivity of β̃ still scales at the Heisenberg
limit in the presence of internal losses (again, modulo constant
factors), but for a noise level between roughly 0.25 and 0.45
our protocol performs better under internal losses. This type
of phenomenon, which may at first glance appear rather sur-
prising, is actually not uncommon in the quantum estimation
literature, where it is known as dithering [46]. What is more
interesting is the fact that dithering can, in fact, occur in the
presence of a nonunitary disturbance.

In Fig. 9(c) we can see that the same phenomenon occurs
for ϕ̃−: comparing the leading term of Eq. (24) with the
leading term of Eq. (29), we observe that for η approximately
between 0.15 and 0.47 the protocol performs better under
internal losses than it does under external losses (although
the scaling does not surpass the standard quantum limit). The
next-to-leading terms, on the other hand, are always larger in
the case of internal losses than they are in the case of external
losses, but of course, they become irrelevant in the limit of
large N .

V. DISCUSSION

We have provided a quantum metrological protocol which
makes use of squeezing operations, on-off detectors, and
quantum interference as metrological resources to achieve
the Heisenberg limit in the estimation of either the average
phase in a Mach-Zehnder interferometer or the relative phase
of the two given squeezers. The protocol also allows us to
estimate the relative phase between the two arms of the Mach-
Zehnder network at the standard quantum limit.

Our protocol shows not only that the “global phase” in
a Mach-Zehnder interferometer has a physical effect, which
allows it to be detected, but also that in general its knowledge
is necessary even if one wishes to estimate other parameters.
Indeed, while we choose to focus primarily on the estimation
of β, the local indistinguishability of (β, ϕ−) entails that any
attempt at estimating ϕ− cannot be carried out without some
knowledge of the value β independent of one’s expectations
for the sensitivity of the estimation procedure. This might
come in the form of knowledge of the parameter, as we have
done, or, for instance, in the form of a reasonably justified
prior distribution, which would transform the protocol into
a Bayesian estimation problem [42,44]. Remarkably, despite
the local indistinguishability of the parameters, it is possible
to determine β with Heisenberg precision with only a classical
knowledge of ϕ−.

The physical effect of the parameters β of ϕ− is most easily
understood in the phase-space picture. The parameter β rep-
resents the relative angle between the ellipse associated with
the state after the Mach-Zehnder configuration and the ellipse
associated with the output of the interferometer right before
detection. On the other hand, ϕ− controls the squeezing ratio
between the first and second channels of the interferometer.
Both these effects contribute to the interference pattern ob-
served in the detection probability P as a function of β and ϕ−.
The role of constructive quantum interference as a necessary
condition for achieving the Heisenberg limit in distributed
quantum metrology is a particularly interesting element which

(a)

(b)

(c)

(d)

FIG. 9. Comparison of (a) and (c) the leading terms and (b) and
(d) next-to-leading terms for the MLEs β̃ and ϕ̃− as a function of
the loss parameter η under external losses (blue solid lines) and
under internal losses (yellow dashed lines). For a noise level roughly
between 50% and 70% internal losses provide an advantage. The
noiseless values (η = 1, green dot-dashed lines) are also depicted for
reference.
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emerges from our analysis and will be further explored in
future works.

Remarkably, we have shown that the protocol is robust to
detector inefficiency, which in practice could seriously hinder
the estimation sensitivity with respect to the ideal case but
actually only reduces the sensitivity by a constant factor and
can thus be overcome by increasing the mean photon number
by the same amount. Moreover, internal photon losses, which
tend to hinder metrological sensitivity more dramatically than
external ones, turn out to also just reduce the sensitivity by
a constant factor, and when the losses are relatively high
(roughly between 50% and 70%), a further increase in internal
losses leads to an enhancement of the signal due to an unex-

pected dithering effect. Finally, this work also established the
basis for future studies of the impact on quantum estimation
of dark noise in the detectors.
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APPENDIX A: SQUEEZING OF THE STATE AT THE TWO OUTPUT CHANNELS OF THE MACH-ZEHNDER NETWORK

The lengths of the semiaxes of the ellipses describing the marginal Wigner functions in Eq. (10) at channels 1 and 2 of the
Mach-Zehnder network as shown in Figs. 2 and 3 can be calculated by expressing the covariance matrix σ = σMZ in Eq. (4) in
block form as

σMZ =
(

σ1 τ

τ T σ2

)
, (A1)

where

σ1 =
(

s(1)
+ cos(ϕ+) sin(2ϕ+ + 2θin )2√N (1 + N )

cos(ϕ+) sin(2ϕ+ + 2θin )2√N (1 + N ) s(1)
−

)
,

σ2 =
(

s(2)
− − sin(ϕ−)2 sin(2ϕ+ + 2θin )

√
N (1 + N )

sin(ϕ−)2 sin(2ϕ+ + 2θin )
√

N (1 + N ) s(2)
+

)
,

τ = 1

2

(− sin(2ϕ−) sin(2ϕ+ + 2θin )
√

N (1 + N ) τ−,

τ+ sin(2ϕ−) sin(2ϕ+ + 2θin )
√

N (1 + N )

)
,

and

s(1)
± = 1

2 {1 + 2 cos(ϕ−)2
√

N[
√

N ± cos(2ϕ+ + 2θin )
√

1 + N )]},
s(2)
± = 1

2 {1 + 2 sin(ϕ−)2
√

N[
√

N ± 2 cos(2ϕ+ + θin )
√

1 + N )]},
τ± = sin(2ϕ−)

√
N[cos(2ϕ+ + 2θin )

√
1 + N ±

√
N]. (A2)

The lengths of the two semiaxes of the marginal Wigner function W1(x1, p1; σMZ) at the first channel are given by the
eigenvalues of σ1 and read

1 + cos(ϕ−)2[N ±
√

N (1 + N )], (A3)

as reported in Eq. (11) in the main text, whereas the lengths of the two semiaxes of the marginal Wigner function W2(x2, p2; σMZ)
at the second channel are given by the eigenvalues of σ2,

1 + sin(ϕ−)2[N ±
√

N (1 + N )], (A4)

which in turn give Eq. (12).

APPENDIX B: LINEAR OPTICAL NETWORKS IN PHASE SPACE

A passive linear optical network is described by a unitary operator Û on the underlying Hilbert space of the two-mode
electromagnetic field, which acts on the annihilation operators according to the relation

Û †âiÛ =
2∑

j=1

Ui j â j, (B1)

where U is a 2 × 2 unitary matrix.
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Consider the vector of the quadratures R̂ = (x̂1, p̂1, x̂2, p̂2)T , with x̂ j = (â j + â†
j )/

√
2 and p̂ j = (â j − â†

j )/
√

2i. By defining
the unitary 4 × 4 matrix

W = 1√
2

2⊕
j=1

(
1 i
1 −i

)
, (B2)

we have the identity

Â := (â1, â†
1, â2, â†

2)T = W R̂. (B3)

Thus, the network transforms the quadratures according to

Û †R̂iÛ = Û †
2∑

j=1

(W †
i,2 j−1â j + W †

i,2 j â
†
j )Û =

2∑
j,k=1

(W †
i,2 j−1U jk âk + W †

i,2 jU∗
jk â†

k )

=
4∑

h=1

2∑
j,k=1

(W †
i,2 j−1U jkW2k−1,h + W †

i,2 jU∗
jkW2k,h)R̂h :=

4∑
h=1

OihR̂h, (B4)

that is,

Û †R̂Û = OR̂. (B5)

The matrix O has the form

O = W †

⎛⎜⎝U11 0 U12 0
0 U∗

11 0 U∗
12

U21 0 U22 0
0 U∗

21 0 U∗
22

⎞⎟⎠W, (B6)

which, as can be easily verified, is both orthogonal and symplectic and can be simplified as follows:

O =
(

Re(U11)12 − i Im(U11)σy Re(U12)12 − i Im(U12)σy

Re(U21)12 − i Im(U21)σy Re(U22)12 − i Im(U22)σy

)
. (B7)

The two-mode covariance matrix is defined as σ = (σ jk ), where

σ jk = 1
2 〈{R̂ j, R̂k}〉 − 〈R̂ j〉 〈R̂k〉, (B8)

with the expectation value taken on the field state. Therefore, if the field has initial covariance σin, after the action of a passive
linear optical network it has a covariance given by

σout = Oσin OT , (B9)

which is nothing but a (symplectic) rotation in phase space.
In the case of the Mach-Zehnder interferometer, the unitary matrix U matrix reads

UMZ = 1

2

(
1 −i
−i 1

)(
eiϕ1 0
0 eiϕ2

)(
1 i
i 1

)
= eiϕ+

(
cos(ϕ−) − sin(ϕ−)
sin(ϕ−) cos(ϕ−)

)
; (B10)

hence, the corresponding rotation in phase space is given by

OMZ =

⎛⎜⎝cos(ϕ+) cos(ϕ−) − sin(ϕ+) cos(ϕ−) − cos(ϕ+) sin(ϕ−) sin(ϕ+) sin(ϕ−)
sin(ϕ+) cos(ϕ−) cos(ϕ+) cos(ϕ−) − sin(ϕ+) sin(ϕ−) − cos(ϕ+) sin(ϕ−)
cos(ϕ+) sin(ϕ−) − sin(ϕ+) sin(ϕ−) cos(ϕ+) cos(ϕ−) − sin(ϕ+) cos(ϕ−)
sin(ϕ+) sin(ϕ−) cos(ϕ+) sin(ϕ−) sin(ϕ+) cos(ϕ−) cos(ϕ+) cos(ϕ−)

⎞⎟⎠, (B11)

which can be written more compactly as in Eq. (5) in the main text.

APPENDIX C: COVARIANCE MATRICES IN THE PRESENCE OF LOSSES

A photon loss associated with a given mode S, described by the density operator ρ̂ and the corresponding covariance matrix σ ,
can be modeled by making use of a fictitious beam splitter with transmittivity η. The external environment on the second channel
of the beam splitter is assumed to be in the vacuum state, while the output state in the first “physical” channel is obtained by
tracing on the second one. The quantum channel �η obtained in this way is called the attenuator channel,

�η(ρ̂ ) = Tr(ÛBS ρ̂ ⊗ |0〉E 〈0|Û †
BS)E , (C1)
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where the subscript E denotes the environment and ÛBS is the unitary operator describing a beam splitter. As shown in
Appendix B, the beam splitter is described by the unitary matrix

UBS(α) =
(

cos(α) −i sin(α)
−i sin(α) cos(α)

)
= eiασx , (C2)

where η = cos(α)2, corresponding [by using Eq. (B7)] to the symplectic rotation in phase space

OBS(α) =
(

cos(α) 12 i sin(α) σy

i sin(α) σy cos(α) 12

)
. (C3)

Thus, the covariance matrix

σSE =
(

σ 0
0 1

212

)
, (C4)

describing the system S, with covariance matrix σ , and the environment E in the vacuum state, is transformed by the interaction
with the beam splitter as

OBS(α) σSE OBS(α)T =
(

cos(α)2 σ + 1
2 sin(α)2 12 i sin(α) cos(α)

(
σ − 1

212
)
σy

−i sin(α) cos(α) σy
(
σ − 1

212
)

1
2 cos(α)2 12 + cos(α)2 σyσσy.

)
. (C5)

Therefore, a photon loss, described by the quantum channel in Eq. (C1), simply maps the (physical) covariance matrix into the
covariance matrix of a convex combination of the signal with vacuum fluctuations,

σ �−→ cos(α)2 σ + 1

2
sin(α)2 12 = η σ + 1 − η

2
12. (C6)

The transformation above easily generalizes to an M-mode Gaussian state going through M lossy lines with equal loss �⊗M
η as

σ �−→ η σ + 1 − η

2
12M . (C7)

APPENDIX D: DETECTION PROBABILITIES IN THE MACH-ZEHNDER INTERFEROMETER

The detection probability of our measurement in the presence of ideal detectors is given by

P = Tr[Ŝ1(zout )|00〉〈00|Ŝ†
1 (zout )ρ̂MZ] = (2π )2

∫
Wσout (ξ)WσMZ (ξ) d4ξ, (D1)

with σout given in Eq. (8),

σMZ = OMZσinOT
MZ, (D2)

and σin given in Eq. (2). Thus, P can also be expressed as

P = Tr[|00〉〈00|Ŝ†
1 (zout )ρ̂MZŜ1(zout )] = (2π )2

∫
Wσvac (ξ)WS1(zout )−1σMZS1(zout )−1 (ξ) d4ξ, (D3)

where σvac = 1
214 is the covariance matrix of the two-mode vacuum state and

S1(z) =
(

S(z) 0
0 12

)
, (D4)

with S(z) defined in Eq. (3),

S(z) = S(reiθ ) = eiθσy

(
er 0
0 e−r

)
e−iθσy . (D5)

A Gaussian integration of (D3) gives

P = 1√
det

[
1
214 + S1(zout )−1σMZS1(zout )−1

] . (D6)

If we introduce detectors with loss parameter η, modeled by attenuator channels right before them, the probability (D1)
becomes

P = Tr[|00〉〈00|�η ⊗ �η(Ŝ†
1 (zout )ρ̂MZŜ1(zout ))], (D7)
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where �η is the attenuator channel defined in Eq. (C1). Thus, applying the transformation (C7) to the second term in the
determinant of Eq. (D6), we obtain

P = 1√
det

[
1
214 + ηS1(zout )−1σMZS1(zout )−1 + 1−η

2 14
]

= det

(
2 − η

2
14 + ηS1(zout )

−1σMZS1(zout )
−1

)− 1
2

= det[S1(zout )]
− 1

2 det

(
2 − η

2
S1(zout )

2 + η σMZ

)− 1
2

det[S1(zout )]
− 1

2

= det[(2 − η) σout + η σMZ]−1/2, (D8)

where in the last equality we used det[S1(zout )] = det[S(zout )] = 1 and 1
2 S1(zout )2 = σout.

By making use of expressions (4), (5), and (2) for σMZ, OMZ, and σin, after some tedious but simple algebra we finally get

P(β, ϕ−) = (1 + η̃{2N + [2 cos(ϕ−)2 + η̃ sin(ϕ−)4]N2 − 2 cos(ϕ−)2 cos(2β ) N (1 + N )})−1/2, (D9)

as claimed in the main text.
The counterpart of the previous probability when the antisqueezing is performed on the second channel can be calculated

with the analogous equation

P′(β, ϕ−) = Tr[|00〉〈00|�η ⊗ �η(Ŝ†
2 (zout )ρ̂MZŜ2(zout ))]

= (1 + η̃{2N + [2 sin(ϕ−)2 + η̃ cos(ϕ−)4]N2 − 2 sin(ϕ−)2 cos(2β )N (1 + N )})−1/2, (D10)

where Ŝ2(z) = e
1
2 (zâ†2

2 −z∗â2
2 ). This gives Eq. (25) in the main text.

Finally, the detection probability under internal losses, i.e., when the attenuator channel is applied before the antisqueezing
operation, is given by

P′′(β, ϕ−) = Tr[|00〉〈00|Ŝ†
1 (zout )�η ⊗ �η

(
ρ̂MZ

)
Ŝ1(zout )]. (D11)

Thus, using the transformation (C7) on σMZ in the determinant of Eq. (D6), we obtain

P′′(β, ϕ−) = 1√
det

[
1
214 + S1(zout )−1

(
ησMZ + 1−η

2 14
)
S1(zout )−1

]
= det

[
S1(zout )

−1

(
1

2
S2

1 (zout ) + η σMZ + 1 − η

2
I4

)
S1(zout )

−1

]−1/2

= det[S1(zout )]
−1/2 det

(
η σMZ + 1 − η

2
I4 + 1

2
S2

1 (zout )

)−1/2

det[S1(zout )]
−1/2

= det

(
η σMZ + 1 − η

2
I4 + σout

)
, (D12)

where in the last equality we used det[S1(zout )] = det[S(zout )] = 1 and 1
2 S1(zout )2 = σout. This is Eq. (26) in the main text.

APPENDIX E: LOCALIZATION OF THE PROBABILITY
PEAKS

The diameters of a given level curve of the probabil-
ity P in Eq. (D9) are found simply by intersecting it
with each of the coordinate axes. Let P0 ∈ (0, 1) be fixed;
then the intersections with the β axis are found from the
equation

P(β∗, 0) = [1 + 4η̃N (1 + N ) sin(β∗)2]−1/2 = P0, (E1)

which immediately yields

sin(β∗)2 = 1 − P2
0

4η̃N (1 + N )P2
0

, (E2)

as claimed in Eq. (16) in the main text. Analogously, the
intersections with the ϕ− axis are the solutions to

P(0, ϕ∗) = [1 + η̃2N2 sin(ϕ∗)4 + 2η̃N sin(ϕ∗)2]−1/2 = P0.

(E3)

This is a second-degree equation for sin(ϕ∗)2,

η̃2N2 sin(ϕ∗)4 + 2η̃N sin(ϕ∗)2 − 1 − P2
0

P2
0

= 0, (E4)

which admits the solution

sin(ϕ∗)2 =
√

P2
0 + η̃

(
1 − P2

0

) − P0

η̃NP0
, (E5)

i.e., Eq. (17) in the main text.
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