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The estimation of physical parameters with Heisenberg sensitivity and beyond is one of the crucial problems
for current quantum metrology. Commonly, an unavoidable lossy effect is believed to be the main obstacle when
applying fragile quantum states. To utilize the lossy quantum metrology, we offer an interferometric procedure
for estimation of phase parameters at the Heisenberg (up to 1/N) and super-Heisenberg (up to 1/N3) scaling
levels in the framework of the linear and nonlinear metrology approaches, respectively. The heart of our setup is a
soliton Josephson junction (SJJ) system, which provides the formation of the quantum probe, the entangled Fock
(NOON-like) state, beyond the superfluid-Mott insulator quantum phase transition point. We illustrate that such
states are close to the optimal ones even with moderate losses. The enhancement of phase estimation accuracy
remains feasible for both the linear and nonlinear metrologies with the SJJs and allows further improvement for
the current experiments performed with atomic condensate solitons with a mesoscopic number of particles.
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I. INTRODUCTION

Modern quantum technologies pose new fundamental re-
quirements for schemes and procedures in measurement, as
well as the subsequent estimation of some physical parame-
ters in the framework of metrology and sensorics tasks [1,2].
Traditionally, such schemes are based on the interference of
quantum states of light and/or matter waves [3]. In partic-
ular, the high accuracy of quantum optical measurements is
paramount for the detection of gravitational waves, in which
quantum states of light interfere in specially designed optical
Michelson interferometers [4–6].

Although the atomic interferometers have been known
for about 30 years (see, e.g., Ref. [7]), current experimental
facilities open new perspectives for verification of funda-
mental physical laws [8–10] as well as for sensorics and
metrology in real-world applications [11–14]. Typically, such
facilities exploit Mach-Zehnder (MZ) interferometers based
on ultracold atomic ensembles and Bose-Einstein condensates
(BEC) [11,15–19]. An atomic MZ interferometer presumes
certain operations (rotations) on the Bloch sphere performed
with effectively two-mode atomic systems (see Fig. 3 in
Ref. [1]). Experimentally, such a system may be created us-
ing atomic Josephson junctions obtained by an optical dipole
trap, which provides a double-well potential for condensate
atoms [20–22]. Alternatively, it is also possible to use two
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hyperfine atomic states, linearly coupled by a two-photon
transition [23]. In both cases, the number of condensate
atoms is about a few hundred for preserving their collective
behavior [24].

In this work, we examine condensate solitons for quan-
tum metrology purposes (cf. Refs. [19,25,26]). As shown in
Ref. [26], coupled solitons provide the formation of Fock
states’ superposition, which is close to the NOON state
but behaves more robust against one-particle losses. Below
we represent a comprehensive analysis of particle losses’
influence on the accuracy of phase measurement and es-
timation performed with quantum solitons. We start from
the ideal quantum metrology, which stems with the lossless
limit.

The quantum approach in metrology presumes the quan-
tum Cramér-Rao (QCR) bound for the root-mean-square
error δφ of estimation of the arbitrary physical parameter
φ, i.e., δφ � 1√

ν
√

FQ
≡ δφmin√

ν
, where ν is the number of ex-

perimental runs, and FQ is the quantum Fischer information
(QFI) [27,28].

Without loss of generality, the QFI for pure states ρ =
|�(φ)〉〈�(φ)| is defined as

FQ = 4[〈� ′(φ)|� ′(φ)〉 − |〈� ′(φ)|�(φ)〉|2], (1)

where |� ′(φ)〉 = ∂
∂φ

|�(φ)〉. The measurement and estimation
procedure of the φ parameter includes some state transfor-
mations described as |�(φ)〉 = e−iφ(b̂†b̂)k |�〉, where k is a
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positive integer number, |�〉 is an initial state that we prepare
for the measurement, and b̂ (b̂†) is the annihilation (creation)
operator that characterizes the quantum bosonic channel ac-
cumulating phase ϕ ≡ φ(b̂†b̂)k .

The best precision of the measurement,

δφmin = 1

Nk
, (2)

can be obtained with an ideal balanced maximally
path-entangled two-mode NOON state, |�〉 ≡ |N00N〉 =

1√
2
(|N〉a|0〉b + |0〉a|N〉b), where N is the total average

number of particles.
The Heisenberg limit (HL) for Eq. (2) is obtained in

the framework of the linear metrology (LM) approach with
k = 1. The nonlinear metrology (NLM) corresponds to the
so-called super-Heisenberg limit (SHL) that may be obtained
for Eq. (2) at k � 2 [29–33]. In particular, purely Gaussian
states, or plane waves in Kerr-like medium, provide δφmin =
1/N2 minimal error (best accuracy) of ideal (without losses)
phase estimation possessing k = 2 in Eq. (2). However, as we
show below, quantum bright solitons potentially demonstrate
a higher accuracy in the same Kerr-like medium even in the
presence of losses (cf. Ref. [25]).

Losses play a decisive destructive role in the real-world
implementation of quantum-metrological schemes based on
nonclassical states [34]. The losses especially affect the
schemes, where NOON- states are proposed to improve the
parameters’ estimation accuracy. As a consequence, an ideal
(balanced) NOON state quickly loses the HL advantage in the
phase estimation procedure even in the presence of minuscule
losses in an interferometer with small particle number N = 20
(cf. Ref. [35]).

Entangled Fock states may be more suitable for the quan-
tum metrology purposes in the presence of losses [36].
However, obtaining such entangled states with a relatively
large number of particles is still an open problem both in
theory and experiment (cf. Ref. [37]).

This work aims to demonstrate remarkable capabilities of
quantum bright solitons containing a mesoscopic number of
particles for both linear and nonlinear metrology problems
with moderate losses occurring in appropriate MZ interferom-
eters.

The paper is arranged as follows. In Sec. II we describe
a general model of quantum bright solitons applicable for
quantum metrology purposes. In Sec. III we discuss the prepa-
ration of the NOON state as a limiting one for a Fock-state
superposition by means of the soliton Josephson junction
(SJJ) system. We establish the conditions to obtain such a
state in current experiments in the presence of one- and
three-body losses. In Sec. IV we represent the analysis on
a lossy MZ interferometer containing quantum bright soli-
tons. Phase-estimation bounds with quantum solitons in the
presence of losses are derived in Sec. V by means of the
upper bound of Fisher information. In Sec. VI we represent
our main results of quantum metrology with bright solitons.
The strategies to achieve the ultimate precision in the phase
estimation within a real-world experiment are discussed in
detail. In Sec. VII we summarize our results and present our
findings.

II. QUANTUM BRIGHT SOLITONS AS A TOOL FOR
NONLINEAR METROLOGY APPLICATIONS IN THE

SINGLE-MODE APPROXIMATION

In the current paper, we study the atomic BEC soliton plat-
form. We assume that the medium supports the formation of
the bright matter-wave soliton described by the wave function

ψ (x, t ) = N
√

u

2
sech

[
Nux

2

]
ei N2u2

8 t , (3)

where ψ (x, t ) obeys the normalization condition,
∫ |ψ |2dx =

N , and N = 〈N̂〉 is the average particle number. In Eq. (3)
and thereafter we use the dimensionless parameter u =
2π |asc|/a⊥ that characterizes Kerr-like (focusing) nonlinear-
ity, where asc < 0 is the s-wave scattering length for attractive
particles, a⊥ is the characteristic trap scale. To be more spe-
cific in this work we discuss 7Li condensates with attractive
particle interaction (cf. Refs. [38–41]). Notably, the critical
particle number Nc, at which the condensate collapses, is
Nc = 0.67a⊥/|asc|, implying 5.2×103 particles in the soli-
ton. Thereby, Nc represents the upper physical bound for the
particle number that limits the quantum metrology scheme
with atomic bright solitons possessing the negative scattering
length.

A moderate particle number allows us to examine the
single-mode approximation typically used for Gaussian wave
packets [24,42,43]. Consider a classical Hamilton function,

H =
∫

dxψ∗(x, t )

(
−1

2

∂2

∂x2
− u

2
|ψ (x, t )|2

)
ψ (x, t ), (4)

where ψ (x, t ) is the wave function ansatz of the bright soliton
with dimensionless variables x and t . Substituting ψ (x, t ) in
H , one can obtain H = − u2

24 N3.
The quantum version of the Hamilton function H is the

Hamiltonian operator Ĥφ that reads as

Ĥφ = φN̂3 ≡ φ(b̂†b̂)3, (5)

where φ ≡ − u2

24 is the phase parameter suitable for the esti-
mation procedure. Operators b̂ and b̂† are the annihilation and
creation operators characterizing soliton quantum properties
in the single-mode approximation.

Thus, from Eq. (5) it is clear that instead of k = 2, which is
valid for Gaussian states, the implementation of the quantum
solitons provides the maximally accessible Kerr-like phase
shift in the medium possessing degree k = 3 in Ĥ with respect
to the particle number operator N̂ = b̂†b̂.

The scheme indicating the estimation procedure for the
phase parameter φ by quantum bright solitons is plotted in
Fig. 1. The procedure includes three important steps. At the
first stage, we aim at the preparation of the entangled Fock
(NOON-like) state |�〉 that provides maximally accessible ac-
curacy for subsequent φ estimation in the presence of losses.
The two entangled modes here correspond to the two arms of
the MZ interferometer. At the second stage, we consider the
phase shift φ between the arms and the losses. The losses for
the setup in Fig. 1 are introduced by two fictitious “beam split-
ters” (BSs), which provide a coupling of the setup with the
environment [35,44]. At the third final step, the measurement
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FIG. 1. Scheme of the three-step phase parameter φ estimation
procedure with the quantum soliton Josephson junction device as an
input state preparation. Possible interaction with the environment is
provided by two fictitious “beam splitters” BSa and BSb in quantum
channels a and b respectively. See the text for some details.

and φ-parameter estimation are performed by including ideal
particle detection and outcome estimation [34].

III. QUANTUM SJJ MODEL AS A TOOL
FOR STATE PREPARATION

Now, let us examine how we can prepare the entangled
soliton state |�〉 to achieve the maximal precision in the
phase estimation, δφmin. Here, we suggest the quantum SJJ
device that represents two weakly coupled bright solitons.
We assume that each of the solitons may be described in the
framework of the single-mode approximation. In this limit,
the Hamiltonian for the SJJ model reads as

ĤSJJ = κN

{
−�

2
ẑ2 − 1

2N

[ ∞∑
k=0

Ck
1/2(−1)k (1 − 0.21ẑ2)

× (â†b̂ + b̂†â)ẑ2k + H.c.

]}
, (6)

where Ck
1/2 = 1

k!

∏k−1
l=0 ( 1

2 − l ), C0
1/2 = 1 are coefficients which

occur from a formal Tailor expansion; ẑ ≡ 1
N (b̂†b̂ − â†â); and

â and b̂ (â† and b̂†) are the bosonic annihilation (creation)
operators for two-soliton effective modes (see Ref. [26] for
details). In Eq. (6), � ≡ u2N2/16κ is a vital parameter of
the SJJ system, where κ characterizes tunneling of particles
between the solitons.

First, let us analyze the SJJ system without losses in gen-
eral. We establish the initial state |�〉 of the SJJ system in the
two-mode Fock basis |N − n〉a|n〉b as

|�〉 =
N∑

n=0

An|N − n〉a|n〉b, (7)

where time-dependent coefficients An fulfill the stationary
Schrödinger equation

i
dAn(τ )

dτ
= 〈N − n, n|Ĥ |�(τ )〉 (8)

FIG. 2. Probabilities of the edge (|A0,N |2) and central (|AN/2|2)
Fock modes as functions of the � parameter for N = 100 particles.
The sharp phase transition at � = �c 
 2 is shown. The right inset
panel exhibits the enlarged phase transition region. The left inset
panel demonstrates probabilities |An|2 vs quantum number n for
� = 2.003 070 9.

and obey the normalization condition
∑N

n=0 |An|2 = 1;
throughout this work we use effective dimensionless time
τ = κNt .

Substituting Eqs. (6) and (7) in Eq. (8) for unknown coef-
ficients An(τ ), we obtain

iȦn = αnAn + βnAn+1 + βn−1An−1, (9)

where we introduce the following notations:

αn = −�

2

(
2n

N
− 1

)2

,

βn = − 1

N2

([
1 − 0.21

(
2n

N
− 1

)2]

× (n + 1)
√

(N − n)(N − n − 1)

+
[

1 − 0.21

(
2(n + 1)

N
− 1

)2]
(N − n)

√
n(n + 1)

)
.

(10)

In this work, we find An numerically by considering the
stationary solution of Eq. (9) with Eq. (10), which is An(τ ) =
Ane−iEmτ , where Em specifies the eigenenergy spectrum for
Hamiltonian (6). Figure 2 demonstrates the key peculiarities
for relevant probabilities |An|2 for the system ground state,
m = 0. With vanishing nonlinearity, i.e., for � 
 0, distri-
bution |An|2 approaches the Poissonian one, while the mode
|AN/2|2 corresponds to its central peak (see the blue solid and
red dashed-dotted curves in Fig. 2). The situation significantly
changes in the vicinity of critical point �c. The SJJ system
exhibits the quantum “superfluid-Mott-insulator”-like phase
transition occurring at some critical value �c 
 2, which is
shown in the right panel inset in Fig. 2. As seen from the left
panel in Fig. 2, the quantum state immediately beyond phase
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transition point �c represents a superposition of Fock states
with significantly pronounced NOON components occurring
at the edges with n = 0 and n = N . Non-NOON components
vanish with increasing �.

Thus, the state |�〉 of the SJJ system for � > �c and in
the absence of losses approaches the NOON state:

|�〉 
 |N00N〉 = (|N, 0〉 + |0, N〉)/
√

2. (11)

Let us estimate how one- and three-body condensate atom
losses may be important for destroying state (11). We are
interested here in timescale τd = ( N

τ1
+ N5

3τ3
)−1, at which a

one-particle loss event takes place in average; τ1 ≡ 1/K1

and τ3 = 45a8
⊥

8K3a2
sc

are characteristic times for one- and three-
body losses possessing rates K1 and K3, respectively (cf.
Refs. [45,46]). In the experiment reported in Ref. [38], a har-
monic magneto-optical potential with characteristic frequency
ω⊥ = 2π×710 Hz was exploited to trap lithium conden-
sate atoms, providing the characteristic spatial scale a⊥ =
1.4×10−6 m. Condensate bright solitons formed at the s-wave
scattering length asc = −0.21×10−9 m manipulated via the
Feshbach resonance technique. Coefficients K1 and K3 may
be estimated as K1 = 0.05 s−1 and K3 = 6×10−42 m6 s−1,
respectively (cf. Ref. [46]).

The energy-time uncertainty relation implies the additional

temporal parameter τsol = a2
⊥

16π2ω⊥a2
scN2 for quantum solitons

(cf. Refs. [45,46]); it characterizes the timescale at which a
quantum soliton occurs. Obviously, in adiabatic approxima-
tion τsol � τd , and decoherence processes are slow enough to
keep the soliton-shape envelope.

For mesoscopic particle number N 
 100 we estimate
characteristic timescales as τd 
 200 ms and τsol = 6.3 ms,
respectively. Noteworthy, in this limit the three-particle
losses’ contribution in τd is negligibly small. Our estimations
show that such losses become important for particle number
N � 3000 (cf. Ref. [46]). However, macroscopically large N
leads to the collapse of the soliton.

Thus, two tunnel-coupled bright solitons with the meso-
scopic number of particles are suitable to create the superpo-
sition NOON-like state |�〉 within appropriate timescales

τsol < τ � τd . (12)

Inequalities (12) represent the conditions necessary to obtain
the HL and/or the SHL for the quantum metrology scheme in
Fig. 1, operating with quantum solitons in the framework of
LM and NLM, respectively.

IV. SOLITON-BASED INTERFEROMETER WITH LOSSES

Consider the scheme of quantum metrology plotted in
Fig. 1 in the presence of particle losses. For our purposes we
take state (7) as initial and then take into account the losses in
two arms of the interferometer via the fictitious BS approach.
This approach represents a powerful tool for modeling the
coupling of quantum macroscopic superposition states with
the environment (cf. Refs. [35,47]). After two BSs the “input”
two-mode Fock state in Eq. (7) transforms into (cf. Ref. [47])

|N − n〉a|n〉b →
N∑

lb=0

N−lb∑
la=0

√
Bn

la,lb
|N − n − la〉a|n − lb〉b|la〉|lb〉,

(13)

where la and lb are the numbers of particles lost from the a
and b channels, respectively. In Eq. (13) we also introduce the
coefficient

Bn
la,lb =

(
N − n

la

)(
n
lb

)
ηN−n

a

(
η−1

a − 1
)la

ηn
b

(
η−1

b − 1
)lb

, (14)

where ηa and ηb (ηa,b � 1) are the transmissivities of BSs in
channels a and b, respectively. We examine the physically
identical arms a and b of the interferometer by setting η ≡
ηa 
 ηb.

To take into account the phase shift φ in Fig. 1, we ap-
ply the transformation Ûφ to state (7), which leads to the
replacement |N − n〉a|n〉b → einkφ|N − n〉a|n〉b. Then, we can
represent the density matrix ρ for the final state after particle
losses as

ρ =
N∑

lb=0

N−lb∑
la=0

pla,lb |ξ 〉〈ξ |, (15)

where

|ξ 〉 = 1√
pla,lb

N−la∑
n=lb

Cn
la,lbe

inkφ|N − n − la〉a|n − lb〉b (16)

is one of the possible pure states of the system after la and lb
particle losses; and pla,lb = ∑N−la

n=lb
(Cn

la,lb
)2 ≡ ∑N−la

n=lb
A2

nBn
la,lb

is
a normalization factor. Here, we have no interest in the lost
particles; for simplicity, in Eq. (15) we have traced out modes
|la〉|lb〉.

It is instructive to examine the influence of particle losses
occurring before the phase φ creation (cf. Fig. 1). In other
words, we examine how the ideal NOON state (11) degrades
in the interferometer without any phase accumulation. In this
limit, we formally suppose k = 0 in Eq. (16); the coefficients
approach

An =
{ 1√

2
, if n = 0, N ;

0, if 0 < n < N.
(17)

Substituting Eq. (17) in Eq. (15), one can obtain the density
matrix for the NOON state after losses as

ρ = ηN |N00N〉〈N00N| + 1

2

N∑
la=1

B0
la,0|N − la, 0〉〈N − la, 0|

+ 1

2

N∑
lb=1

BN
0,lb |0, N − lb〉〈0, N − lb|. (18)

Then, taking into account Eq. (14) one can write

ρ = ηN |N00N〉〈N00N| + 1

2

N−1∑
na=0

pna |na, 0〉〈na, 0|

+ 1

2

N−1∑
nb=0

pnb |0, nb〉〈0, nb|, (19)

where na = N − la and nb = N − lb are the numbers of parti-
cles remaining in the arms of the interferometer and

pn =
(

N
n

)
ηn(1 − η)N−n (20)
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is a binomial distribution function of the density matrix diag-
onal elements.

As seen from Eq. (19), the particle losses transform the
NOON state into a two-mode Fock states mixture with bi-
nomial distribution (20). Notice, in Eq. (19) only the term
with n = N (the case when no particles are lost) is maximally
path entangled. For η → 1 and N  1 and finite N (1 − η),
the binomial distribution (20) can be approximated by the
Poissonian one

pPoisson
n = [N (1 − η)]N−n

(N − n)!
e−N (1−η). (21)

Finally, at N (1 − η)  1 one can use the approximation of
Eq. (21) by the Gaussian distribution

pGauss
n = 1√

2πN (1 − η)
e− (n−Nη)2

2N (1−η) . (22)

The distribution in Eq. (22) possesses width 2σ =
2
√

N (1 − η) with mean particle number n̄ = Nη. For exam-
ple, if N = 100 and η = 0.8, then n̄ = 80 and 2σ ≈ 9.

Thus, in the presence of losses, the particle number
distributions are broadened [see Eqs. (11)–(22)]. Obvious ar-
guments tell us that the broadening of the particle number
distribution negatively affects the accuracy of the φ-phase-
parameter measurement. Actually, the uncertainty in the phase
parameter estimation occurs due to the quantum-mechanical
fluctuations in the particle number difference δφ 
 〈[�(Na −
Nb)]2〉−1/2. In this case, we obtain δφ = {N[1 + η(Nη −
1)]}−1/2. Without any losses (for η = 1), δφ approaches 1/N ,
corresponding to the HL accuracy.

V. PHASE ESTIMATION BOUNDS
WITH QUANTUM SOLITONS

Now let us analyze the case when losses occur after the
phase accumulation. We examine the QFI, FQ, in the presence
of losses for the setup in Fig. 1. In particular, accounting in
Eq. (15) for the density matrix representation in the diagonal
form ρ = ∑s

i=1 λi|ψi〉〈ψi|, where λi and |ψi〉 are eigenvalues
and eigenstates of ρ, respectively (s is the rank), we can
establish the QFI as (cf. Refs. [48,49])

FQ =
s∑

i=1

[
1

λi

(
∂λi

∂φ

)2

+ 4λi〈ψ ′
i |ψ ′

i 〉

−
s∑

j=1

8λiλ j

λi + λ j
|〈ψi|ψ ′

j〉|2
]
, (23)

where |ψ ′
i 〉 ≡ ∂

∂φ
|ψi〉.

Numerical calculation of the QFI defined in Eq. (23) and
performed in the case of the NLM for large N represents a
nontrivial computational task. In this work, we restrict our-
selves by studying only the upper bound of the QFI, denoted
as F̃Q (FQ � F̃Q), which reads as

F̃Q =
N∑

lb=0

N−lb∑
la=0

pla,lbFQ[|ξ (φ)〉〈ξ (φ)|], (24)

where FQ[|ξ (φ)〉〈ξ (φ)|] is Eq. (1) with the state defined in
Eq. (16). Then, substituting Eq. (16) in Eq. (24) for the upper

bound of the QFI F̃Q, we obtain

F̃Q = 4

[
N∑

n=0

n2kA2
n −

N∑
lb=0

N−lb∑
la=0

(∑N−la
n=lb

nkCn
la,lb

2
)2

∑N−la
n=lb

Cn
la,lb

2

]
, (25)

where An is the Cn
la,lb

coefficient taken at la, lb = 0 [35,47].
Notice that for the pure states used in Eqs. (24) and (25)

we have FQ = F̃Q.
Let us estimate the upper bound of the QFI for density

matrix (15) and suppose that the NOON state

|N00N〉 = (|N, 0〉 + einkφ|0, N〉)/
√

2 (26)

occurs before the particle losses, as shown in Fig. 1. We can
still use Eq. (19) for the density matrix but with Eq. (26). In
this limit the first term in Eq. (19) contains the off-diagonal
elements carrying the information about the φ parameter. At
the same time, the sum in Eq. (19) consists only of the main-
diagonal elements. This occurs due to the initially maximal
entangled NOON state collapsing into a Fock state, when a
single particle is lost (cf. Ref. [35]). The QFI upper bound (25)
in this case reads as

F̃Q = N2kηN . (27)

Equation (27) allows us to estimate the initial total particle
number, Nmin, which provides the minimal error for the φ

measurement with the NOON state in the presence of losses.
Such precision requires the maximal value of F̃Q that we
can find from the condition ∂F̃Q/∂N = 0. In this case, from
Eq. (27) we obtain the equation for Nmin:

Nmin = − 2k

ln η
. (28)

For example, for the lossy interferometer with η = 0.9,
Eq. (28) provides limitations for the particle numbers
Nmin 
 19 and Nmin 
 57 for k = 1 and k = 3, respectively
(cf. Ref. [35]).

Equation (27) also provides the precision of the phase
estimation:

δφη = 1√
ηN Nk

(29)

with the input NOON state in the presence of losses. As seen
from Eq. (29), at η → 1, δφη reaches the HL, δHL = 1/N , and
the SHL, δSHL = 1/N3, for k = 1 and k = 3, respectively.

On the other hand, the standard interferometric limit (SIL)
for the setup in Fig. 1 may be obtained numerically by means
of the binomial distributed initial state

|�〉 = 1√
2N

N∑
n=0

√(
N
n

)
eiφnk |N − n〉a|n〉b. (30)

In the presence of losses for Eq. (30) one can obtain

δφk ∝ 1√
ηNk−1/2

. (31)

The numerical simulations reveal that for k = 1 Eq. (31)
matches the SIL, δφ1 = δφSIL ≡ 1/

√
ηN (cf. Ref. [47]).

Similarly, one can define the nonlinear interferometric
limit (NIL), δφNIL, which occurs in the framework of the
nonlinear metrology approach. Setting k = 3 in Eq. (25) for
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FIG. 3. The logarithmic plot of the best accuracy δφmin for the
phase estimation based on the SJJ as a function of normalized
number of particles N/N0. The parameters used are N0 = 100 and
ηa = ηb = 0.95. The upper shadow region depicts the area between
the SIL and the HL for k = 1. The lower shadow region corresponds
to the area between the NIL and the SHL at k = 3 [see Eq. (2)]. See
more details in the text.

the coherent atomic wave packets, we can obtain δφNIL =
1/

√
ηN5.

VI. DISCUSSION

In Figs. 3 and 4 we demonstrate the main results of our
work. The curves (a)–(f) correspond to the phase estimation
procedure performed with the quantum state initially prepared
by SJJ (cf. Fig. 1). The curves (a) and(b) and the curves (e),
and (f) correspond to the SJJ � parameter chosen before and
after the phase transition point, respectively. The curves (c)
and (d) in Figs. 3 and 4 characterize the SJJ system at the
phase transition point � = �c = 2.003 070 84.

In Fig. 3 we establish the minimal error (maximal accu-
racy) for the phase estimation (represented in the logarithmic
scale) as a function of the normalized particle number N . The
upper (solid) curves correspond to the LM limit obtained at
k = 1 with Eq. (25).

The upper black line in Fig. 3 corresponds to the SIL and
characterizes the phase estimation procedure with the initially
prepared coherent atomic wave packets. The SIL reads as
δφSIL = 1/

√
ηN ; it can be obtained from Eq. (25) at k = 1

and represents the generalization of the SQL in the presence
of particle losses (see Eq. (30), cf. Ref. [47]). Similar behavior
is inherent to the lower shadow region in Fig. 3.

The nonlinear phase estimation with solitons is established
by the lower (dashed) curves plotted at k = 3. The intermedi-
ate (black dashed) curve establishes the SHL ∝ 1/N2 obtained
with k = 2. These limits are discussed in Ref. [29] and cor-
respond to the phase estimation by means of usual Kerr-like
medium with plane waves. The SJJ environment generates

FIG. 4. The best accuracy δφmin of the phase estimation based
on the SJJ vs transmissivity ηa = ηb ≡ η of the fictitious BSs for the
linear metrology (k = 1) and the nonlinear one (the inset, k = 3) with
N = 100 particles. See more details in the text.

a two-mode Fock state with a particular superposition given
by coefficients An that are � parameter dependent. For the
optimal state (OS, the brown curve in Fig. 3), we numerically
optimize the QFI upper bound F̃Q (25) over all such two-mode
Fock-state superpositions (cf. Ref. [35]).

Figure 3 exhibits two important features, which are rele-
vant to the quantum metrology performed with bright solitons.
First, the absolute value of phase estimation accuracy is mini-
mal with the coupled solitons even in the presence of losses
and for coherent probes [see the blue dashed curve (b) in
Fig. 3] compared to other currently available metrological
approaches beyond the HL (see the lower shadow region in
Fig. 3 and cf. Ref. [29]).

Second, the phase estimation with the initially prepared SJJ
system establishes the best accuracy for both linear and non-
linear metrological purposes in comparison with the NOON
state, which we depict by the magenta curves (e) and (f)
in Fig. 3. The capability of the SJJ system as a probe-state
preparation device for the phase estimation procedure we
establish by the green curves (c) and (d) in Fig. 3, which cor-
respond to the phase transition point � = �c = 2.003 070 84
with N = N0 particles. Moreover, the minimal value of the
estimated phase parameter is close to the results obtained
with the OS. A particular value of N0 is determined from
the experimental facilities, which are used for the SJJ device
design. The particle number involved in Fig. 3 is assumed to
be N0 = 100.

In Fig. 4, we represent the accuracy δφmin = F̃−1/2
Q vs the

channel transmissivity, η parameter, for the linear (k = 1)
and nonlinear (k = 3) metrology phase estimation procedures,
respectively. The NLM peculiarities are given in the inset of
Fig. 4.

At η = 1 all the curves start at the points representing
the accuracy of the lossless metrology with the SJJs at the
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correspondent �. For the SJJ device in the Mott-insulator
regime, at � � 2.1, the accuracies of the linear and non-
linear metrology match the HL (δφmin = 1/N) and the SHL
(δφmin = 1/N3), respectively. In the presence of losses, δφmin

grows depending on the value of the � parameter, which is
relevant to the performance of the SJJs as a device for the
probe-state preparation in Fig. 1. The curves with various � in
Fig. 4 correspond to the crossover region from the superfluid
(� = 2) to the Mott-insulator (� = 2.1) regimes that take
place in the SJJ system.

Remarkably, in the LM case the difference between FQ and
F̃Q for the SJJ model is more than satisfactory, excluding the
phase transition point. Only less than 0.5% discrepancy can
be seen before the phase transition and less than 4% after the
phase transition. At the phase transition point, the difference
between FQ and F̃Q reaches 60%. In the presence of losses
it happens in the vicinity of the inflection point with η � 0.9
(see Fig. 4). At this point, FQ behaves more sharply than F̃Q.
Notice, the plots in Fig. 3 are represented for η = 0.95, which
corresponds to the vanishing discrepancy between FQ and F̃Q.

From the blue (a) and red (b) curves in Fig. 4, it is
clearly seen that at moderate values of η the phase estimation
accuracy approaches δφSIL for the SJJ system close to the
superfluid regime, � < �c. The behavior of δφmin beyond
critical point � � �c is determined by the properties of en-
tangled Fock states at the input of the setup in Fig. 1 in the
presence of losses. Even at � = 2.1 [see the magenta (e) curve
in Fig. 4], accuracy δφmin approaches the one obtained for the
ideal NOON state, δφmin = δφη = 1/NkηN/2 [see Eq. (31)].

Strictly speaking, using such states in metrology is justi-
fied (for a given particle number N) if the transmissivity of
quantum channels satisfies the condition [cf. Eq. (27)]

η � ηc ≡ e−2k/N . (32)

Thus, inequality (32) represents a condition sufficient for
the improvement of phase estimation in the quantum metrol-
ogy scheme (Fig. 1) with the NOON state obtained with the
SJJ system.

Notably, in the presence of significant losses (η � ηc)
entangled Fock or NOON states are not applicable, and the
spin-squeezed states with � < �c demonstrate the accu-
racy better than the SIL. The best accuracy for η < 0.9 is
provided by the borderline state with � = �c due to the ex-
istence of planar spin-squeezing in the entangled Fock modes
(cf. Ref. [26]) [see the green (c) curve in Fig. 4].

In Fig. 4, we also compare the results with the OS (the
brown dotted curves). As seen, the results with the OS and
the states provided by the SJJ are close to each other in
the regions with 0 < η � 0.3 and 0.9 < η � 1, which cor-
respond to the high and low losses limits, respectively. The
difference between the optimal and SJJ states is notable at

intermediate values of η close to the inflection points (see
Fig. 4). Such a behavior takes place due to the phase transition
effect that occurs abruptly and evokes a rapid quantum state
transformation.

VII. CONCLUSION

By utilizing the soliton Josephson Junction system as a
quantum probe, we propose the interferometric procedure for
the appropriate phase parameters’ estimation at the Heisen-
berg (up to 1/N) and the practically unique super-Heisenberg
(up to 1/N3) scaling levels in the framework of linear and non-
linear metrology approaches, respectively. Counterintuitively,
operating near the quantum phase transition point helps to sus-
tain the accuracy of the phase estimation even in the presence
of particle losses. In particular, we account for the influence of
losses at three different steps for the setup proposed in Fig. 1.
The necessary and sufficient conditions are established for
the parameter estimation accuracy improvement with the SJJ
system in the framework of the linear and nonlinear metrology
tasks. For the lossy quantum metrology scheme, the effect of
coupling with the environment causes some number of par-
ticles to be removed from each quantum channel introducing
extra (vacuum) noises. We model these losses by means of the
fictitious BS approach that presumes transmissivities of a and
b channels characterized by parameters ηa and ηb (ηa,b � 1),
respectively. Further, we suppose that channels a and b are
physically equivalent and ηa 
 ηb = η. The resulting quan-
tum state in the lossy channel is a mixed state described by
the density matrix. With the QFI, we reveal the main features
of such a quantum metrology. We have shown that the particle
number is crucial for the superposition state formation and
for the critical value of BSs’ transmissivity ηc. In particular,
practically reasonable values of ηc requires a few hundreds
of particles per soliton and less. We have demonstrated that
in this case it is feasible to create NOON-like states which,
then, may be used for phase measurement and estimation
procedures. In this sense, our results contribute to further im-
provement of the current experiments performed with atomic
condensate solitons containing a mesoscopic number of
particles.
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